MULTICS SYSTEM-PROGRAMMERS * MANUAL SECTION BN.6.02 PAGE 1
' Published: 03/09/67

Identification

- Declarations and Data Organization in EPL
D. B. Wagner

Purpose

The present Section describes in awesome detail the actions
of Pass 1 and Pass 2 of EPL in dealing with management

and definition of variables, aggregates, temporaries,

etc. The average user will have no interest .in this Section;
it is intended for the use of EPL maintainers only, and

even for them only as a reference., See BN.6.00 for the
terminology used.

Non-string Scalars

The following data-types do not require specifiers, Each
simply requires a block of storage 1, 2, or 6 words long.

See BP.2.01 for details of implementation of these data-types;
the present discussion concerns only how their storage

is managed. .

floating variables
fixed variables
pointer variables
label variables

IT Pass 1 encounters a declaration for one of these data-types,
or if it needs a temporary variable with one of these
data-types, it generates a macro of the following form:

dfxx name,alias,bits,offset,xxx,scone,class,C,leve],O
Here xx gives the data-type:

f1 floating
fx fixed

pt pointer
1b label

Most of the macro fields are as described in BN.2.02.

Name is the name used Tor the variable in the source program
(or null for a temporary), alizas is a unicue name generated.
by Pass 1 for the variable, biis is the precision of a

fixed or floating variable, a constant 72 for a pointer
variable, cr a constant 14l for a lazbel variabie. [This

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BN.6.02 PAGE 2

constant should be 216 for a label variable, since labels
are now 6 words long instead of L4, However Pass 2 ignores
this field for labels so ‘it doesn’t really matter.] ffset
is either 0 or "esi"., "gEsi'" means "external static initial";
this issue is discussed elsewhere, Level is the block

level at which the declaration occurred. The fields sc¢ope
and class differ according to the storage class of the
variable: they are mentioned in the following discussions
of the varicus storage classes.

1. For a non-string scalar parameter, Pass 1 generates the macro

dfxx name,alias,bits,0,xxx,par n,xxxx,0,1,0

where n is the parameter number, Pass 2 totally ignores
this macro.

2. For an azutomatic non-string scalar, Pass 1 generates the
macro,

dfxx nameg,alias,bits,0,xxx,int,auto,0,level,0

Pass 2 assigns sufficient storage for the variable in
the current block. This storage is at an even location
if the variable is other than single-word arithmetic,
Pass 2 generates the following eplbsa line to associate
alias with its assignment of storage.

equ alias,loc nam;

——

K

Loc is the stack location assigned to the variable, Name
is given as a comment for convenience,

3. For an internal static non-string scalar, pass 1 generates
the macro: '

dixx namz,alias,bits,0,xxx,int,stat,C,level,C

See BN.5.00. for the implementation of internal static

storage. Pass 2 assigns storage to the variable in the
procedure’s block of iternal static storage at <stat_>|<segamz>.
This storage is at an even location if the variable is

other than single-word arithmetic. ~Assignment of storags

in the procedure”s internal static storage block begins

with location O, Pass 2 gensrates the following eplbsa

lin2 to associate glias with its assignment of storacge,

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BN.6.02 PAGE 3

equ alias,loc name

Loc is the location assigned to the variable. MName is
given as a comment for convenience,

b, For an external static non-string scalar without the
initial attribute, Pass 1 generates the macro

dfxx name,alias,bits,0,xxx,ext,stat,0,level,O

See BP.4.00 for the implementation of external static
storage. Pass 2 switches to a code stream (see BN.6.01)
outside of the any executable code stream and generates
the following eplbsa code:

.yn: dec nwords
dec 0
segref stat_,name (datmk_(.yn))
link alias,pame

Here .yn is a unique symbol created by Pass 2, and nwords

is the number of words which the variable occupies, adjusted
up to an even number., [There seems to be no reason for

this adjustment.] The procedure datmk_ is used to "grow"
storage: it is described in great detail in BP.4,01.

5. For a controlled, based non-string scalar without the
initial attribute, Pass 1 generates the macro

dfxx name,alias,bits,o,xxx,int,cont,o,1evel,0

e e

which Pass 2 ignores,

Non-adiustable Non-varving Strings .-

Strings require specifiers and dope and consequently are
more difficult to comnile than other scalars. See BP.2.02
for details of specifiers: they contain its pairs which
can only be created at execution time.

If Pass 1 encounters a declaration for a non-adjustable
non-varying string, or if it needs:'a non-vary'ing string
temporary for its own use, it generates a macro of the
following form,

offsel,xxx,scone,class,C,lavel, 0

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BN,.6.02 PAGE 4

Here xx gives the data-type:

bs bit=-string
cs character-string

Most of the macro fields are described in BN.2.02, Name

is the name used for the variable in the source program

(or null for a temporary). Bits is the length of the

string in bits. Q0Offset is either "0" or "esi", "Esi"

means "external static initial"; this issue is discussed
elsewhere, Alias is a unique name generated by Pass 1

for the variable., Level is the block level at which the
declaration was encountered., The fields gcove and class
indicate the storage class and are mentioned in the discussions
of storage classes which follow,

1. For a non-adjustable non-varying string parameter,
Pass 1 generates the following macro:

dfxx name,alias,bits,0,xxx,par n,xxxx,0,1,0

-—2

Here n is the parameter number, Pass 2 need only ignore

this macro, However it does generate the label and transfer
for jumping into and back out of the prologue code sequence
(see BN.6,01). Thus one sees in the code wasted instructions
such as,

pl.bk: tra pl.5

automatic non-adjustable non- varylng string, Pass

0.

™@X nare,alias,bits,0,xxx,int,auto,0,lavel,0

i s ——

Pass 2 allocates storage in the current block’s stack

frame for the specifier and data for the string. It compiles
the dope into the procedure, It compiles into the prologue
code sequence the necessary instructions to create the
specifier at block entry.

The layout of the string in the stack will be as follows:

1

data pointer |7

to dopes In ! dope pointer
procedure
segmant data

Y
P
5

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BN.6.02 PAGE 5

Pass 2 generates, outside of any executable code sequence:

equ galias,loc name
.lap:dec O
vfd 9/160,27/bits

And in the prologue code sequence:

eapbp splalias+h,n
stpbp splalias+0,n
eapbp .iap,n

s tpbp splalias+2,n

Here loc is the location assigned to the variable in the
stack. [The modifier ",n" on the instructions above means
"no modifier." It is normally left off in eplbsa code.
This is probably a harmless leftover from early misunder-
standings. The symbol ,iap is a unique symbol created

by Pass 2.

3. For a controlled, based non-adjustable non-varying string,
Pass 1 generates the following macro:

dfxx name,alias,bits,0,xxx,int,cont,C,level,0

Pass 2 allocates space in the current block’s stack frame
for the string specifier., 1t compiles the dope into the
procedure segmant outside of any executable code sequence,

It compiles into the prologue code sequence the code to

set up half the specifier, the dope pointer, at entrance

to the current block, The data pointer in the specifier

is set to point to a generation of the variable when it

is accessed (see BN.6.03.). [As will be mentioned elsewhere,
this particular implementation of based items with specifiers
causes some unfortunate restrictions in the ways they

can be used in calls]

Pass 2 compiles, outside of any executable code sequence,
the following eplbsa code:

equ alias,loc namg
. lap:dec 8] S .
vfd 9/160,27/bits

And in the prologue cods seguence:

eapbp .lap
stpbp splalias+2,n

Here loc is the location assigned to the specifier in the
current block’s stack frame. The symbol .iap is a unigue
symbel created by Pass 2.

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BN.6.02 PAGE 6

b, For an internal static non-édjustab]e non-varying string,
Pass 1 generates the following macro:

dfxx name,alias,bits,0,xxx,int,stat,0,level,O

.See BN.5.00, for the implementation of internal static
storage. Pass 2 assigns sufficient space for the string

and its specifier in the procedure’s internal static storage.
It generates code to create the specifier in the "internal
static specifiers" code sequence, The tayout of the string

in internal static storage is the same as that of an automatic
string in the stack, as diagrammed above,

Pass 2 generates, outside of any executable code sequence,

equ alias,loc name
.dvn: dec 0
vfd 9/160,17/pits

And in the "internal static specifiers" code sequence,

eapap 1p]l.is,*
eapbp ap|0
adbbp alias+h,du
stpbp aplalias
eapbp .dvn

stpbp apla11a 5 4+2

The symbol .is is the linkage address of the procedure”s
internal static storage'"; see BN.6.01. Loc is the location
assigned to the variable in this interral static storage.
The symbol .dvp'is a unique syrbol created by Pass 2.

5. For an gxternal non-adjustable non-varying string without
the initial attribute Pass 1 generates the macro:

dfxx name,alias,bits,0,xxx,ext,stat,0,level,0

See BP.L.00 for the implementation of external static
storage., Pass 2 compiles, outside of any executable code
sequence, the dope and the code for setting up the external
variable on first reference., It allocates starage in

the procedure’s internal static storage for the string
specifier, and compiles, in the "internal static specifiers"
code sequence, the code to initialize the specifier,

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BN.6.02 PAGE 7

Pass 2 compiles, outside of any executable code sequence,

equ alias,loc name
.dvn: dec 0
vfd - 9/160,27/bits
Lym: dec nwords
dec 0 ‘
segref stat_,name(datmk_(.ym))
arg name

And in the "internal static specifiers'" code. sequence,

eapap 1pl.is,*
eapbp name,n
stpbp aplalias+0
eapbp .dvn

stpbp aplalias+?

Nwords is the number of words required by the string,

adjusted up to an even number of words. [It is not clear

why this adjustment is made.] Loc is the location assigned

to the string’s specifier in the procedure’s internal

static storage. The symbol .dva and .ym are unique symbols
created by Pass 2. [The "arg name" above is another superfluous
remnant of the good old days of BSA.]

Non-adiustable Varvinq;Strinqs

See BN.5.00 for the implementation of varying strings
in EPL. A varying string’s specifier contains a third
its pair pointing to a free storage area where data is
kept for the string.

An anomaly concerning varying strings is that they must

be initialized to zero length before being assigned values,
Furthermore all the automatic varying strings in a block
must be cleared when the block is terminated. The jobs

of initializing and clearing varying strings and aggregates -
containing them are performed through calls to the library
procedures varst_3zero and varst_lclear, described in
BN.7.02, Two internal subroutines .compiled ipto each
program which needs them, _,v1 and [v2, serve as interfaces
to these library procedures. They are called where they
are needed (normally using an gax 1 followed by a 1tsx0).

The detailed discussions given below for the various storage
classes show precisely how they are called in various

cases, The code for .v1 and .v2 is as follows:

MULTICS SYSTEM-PROGRAMMERS © MANUAL

JAVA [

V2.

The symbol

stpsp
asx7
ldaq
staq

‘call
tra

stpsp
asx7
1daq
staq
call
tra

SECTION BN.6.02 PAGE 8

sp|.u0+2

sp|.u0+3

=v18/2,54/0

spl.u0
<varst_>|[zero]l(sp|.u0)
0,0

sp|.ul+2

sp|.ul+3

=v18/2,54/0

sp|.u0

<varst >l[c1ear](spl u0)
0,0

.u0 is the stack location of a block of "utility"

storage used in many places in the compiled code. It is

available by the saime name at all block levels,

[The instructions above,

stpsp
asx’/

See BN.6,01.

sp|.u0+2
sp| .u0+3

are unacceptable because -the second will cause an overflow
fault when the stack grows longer than 2%*17 words. These
instructions should be replaced by,

eapbp
stpbp

sp|0,7
sp|.u0+2

I am indebted to C. G. Garman for this and several other
problems with overflow faults.]

1. For an automa
generates the

tic non-adjustable varying string, Pass 1
following macro:

dfxx name,alias,bits,0,var,int,auto,0,level,O

Pass 2 allocates eight words in the current block’s stack
frame for the specifier and Ycurrent information'" for

the'varying string,

segment,

It compiles the dope into the procedure
outside of any executable code sequence. It

com01les into the prologue code sequence the code necessary -
to build the specifier and initialize the string at block

en Lry.

It compiles
code necessary to clear

into the epilogue code sequence the
the string.

MULTICS SYSTEM-PROGRAMMERS # MANUAL SECTION BN.6.02 PAGE 9

- — - — — —] data pointer

To dope in 4Vt - — — — -~ — — dope pointer
procedure segment

To o - free storage pointer -
<free_>|[free_]

current offset |

current length

Pass 2 compiles, outside of any executable code sequente,

equ alias, loc name
.lap: zero 0,0

vfd . 9/130,27/bits

In the prologue code sequence,

eapbp splalias+6,n

stpbp splalias+0,n

eapbp .iap,n

stpbp splalias+2,n

eapbp <free_>|[free_]

stpbp splalias+h,n

eax’ alias

tsx0 V1

And in the epilogue code sequence,

eax’? alias
tsx0 V2

Loc is the location of the storage assigned to the variable
in the stack frame. The symbol .iap is a -unique symbol
created by Pass 2, B e

[The instructions above,

eax’ alias
tsx0 V1

end up calling the procedure varst_%zero. This is a rather
expensive way of getting precisely the same effect as,

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BN.6.02 | PAGE 10

stz splalias+?

which is all that ends up happening. Varst_ is a very
general routine which handles arrays and structures where
it would be a great hardship for the compiler to work
these things out. In the present case, however, it is
just silly.]

3, For an internal static varying string, Pass 1 generates
the following macro:

dfxx name,alias,bits,0,var,int,stat,0,2,0

Pass 2 assigns storage for the specifier and "current
information" for the variable in the procedure’s internal
static storage block located at <stat_>][segname] (for
details see BP.4.00 and BN.5.00.) It compiles the dope
into the procedure segment, outside of any executable
code sequence, It compiles into the "internal static
specifiers" code sequence the code to build the specifier
and initialize the string at first reference,

The string will be laid out in the procedure’s internal
static storage in the same fashion as diagrammed above
for automatic strings.

Pass 2 compiles, outside of any executable code sequence,

equ alias,loc name
.dvn: zZero 0,0
vfd 9/130,27/bits

And in the "internal static specifiers" code sequence,

eapgp Tp}éis,*

eapop ap

adbbp alias+6,du

stpgp ag!alias+0

eapop vn

stpbp aplalias+?

eapbp <free_>|[free_]
stpbp aplalizs+li,n
eapbp aplalias e
stpbp sp|.ul+2

tsx0 V142

MULTICS SYSTEM-PROGRAMMERS “ MANUAL SECTION BN.6.02 PAGE 11

Here loc is the location of the storage assigned to the
variable in the procedure’s internal static storage, and
.dvn is a unique symbol created by Pass 2. The symbol
.is is the linkage address of the procedure’s internal
static storage, as is mentioned in BN.6.01. The symbols
.u0 and .v1 were discussed earlier,

[As was mentioned above under automatic varying strings,
the three instructions

eapbp ap!é]ias
stpbp sp|.ul+2
tsx0 : V12

could be relaced by the instruction
stz aplalias+7
at a considerable saving in time.]

b, For an egxternal static non-adjustable non-varying string
without the initial attribute, Pass 1 generates the macro

dfxx name,alias,bits,0,var,ext,stat,0,level,0

See BP.4,00 for the implementation of external static
storage. Pass 2 assigns storage for the string specifier
in the procedure’s internal static storage. It compiles
the dope and the "trap-before-1ink" initializer in the
procedure segment outside of any executable code sequence.
It compiles into the "internal static specifiers'" code
sequence the code necessary to set up the string specifier,.

Pass 2 compiles, outside of any executable code sequence,

equ alias,loc - pame
.dvn: Zero 0,0

vfd 9/130,27/bits
Jym: dec 2

dec 1

arg w31

tsx1 el 4

eapbp 1pl.is,* o

eaphp bpialias

stpbp Lu0+2

tsx0 Vig2
[tra ‘ .rt

segref stat_,nama(datmk_(.ym))

arg nams

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BN.6.02 PAGE 12

And in the "internal static specifiers'" code sequence,

eapap pl.is,*

eapbp name,n

stpgp agla11as+0
eapbp .avim

stpbp aplalias+?
eapbp <free_>|[free_]
stpbp aplalias+l,n

Loc is the location assigned to the specifier in the procedure’s
internal static storage. The symbols .dvp and .ym are

unique symbols created by Pass 2. The subroutine .ei

performs an internal procedure save sequence, and is discussed
in BN.6.04, The symbol .rt is the return sequence (discussed

in BN.6.01). The symbols .u0 and .v1 are discussed above.

The symbol .is is the linkage address of the procedure’s
internal static storage. The library procedure datmk_

is described in great detail in BP.L4.02.

[A bug in EPL at this writing causes the instruction in
square brackets above to be omitted.]

[The astute reader will notice that it is never in fact
necessary to have an initializing procedure attached to

the datmk_ call for an external static item with a specifier,
The same effect can be obtained much more cheaply by putting
" the initialization into the "internal static initial"

code sequence,] :

[Again it is necessary to point out that the use of ,v1 here
is unnecessary and dreadfully inefficient., The instructions

eapbp Ipl.is,*
eapbp bplalias
stpbp Lu0+2
tsx0 V142

could be replaced by

eapbp 1pl.is,™* .
stz bplalias+7 .

" at a considerablie saving in time.]

Non-adiustable Aagregates

Sea BP.,2.01 and BP.2.02 for the details of implementation
of arrays and structures and their dope vectors. All
non-adjustable aggregates of a given storage class are

MULTICS SYSTEM-PROGRAMMERS MANUAL SECTION BN.6.02 PAGE 13

treated very similarly except in the form of the dope.

Vlhen Pass 1 encounters the declaration for a non-adjustable
aagregate, it generates a macro of the form,

dfxx name,alias,bits,offset,qv,scope,class,ndim,

]eve nsub

which will be followed by others as described below. Here
xX is the data-type: the possibilities in this case are,

pt pointer

bs - bit-string

cs character-string

f1 floating

fx fixed

1b label

SX aligned structure
psX packed structure

The macro fields are discussed in detail in BN.2.02,
Briefly: Name is the source-language name of the aggregate.
Alias is a uniqgue name created for it by Pass 1. Bits

is the precision for arithmetics, the declared length

in bits for non-varying strings, the declared maximum

length in bits for varying strings, "72" for pointers,

"1uut for labels, or "0 for structures. Offset is either
"Q", meaning noth1ng or "esi", meaning "external static
1n1t1a1”- see below for a discussion of external static
initial oata;

Qv is either "xxx'", meaning nothing, or "var'", meaning
varying (if xx is "bs" or "cs"). Scope and c]a S are
explained in the discussions of the various storage classes
below. Ndim is the number of dimensions for an array

("o" if it is not an array). Level is the block level

at which the declaration was encountered. Nsub is the
number of substructures (only if xx is "sx" or "psx",
meaning the aggregate is an aligned or packed structure

or array of structures).

Following the above macro, if pdim:is not zero, are "dimension
bounds'" macros as follows: S :

dfdo lower,upnar

One of these macros is generated fTor each dimension of

the array. Lower and upper are the bounds for the dimension,
and since we are discussing non-adjustable aggregates

they are just numbers, like "g" ., .

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BN.6.02 PAGE 14

1f the aggregate is a structure, i.e., if xx is "sx" or
"psx", then following the dimension bounds macros, if

any, come pnsub "substructure" macros. They have precisely
the same form as the various dfxx macros discussed in

this Section and in BN.2.02, with the scope field equal

to "mos" (which means "member of structure'"), and the

"class" field equal to the class field of the major structure
macro. If any substructure is non-elementary, i.e., is

a structure or array itself, then this entire discussion

of Pass 17s actions applies recursively to the substructure.

At this point an example is in order. In an actual compilation,
when Pass 1 encountered the following declaration,

dcl1 1 sigma(7) automatic,
2 alpha fixed,
2 beta,
3 delta float,
3 eta char(7);

it generated the following sequence of macros:

dfsx sigma,xx0032,0,0,xxx,int,auto,1,1,2
dfdb 1,7 .

dffx alpha,xx0033,17,0,xxx,mos,Xxxxx,0,1,0
dfsx beta,xx0034,0,0,xxx,mos ,xxxx,0,1,2
dff1 delta,xx0035,27,0,xxx,mos ,xxxx,0,2,0
dfcs eta,xx0036,63,0,xxx,mos,xxxx,0,2,0

The action of Pass 2 on this example will be discussed later.

1. For a non-adjustable array parameter, the major aggregate

macro has scone = "parn', where n is the parameter
number, and class = "xxxx".

Pass 2 need do nothing with these macros, but it does
in fact generate some harmless equ’s which it never uses
again and some wasted transfers such as

pl.kb: tra pl.5

2. For an automatic non-adjustable aggregate, the major
aggregate macro has the class field equal to "auto" and

L1

the scope field equal to "int

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BN.6.02 PAGE 15

Pass 2 assigns space in the current block’s stack frame

for the specifier and data of the aggregate. It compiles

the dope into the procedure segment outside of any executable
- code sequence., It compiles into the prologue code sequence
the code to generate the specifier at block entry. If

the aggregate contains any varying strings Pass 2 compiles

in the prologue code sequence the code to initialize the
varying strings, and into the epilogue code sequence the
code to clear the varying strings when the block is terminated.

The aggregate is laid out in the stack as follows:

data pointer
To dope in
procedure
segment

B e

' I To free area if
: ' aggregate contains
T — — — — 17> wvarying strings
)

data }?

T
:
Pass 2 compiles a series of egu’s associating the major
aggregate with its stack location and each substructure
with its substructure number. For the major aggregate:

h .
LAY

equ alias,loc name

and for each subaggregate:

equ alias,subno npame

Outside of any executable code sequence: B

.ian: - (dope: see BP.,2.02)

MULTICS SYSTEM-PROGRAMMERS © MANUAL . SECTION BN.6.02 PAGE 16

In the prologue code sequence, if the aggregate contains
no varying strings: '

eapbp splalias+4,n
stpbp splalias+0,n
eapop .ian,n

stpbp splalias+2,n

In the prologue code sequence, if the aggregate does contain
varying strings:

eapbp . splalias+6,n
stpbp splalias+0,n
eapbp .ilan,n

stpbp splalias+2,n
eapbp <free_>[[free_]
stpbp splalias+i,n
eax1 alias

tsx0 V2

In the epilogue code sequence, if the aggregate contains
varying strings:

eax1 ’ alias
tsx0 V2

Here loc is the location assigned to the aggregate in
the stack frame, subno is the number of substructure within

its immediate containing structure, and .ian is a unique
symbol generated by Pass 2,

For the example aggregate shown above, Pass 2 generates:

equ xx0032,36 sigma
equ xx0033,1 alpha
equ xx0034,2 beta
equ xxX0035,1 delta
equ xx0036,2 eta
.1a0: zero -4,0

zero 320%512,2

- dec 28 . . .
zero 0,1 @ = B
zero .1a0+10~%,256
Zero 320%512,1
dec 28
dec L
dec 1
dec 7
zZero 1,0
zero 256%512,2

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BN.6.02 PAGE 17

- dec 3

zero 0,1

zero .1a0+15-%,128

zero 1,0

vfd 9/128 27/63
pl.1: eapbp splxx0032+u n

‘ stpbp sp|xx0032+0,n
eapbp .iagQ,n
s tpbp splxx0032+2 n

3, For a controlled, based non-adjustable aggregate (whxch by
definition cannot contain varylng strings,) the major
aggregate macro has scope = "int" and g]as = "cont" .

Pass 2 allocates space in the current block’s stack frame
for a specifier for the aggregate. 1t compiles the dope
into the procedure segment, outside of any executable

code sequence, It comptles into the prologue code sequence
the code to fill in the "dope pointer" in the specifier.
The "data pointer" in the specifier is filled in whenever

a generation of the string is accessed: see BN.6,03.

Thus what will be in the stack will look like:

/7/777Z9/(A7 (Filled in as needed

data poxnton/ with a pointer to
/7///79/111/ / /7 the proper generation)
To dope in dope pointer
procedure <F—p—-— — — — —
segment

Pass 2 compiles, as usual, the equ’s associating the alias
for the major aggregate with the stack location for its
specifier and the alias for each substructure with its
substructure number, It compiles, outside of any executable
code sequence,

.ian: e (dope: see BP.2.02) o
And in the prologue code sequence,

eapbp an

A
stpbp alias+2,n

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BN.6.02 PAGE 18

Here as always .ian is a unique symbol generated by Pass 2.

b, For an internal static aggregate, the major aggregate
macro has scope = "int" and class = "stat".

Pass 2 assigns storage for the specifier and data of the
aggregate in the procedure’s internal static storage.

It compiles the dope into the procedure segment, out51de
of any executable code sequence., It compiles into the
"external static specifiers'" code sequence the code to
build the specifier.

The aggregate will be laid out as diagrammed'éériier for
automatic non-adjustable aggregates.

Pass 2 generates the egu’s necessary to associate the
alias of the major aggregate with the storage assigned
to it in internal static storage and to associate the
alias of each substructure with its substructure number,
It compiles, outside of any executable code sequence,
.dvn: ... (dope: see BP.2.02)

And in the "internal static specifiers" code sequence,
if the aggregate does not contain any varying strings,

eapap pl.is,*
eapap ap|0
adbbp alias+h,du
stpbp aplalias+0
eapbp .dvn

stpbp - aplalias+2

Or if the aggregate does contain varying strings,

eapgp 1p}éis,*
‘eapop ap

adbbp alias+6,dn
stpgp : agla11a5+o
espbp vn

stpbp aplalias+2
eapbp <free >|[free_]
stpbp aplalias+b,n
eapbp aplalizs
stpbp spl.uC+2
tsx0 VT2

The symbol .is is the linkage address of the procedure’s
internal static storage. The symbol .dva is a unique
symbol dgenerated by Pass 2,

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BN.6.02 PAGE 19

-5, For an external static aggregate, the major aggregate macro
has scope = "ext" and class = "stat".

Pass 2 allocates storage for the specifier of the aggregate
in the procedure’s internal static storage. It sets up

a trap-before-1link out-reference which will cause the
procedure datmk_ to "grow' the storage needed on first
reference., If the aggregate contains varying strings,

the call to datmk_ includes an initializer to initialize
those varying strings. It compiles the dope into the
procedure segment, outside any executable code sequence,

It compiles into the "internal static specifiers'". code
sequence the code to create the specifier.

Pass 2 compiles the necessary equ’s to associate the atias
for the major aggregate with the location of its specifier
in the procedure®s internal static storage, and to associate
the alias for each substructure with its substructure
number, If the aggregate contains no varying strings

it compiles, outside any executable code sequence,

.dvn: .o (dope: see BP,2,02)
.ym: dec ' nﬁgzgg
dec 0
segref stat_,name(datmk_(ym))
arg name '

Again if the aggregate contains no varying strings, Pass
2 compiles into the "internal static specifiers'" code
sequence,

eapap pl.is,™*
eapbp name,n
stpbp aplalias+0
eapbp .dvn

stpbp - aplalias+?

If on the other hand the aggregate contains varying strings, Pass
2 compiles, outside of any executable code sequence,

.dvn: ce (dope: see;BP.2.02) .
.ym: dec nwords

dec 1

arg *+1

tsx1 .ei

eapbp pl.is,*

eapbp bplalias

stpbp sp|.ul+2

tsx0 V12

tra .rt

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BN.6.02 PAGE 20

And in the "internal static specifiers" code sequence,

eapgp Ipl.is,*

eapbp name,n

stpgp aglé_l.i.a_yo
eapbp .dvn

stpbp aplalias+2
eapbp <free_>|[free_]
stpbp aplalias+h,n

Note that .is is the linkage address of the procedure’s
internal static storage, and .dva and .ym are unlque
symbols created by Pass 2,

Adijustable Items

See the preceding discussions of non-adjustable strings
and aggregates for a general outline of what the macros

for items with specifiers look 1like, In the parlance

of the EPL project, an "extent" is a number which is either
an array bound or a string length. This concept is very
~useful in what follows.

For each adjustable extent in an item, Pass 1 generates

the macros for a subroutine which evaluates the expression
for the extent, Then in the dfxx macro for the item it

. makes the offset field equal to "adj" and puts the name

of the appropriate subroutine in any place where a number
(1ike "6") for the extent would have appeared if the extent
were not adjustable,

See BN,.6.03 for a discussion of expression-evaluation,
The subroutine which Pass 1 generates to evaluate an extent
has the form A

use contbds

dc1b , extentalias, 14k ,0,xxx,con,xxxx,0,level,0

cee (macros to evaluate express1on and end u up
with a 17-bit integer in the "accumulator")

thats all ‘

use main

N t
The use macro controls code sequences; see BN.6.01 for

exact]y how code sequences are ha ndled in Pass 2. Extentalias
is a unique name generated by Pass 1 for the extent-calculating
subroutine, The macro that''s _all specifies a return from

the extent subroutine,

MULTICS SYSTEM-PROGRAMMERS © MANUAL ~ SECTION BN.6.02 PAGE 21

Pass 2 treats the extent subroutine half as a separate
block and half as an ordinary code sequence, The extent
subroutine will be called using the rather peculiar calling
sequences described later in the discussions of the various
storage classes. These calling sequences involve a 'push"
of the call stack, the creation of a display (displays

are described in BN.6,04), and a tsx?2 instruction. The
extent subroutine thus operates at a block level one higher
than the block level of the declaration. (The fiddling
with levels allows non-local use of a based adjustable
item.) 1It evaluates the extent expression and leaves

it as an integer in the g = register. The code takes

the following form:

extentalias: null"

ce (expression evaluator)
tra 0,2

equ Lun, ...

equ .aSN, ...

equ M, ...

The eau’s at the end are standard equivalences always
generated at the end of block., See BN.6.0u4,

It is a fortunate fact about the design of PL/I - EPL
dope vectors in Multics that any extent goes into exactly
one place in the dope vector, right-adjusted in the word,
This fact is of some importance in the discussions later
of the various storage classes,

An_example: in an actual compilation, when Pass 1 encountered
the declaration, :

dcl 1 sigma (n) automatic,
2 alpha fixed,
2 beta,
3 delta float,
3 eta char (2%n);

where n had been declared in an outermore block and had
alias xx0026, it generated the following sequence of macros:

use contbds

dcib ,Xx0031, 14,0, xxx,con,xxxx,0,2,0
df fx ,Xx0032,17,0,xxx, int,auto,0,2,0
1dfx xx0026,17,0,%xxx,int,auto0,0,1,0
stfx xx0032,17,0,xxx, int,auto0,0,2,0
1dfx xx0032,17,0,xxx,int,auto0,0,2,0

that''s all

MULTICS SYSTEM-PROGRAMMERS * MANUAL SECTION BN.6.02 PAGE 22

use main

use contbds

dc1b ,xx0038, 144 ,0,xxx,con,xxxx,0,2,0

dcfx 2 ,xx0040,4,0,xxx,con,xxxx,0,1,0

dffx +,xx0039,17,0,x%xxx, int,auto0,0,2,0

1dfx xx00u0,4,0,xxx,con,xxxx,0,1,0

fxfx 22,0,17,0,

stfx xx0039,17,0,xxx, int,auto0,0,2,0

1dfx xx0039,17,0,xxx, int,auto0,0,2,0

that's all

use main

dfsx sigma,xx0029,0,adj,xxx, int,auto,1,2,2
dfdb 1,%xx0031 :

dffx alpha,xx0034,17,0,xxx,mox,xxxx,0,1,0
dfsx beta,xx0035,0,adj,xxx,mos ,xxxx,0,1,2
dffi delta,xx0036,27,0,xxx,mos ,xxxx,0,2,0
dfcs eta,xx0037,xx0038,adj,xxx,mos,xxxx,0,2,0

This example is taken up again below in the discussion of the
automatic storage class,

1.

For an automatic adjustable item, Pass 2 allocates
sufficient space in .the current stack frame for the
specifier and dope of the item., 1t compiles in the
prologue code sequence the code which both creates the
dope and specifier and grows the stack frame sufficiently
to hold the data. The code to create the dope vector
copies a "template" dope vector into the stack frame, calls
the various extent subroutines and stores their results
into the proper places in the dope vector, and finally
calls the run-time procedure tdope_ (described in BN.7.01)
to fill in missing details (such as offsets) and return

the number of words required.

The aggregate will end up laid out in the stack frame as follows:

| dope pointer

— To ' free area if jtem -
L - - —— - —+——» contains varying strings

¥ dopesize

3;;,['» dope ~ i

data (At end of stack frame,

L

AR

5 grown at block entry)

b
)
\

MULTICS SYSTEM-PROGRAMMERS ¢ MANUAL SECTION BN.6.02 PAGE 23

Pass 2 compiles the usual set of egu’s associating the

item’s alias with the location in the stack frame of its
specifier and each substructure’s alias with its substructure
number., (These egqu’s were described above under Non-
Adjustable Aggregates.) It compiles, outside any executable
code sequence,

.iap: N (dope vector template)

and may things in the prologue sequence; first the code
to copy the template dope vector into the stack and create
the specifier: .

1dx2 dooesi;§-1,du

1da .iap,2 :

sta splalias+4,? (+6 if varying strings are involved)
sb1x2 1,du

tpl *=3 .

eapbp splalias+i (+6 if varying strings are involved)
stpbp splalias+? ’ v
eapbp sp[18,*

stpbp splalias

Then the code to push’ the call stack and create a display:

eax’/ .mn

tsx0 .SV

eapbp spl16,*

stpbp sp|.ds

eapop sp|.ds,*

1daq bp|.ds

staqg spl.ds+2 move a short display
~ eaxh nrc

tsx0 .Cp move a long display

(One of the two pieces of code in brackets above is chosen
depending upon the level of the declaration. See below.)

Then the code toc put the address of the dope vector into a
known place in the new stack franes . :

eapbp spl.ds,*
eapbp bplalias+h (+6 if varylng strings are involved)

stpbp spl.wn

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BN.6.02 PAGE 24

Then for each adjustable extent the code to call the extent
subroutine for that extent and store its result into the
proper word of the dope:

tsx2 extentalias
Irs 36 Needed only for
mpy 9,du the length of a
11s 18 character-string.
[ora idcode*512,du] Not needed for an array bound
eaxl ddgeword. '
sta sp|.wn, "4

Then the code to call an interface subroutine which calls
tdope_ and brings the call stack level back down:

eapbp sp|.wm,*
tsx0 .dp1

Finally, if varying strings are involved, the code to
call varst_$zero to inittalize the varying string to zero
length: ’

eax7’ alias
tsx0 Vi

This ends the code generated in the prologue code sequence,

If varying strings are involved, the following code is
compiled into the epilogue code sequence to clear the
varying strings at block termination:

eax7’ alias
tsx0 v

[The notes given here on the case where varying strings

are involved may weil turn out to be wrong. A bug in

EPL at this writing causes the case of adjustable items
containing varying strings to be compiled into nonsense.]
In the code shown above, .iap is a unique symbol created

by Pass 2. Dopesize is the size of the dope vector in
words, The symbol .ds is the stack location of the "display"
(see BN.6.04)., The symbols .mp and .wn are special symbols
defined for the current block. The .ma gives the maximum
stack frame size needed by any decpe-building code in the
block. The .wn is a stack location designated as the

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BN.6.02 PAGE 25

place in a dope-building stack frame where the location

of dope is to be stored. Jdcode is the id code of a string,
if it is needed in the dope word (see BP,2.02 for id codes.).
- The subroutines .y1 and .v2 were described earlier (under
Non-adjustable Varving Strings). The number nrc is the
menber of its pairs to be moved into the display. The
subroutine .cp is described in BN.6.0L,

The subroutine ,dpl is compiled by Pass 2 into every procedure
which needs it., It does several things: (1) calls the

library procedure tdope_ (see BN.7.01) to fill in missing
pieces of the dope vector; (2) pops the call stack back
where it belongs; (3) increases the size of the current

stack frame sufficiently to hold the data for the item,

The code for .dpol is:

.dp1: stpbp sp|.u0
eapbp sp|.u0+2 .
stpbp spl.u0+2
call <tdope_>|[tdope_] (sp.]|.u0=-2)
1dqg sp|.u0+2
adq 7,du
anq : -8,du
eapsp sp|16,%*
asq sp|19
tra 0,0

" Note that ,uQ is a "utility" space set aside in every
stack frame. It is used here and in many other places.
[The call to tdope_ is highly non-standard and is unacceptable
as it stands.]
[Again we have a chance of overflow in the instruction
adqg 7 ,du
which should be replaced by
eaq 7,qu
and in the instruction o
asq sp]19
which should be replaced by

eapbp spl18,*qu
stpbp spl18

MULTICS SYSTEM-PROGRAMMERS © MANUAL

SECTION BN,6.02

here again the’sharp eyes of C, G. Garman are responsible
for the discovery of this bug.]

- The Example: see the example of an adjustable aggregate
given earlier. When Pass 2 encountered the collection

of macros which Pass 1 had generated, it compiled:

tra
b0 :xx0031:
equ
tra
.b1: eapbp
1da
eapbp
sta
eapbp
1da
tra
equ
equ
equ
.b2:xx0038:
tra
xx0040; dec
equ
.b3: 1da
irs
eapbp
mpy
11s
eapbp
sta
eapbp
1da
tra
equ
equ
equ
null
equ
equ
equ
equ
equ
.ia0 zero
zero
dec
zZero
zero
Zero

s2.1

null "
xx0032, 38
.b1
sp|.ds+2,%
bp|xx0026
spl.ds+0, *
bp|[xx0032
sp|.ds+0,*
bp|xx0032

null "

Xxx003¢2, 39
Xx0040

36
spl|.ds+2,*
bp|xx0026

spl.ds+0,*
bp|xx0039
sp|.ds+0,*
bp|xx0039

xx0029,40
xx0034,1
xx0035,2
xXx0036,1
xx0037,2
-2,0
320%512,2
0

0,1
. 1a0+10-%,256
320%512, 1

sigma
alpha
beta

delta
eta

PAGE 26

MULTICS SYSTEM-PROGRAMMERS © MANUAL

p2.1:

dec
dec
dec
dec

‘zero

zero
dec
zero
zero
zero
vfd
1dx2
1da
sta
sb1x2
tpl
eapbp
stpbp
eapbp
stpbp
eax’/
tsx0
eapbp

stpbp

eapbp
1daq
staq
eapbp
eapbp
stpbp
tsx2
eaxl
sta
tsx2
1rs
mpy
11s
ora
eaxh
sta
eapbp
tsx0
tra

.1a0,2
sp|xx0029+4,2
1,du

*=3

sp | xx0029+4
sp [xx0029+2
spl18,*

sp | xxC029

.m2 .
LSV
spl|16,%*
spl.ds
spl.ds,*
spl.ds
spl|.ds+2

sp .ds,*
bp|xx0029+L4
spl.w2
xx0031

9

spl.w2,%L
xx0038

36

9,du

18
128%512,du
16
spl.w2,*y
sp] W2,

.dpt: L

p2.2

SECTION BN.6.02

PAGE 27

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BN,6.02 PAGE 28

2. For a controlled, based adjustable string or aggregate,
the code compiled is even more inefficient than that for
an automatic adjustablie item., The action which must
take place at block entry to set up the dope must here
take place instead at every reference to the item,

[Since based adjustable structures appear throughout the
Multics system, this would seem to be the area in which
optimization is most worthwhile. It is also the area

in which optimization is most difficult, however.]

Pass 2 allocates space for the item’s specifier and dope

in the stack frame of the current block., It compiles .
into the prologue code sequence the code to copy a template
dope vector into the stack and to create half a specifier
(the other half is filled in when a generation of the

based item is accessed)., It compiles an internal procedure
to do the extent calculation and set up the dope properly.
This internal procedure must be called (using the standard
internal procedure call sequence, see BD,7.02) just before
every reference to the item.

The specifier and dope will be laid out in the stack as follows:

data pointer
T T 7T 7T 7 77 (To be filled in as needed with
a pointer to the proper
generation)

dopgmpointer

bt —— — m—— ——

L dope y

T T

Pass 2 compiles the eau’s which associate the various
aliases with the right numbers. (See the discussion of
these equ”s earlier under Non-adiustable Agdgrecates.)
It compiles, outside of any executable code sequence,

.lap: .o (dope vector template)

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BN.6.02 PAGE 29

And in the prologue code sequence,

1dx2 ‘ dopesize-1,du
1da .iap,?2

sta splalias+h,?2
sb1x2 1,du

tp] Y

eapbp splalias+h
stpbp . splalias+2

And outside of any executable code sequence, the internal
procedure to call the extent subroutines and create the
dope. This procedure starts,

.ctm: eax’/ .mn
tsx0 .SV
tsx0 .Cp

It creates a display and calls the extent subroutines
using precisely the same code as the prologue code for
automatic adjustable items. Finally it goes to a common
subroutine which calls tdope_ and does a return:

eapbp spl.wp,*
tra .dp0

See the earlier discussion of automatic adjustable items
for definitions of most of the terms used above. The
subroutine ,cp is part of the save sequence for an internal
procedure., It is described in BN.6.04,

The subroutine .dp0 is compiled by Pass 2 into every procedure
which needs it., It calls the library procedure tdope_

to fill in the details of the dope vector and then does
a return., The code is always

.dp0: stpbp spl.u0
eapbp spl|.u0+2
stpbp sp|.u0+2
call <tdope_>|[tdope_] (sp|.u0-2)
tra .rt
Constants

When Pass 1 encounters a fixed, floating, bit-string,
or character-string constant, it generates a macro of
the form,

dexx text,alias,bits,0,xxx,con,xxxx,0,1,0

MULTICS SYSTEM-PROGRAMMERS © MANUAL gc TION BN.6.02 PAGE

Here xx is the type:

fx fixed

f1 float,

bs bit-string

cs character=-string

The macro fields are described in BN.,2.02: briefly text
is the text of the constant exactly as it appeared in
the source program, alias is Pass 17s unique name for
the constant, and bits is the prec151on of an arlthmetlc
constant or the length in bits of a string.

30

1. For a fixed constant with precision £35, Pass 2 compiles,

outside of any executable code sequence,

alias: dec text

LSO

and if precision >36,

even
alias: . dec textb71d

e

-

2, For a floating constant of any precision, Pass 2 compiles,

outside of any executable code sequence,

even
alias: dec textm

where textm is text modified by replacing the requlred
"e" in the constant with a "d",

Note that because of the way single- and double- precision
floating-point is handled in the 64:, the compiler may
assume that every F]oatlng point number is double- prec1sxon
[This streamlining costs 1/2 words per Slﬂ%]@ precision
floating constant: cheap at half the price.

3., For a bit constant, Pass 2 compiles the following code,
outside of any executable code sequence:
arg *45 b o
arg
arg 1
zero
vfd 9/160,27/bits
vid e

where the ellipsis represents a very strange variable
field for the vfd which ends up putting the proper bit-
Teft- Just*wed in a block of as many words as are neede

Q 'O

MULTICS SYSTEM-PROGRAMMERS © MANUAL ~ SECTION BN.6.02 PAGE 31

The first three words, if accessed only as indirect words,
are a specifier that can live in a pure procedure., The
next two words are dope.

L, For a character constant, Pass 2 compiles, outside of

any executable code sequence,

arg *45

arg

arg 1

zero

vfd 9/160,27/bits
aci text -

The aci pseudo-op is very convenient since it treats its
argument precisely as a PL/I - EPL quotation.

lLabel Prefixes

When Pass 1 encounters a label prefix, it generates the macro
2 ?

dcib name,alias, bk, 0,xxx,con,xxxx,0,1,0
where pame is the namz in the source program and alias
is Pass 17%s unique name for it.

Pass 2 compiles an eplbsa label prefix from this macro:

alias:
Other Pass 2 - generated code may then appear on the same line,

The Null Pointer

When Pass 1 encounters a reference to the bu11t in function
null, it generates the macro,

dept null,xx0000,72,0,xxx,con,xxxx,0,0,0

The dcot macro is a constant: the fields never take on
any other values,

- ,
Pass 2 compiles, outside of any executable code sequence

even
xx0000C its -1,1,n

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BN.6.02 PAGE 32

- Variables with the Initial Attribute

When Pass 1 encounters the declaration of a variable with
the initial attribute, it compiles into the appropriate
code sequence the code for an assignment of the initial
value to the variable. Which code stream is "appropriate"
depends upon the storage class of the variable; this
issue is the primary concern of the discussions which
follow.

Given the declaration
dcl a ... initial (b);

the macros generated by Pass 1 to do the initial assignment
are identical to those for the assignment statement

a = b;

See BN.6.03 and BN.6.08 for details of expression evaluation
and the assignment statement.

The dfxx macro which Pass 1 generates for the variable

involved has precisely the form shown in the earlier discussions
of the various kinds of variables, with one exception

noted below in the discussion of external static initial

data. Pass 2 takas the same action on seeing these macros.

1. For an automatic variable with the initial attribute,
the initializing macros generated by Pass 1 have the form

use’ autoinitint,alias
cen (initializing macros)
use main

The use macros are Pass 17s control of code sequences:

see BN.6.01 for further discussion. Pass 2 simply compiles
into the "automatic initial" code sequence the normal

code it would compile for the initializing macros.

2. For a contrelled, based variable with the initial attrtbute,
the initializing macros generated by Pass-1 take the form:

use continitint,alias
. (initializing macros)
use main

MULTICS SYSTEM-PROGRAMMERS ©~ MANUAL SECTION BN.6.02 PAGE 33

[At this writing Pass 2 does not recognize the first macro
shown above, and consequently controlled initial does

not work., Presumably what should happen is that Pass

2 compiles the sequence of initializing macros as a “tsx“-able
subroutine called by the code for the gllocate statement.]

3, For an internal static variable with the initial attribute,
the initializing macros generated by Pass 1 have the form,

use statinitint,alias
ce (initializing macros)
use - main .

Pass 2 compiles the usual code for the initializing macros
in the "internal static initial" code sequence. See BN.6.03
for expression evaluation and BN.6.01 for code sequences.

L, For an external static variable with the initial attribute,
Pass 1 generates initializing macros in the following form:

use - statinitext,allias
cen - (initializing macros)
use main

And then generates the macro defining the variable precisely
as described earlier but with the gffset macro field equal
to "esi',

Pass 2 compiles code, outside of any executable code sequence,
in the following form:

init.alias: ... (initializing code)
tra .rt
.YD: dec nwords
dec 1
arg *41
tsxi el
tra Linit.zalias
segref stat_,pame(datmk_(.yp))

1ink alias,name

» 1 .
If the variable requires a specifier the code "to create
it is compiled into the "internal static specifiers'" code
sequence, If the variable is a varying string, the code
above will also include a call to vl to initialize the
string. _ '

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BN.6.02 PAGE 3L

The subroutines _rt and ,ei, and _v1 are described elsewhere.
Nwords is the number of words which must be grown by datmk_
for the variable.

"Members of Structures with the Initial Attribute

When Pass 1 encounters a member of a sfructure with the
initial attribute, the initializing macros it produces
take the form,

use xxxxinitmos

cen (1n1t1a1121ng macros)
use main

for any storage class at all,.

Unfortunately at this writing Pass 2 compiles utter nonsense
for this sequence of macros.

Label Arravys with the Initial Attribute

EPL does not in general allow initialized arrays; however

it does allow a peculiar version of the initial attribute

for label arrays which gives a more-or-less natural way

of programming a many-way fork on an integer variable,

See the documentation [which does not exist] of this language

" feature for details of its use.

The implementation is best shown through an example.
In an actual compilation, when Pass 1 encountered the
statements

dcl fork (5) 1label initial(a,b,c,d,e);
a:b:c:d:e:;

(Clearly a rather artificial example), Pass 1 generated
the following macros:

use xxxxinitcon,xx0026

golb xx0030,144,0, xxx,con, xxxx,0,1,0
golb xx0031,144,0,xxx,con, xxxx,0,1,0
golhb xx0032,1&&,0,xxx,cdn,xxxx,0,1;0
golb xx0033,144,0,xxx,con, xxxx,0,1,0
golb xx0034,144,0,xxx,con, xxxx,0,1,0
use main

dclb fork,xx0026,144,0, xx%x,con, xxxx,1,1,N
dfdb 1,5

dclb a,xx0030,144,0,xxx,con, xxxx,nN,1,n
declb b,xx0031,144,0,xxx,con,xxxx,0,1,0
dclb c,xx0032,144, °, xxx,con, xxxx,0,1,0
dclb d,xx0033,144,0,xxx,con, xxxx,0,1,0
dclb e, xx0034,144,0,xxx,con, xxxx,0,1,0

MULTICS SYSTEM-PROGRAMMERS ¢ MANUAL

SECTION BN.6,02

And Pass 2 then compiled the Foliowing code:

tra
init.xx0026:
tra
tra
tra
tra
.1a0: zero
zero
dec
dec
dec
dec
pl.1: tra
xx0026: arg
arg
arg
n
s1.1:xx0030:
xx0031: nuli
xx0032: null
xx0033: null
xx0034: null

sl,1
tra xx0030
x x0031
xx0032
xx0033
x x0034
-1

- 65+%512,1

5

1

1

5

pl.2
init.xx0026 "fork

.1a0

null "
"b
HC
lld
Ile

PAGE 35

