
,..

MUL TICS SYSTErv1 PROGRAMMERS' MANUAL SECTION BN.? .03 PAGE 1

Published: 03/07/67

Identification

••synthetic epilogue'' procedure for EPL
synep_
D. B. vJagner, t-1. D. ~lcilroy and D. L. Boyd

Pureose

There is never a perfect guarantee that a call will receive
a return; a block may be terminated rather abruptly because
of a non-local 92 to from a dynamic descendant to a dynamic
ancestor. Some blocks, hm'1ever, may not be terminated
without being given a chance to 11 de-initialize. 11 Utter
chaos will result, for example, if a block is terminated·
without the proper reversion of an on-unit established
in the block.

For this reason all EPL blocks which require epilogues
cooperate in building the epilogue chain described in
BN.5.01. The prodedure synep is used to do all non-local
go to's. -

Usage

The call to synep_ may be made explicitly for some reason,
but normally it is called where needed by the compiled
code. Synep_ may be ca'llecl for any of the following reasons:

a non-local ~o
a so to to a label variable which could be non-local

Synep_ is called using the form

ca 1 1 · s y n e p _ (v) ;

where the parameter expected is declared

de 1 v labe 1;

Synep_ takes the label variable passed to it, which includes
a location and a stack level, and carefully terminates.
each block between itself and the target block. For each
of these blocks which has an epilogue listed in the epilogue
chain, the epilogue is executed. Finally synep transfers
to the location specified. -

MUL TICS SYSTEM PROGRAtA~~ERS' tv\ANUAL SECT ION BN. 7. 03 PAGE 2

Implementation

See BN.5.01 for details of the epilogue chain and epilogue
handlers. An epilogue handler is a structure containing
a label and a pointer to the previous epilogue handler.
The label gives the address of an epilogue and the stack
pointer for the 5lock it corresponds to.

To strai~hten out' terminology: 11~ in the stack means .
toward h 1gher address 1 ocat ions~ 1. e. tov1ard deeper nest 10gs.
~ is tovJard shallmver nestings.

Synep_ threads down the stack from its own stack frame
looking for blocks with epilogues. Since the epilogue
chain has the same order as the stack~ it is only necessary
to compare each stack frame address with the stack pointer
in the current epilogue handler. When an epilogue is
to be performed~ synep_ fiddles with stack pointers as
described later and transfers to the epilogue. The epilogue
ends with a return sequence which brin~s it back to synep_
(strangely enough~ since it thinks it 1s returning to
the block's caller).

The code 1.r1h ich effects' the transfer to the epilogue is
better seen than believed. A version of it is reproduced
here:

doepi:

X:

eapbp

ldaq
staq
stpsp

ldaq
staq

stb
stcd
tra
tra
ldb
tra

P1 * (p contains stack pvinter for
block being terminated)

spl18 (fiddle vJith 11 next sp11 and
bpl18 11 previous sp11 in
bpl16 block being terminated)

epi_~·k
bpl8

sp!O
spl20

(Put location of epilogue
into a place the condemned
b 1 ock won't be needing - -· -
again)

X
finished
bpiO (restore epilogue's
spl8~* environment and go to it)

The effect of this code is that while the epilogue is
being performed it has all of its base registers as they
should be. 11 Next sp11 in its stack frame points above
the frame for synep __ , and 11 previous sp11 points to the
frame for synep_. Thus the epilogue may freely call out~
cause linkage faults~ etc.~ but when it returns it ends

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.7 .03

up back in synep_, which can then continue its work.

Lnterruptions in Epiloques

PAGE 3

An epilogue should be coded to avoid any synchronous interrupts
which could cause it trouble (such as overflows in an
epilogue which is charged with reverting the overflow
condition). However asynchronous interrupts can st1ll
cause trouble. For this reason asynchronous 2!J.. conditions
are not supported.

The following routine purports to do an iteration until
time runs out and then return a value. However it returns
successfully in spite of overflow if time runs out while
processing the overflow trap:

iterate: proc (fail) float;
;-:~set timer-:•/
on timer go to done;
on overflow go to fail;
do i = 1 by 1;
/*iteration to calculate y*/
end;

done: return(y);
end;

What would give trouble in the example
fault follm·Jed almost immediately by a
The sequence of events is as follow~:
so the on-unit

go to fa i 1 ;

above is an overflow
timer interrupt.
an overflow occurs,

is executed. This is a non-local go to, so it is executed
using syn~p_. Synep_ invokes the epilogue for the iterate
block, one of whose duties is to revert the on-unit for
the timer condition. The timer condition occurs, however,
before the epilogue has completed this reversion, so that
the on-unit

go to done;

is executed immediately. Thi~ 92 to is local, but the
problem would sti 11 exist J.f 1t v1ere non-local. Control
passes to the statement

return(y);

t-',ULTICS SYSTEM-PROGR.A~1r"'ERS' MANUAL SECTION BN. 7.03 PAGE 4

which invokes the epilogue again and returns a value of
y which~ because of the overflow~ is probably worthless.

There seems to be nothing that can be done by EPL or PL/I
to alleviate this situation. The above example is best
considered bad programming.

,.
'

