
MULTICS SYSTEM-PROGRAMMERS' MANUAL 

Identification 

EPL String Operations 
D. B. Wagner and M. D. Mcilroy 

Purpose 

SECTION BN.7.09 PAGE 1 

Published: 06/01/67 
(Supersedes BN.7.04 03/11/67) 

EPL operations on strings are performed either directly 
by the compiled code or through calls to the procedures 
described here. according to the whim of the compiler. 
[At present 1 EPL compiles most string operations in-line 
when all strings involved are of known length and 36 bits 
long or less.] 

Each of the procedures described here can take either 
varying or non-varying strings as argument. The details 
of how the procedures distinguish varying strings from 
non-varying strings~ and what thet do with varying - string 
answers~ are given in Implementat_on below. 

Usage 

The possible calls to stgop_ are listed below. Following 
each call to stgop_ is the call to a string routine which 
stgop_ invokes. Following this is the approximately equivalent 
PL/I statement indicating its effect. 81, b2, b3, are 
bit strings, varying or non-varying; c1, c2, c3 are character 
strings, varying or non-varying. The other variables 
mentioned are declared 

del answer bit (1), n fixed bin (24) 1 fx fixed bin (63); 

It wi 11 be noted that all of these procedures are entries 
into the one segment stgop_. 

call stgop_$bsbs_(b1,b2); 
call movstr_$movbLb1,b2); 

b2 = bl; 

call stgop_$cscs(cl,c2); 
call movstr_$movc_(c1,c2); 

c2 = cl; 



MULTI CS SYSTEM-P~OGRAMMERS" MANUAL SECTION BN.7.09 PAGE 2 1,.. 
call stgop_$ ctbs_(b1~b2,b3); 
call catstr_$catstrb_(b1,b2,b3); 

b3 = b1ll b2; 

call stgop_$ctcs_(c1,c2,c3); 
call catstr_$catstrc_(c1,c2,c3); 

c3 = c1llc2; 

call stgop_$ixbs_(b1,b2,n); 
ca 11 index_$indexb_(b1,b2,n); 

n = index(b1,b2); 

call stgop_$ixcs_(c1,c2,n); 
call index_$infrxc_(c1,c2,n); 

n = index(c1,c2); 

call stgop_$ntbs(b1,b2); 
call movstr $not (bl,b2); - - . 

1r b2 = b1; 

call stgop_$ndbs_(b1,b2,b3); 
call andstr_$andstr_(b1,b2,b3); 

b3 = b1 & b2 

call stgop_$6rbs_(b1,b2,b3); 
ca 11 andst r _$orst r _(bl, b2, b3); 

b3 = btl b2; 

call stgop_$eqbs_(bt,b2, answer); 
call strcmp_$eqb_(b1,b2, answer); 

answer = (b1=b2); 

call stgop_$eqcs_(c1,c2,answer); 
call strcmp_$eqc_(c1~c2,answer); 

answer = (c1=c2); 

call stgop_$nebs_(b1,b2,answer); 
ca 11 strcmp_$neb_(b1,b2,answer); 

:r answer = (b1=b2) 



' ' 

MILTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.7.09 PAGE 3 

call stgop_$necs_(c1,c2,answer); 
ca 11 strcmp_$nec_(c1,c2,answer); 

answer = (c1=c2); 

call stgop_$lebs_(b1,b2,answer); 
ca 11 strcmp_$1eb_(b1,b2,answer); 

answer= (b1<=b2); 

ca 11 stgop_$lecs_(c1,c2,answer); 
call strcmp_$1ec_(c1,c2,answer); 

answer = (c1<=c2); 

call stgop_$febs_(b1,b2,answer); 
call strcmp_ geb_(b1,b2,answer); 

answer = (b1>=b2); 

call stgop_$tecs_(c1,c2,answer); 
call strcmp_ gec_(c1,c2,answer); 

lr answer = (c1>=c2); 

! ca 11 stgop_$ltbs_(b1,b2,answer); 
call strcmp_$1tb_(b1,b2,answer); 

ans.....er = (b1<b2); 

call stgop_$ltcs_(c1,c2,answer); 
ca 11 strcmp_$1tc_(c1,c2,answer); 

answer= (c1<c2); 

ca 11 stgop_$ftbs_(b1,b2,answer); 
ca 11 strcmp_ gtb_(b1,b2,answer); 

answer = (b1>b2); 

ca 11 stgop_$ttcs_(c1,c2,answer); 
ca 11 strcmp_ gtc_(c1,c2,answer); 

answer = (c1>c2); 

ca 11 stgop_$bsfx_(b1,fx); 

; fx =fixed (b1,63); I,.,. 
I 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BN.7.09 PAGE 4 

There are a number of places where it may be useful to 
call these procedures directly from an EPL program: for 
example in the File System modules which may not use varying 
strings (because of the danger of embarassing segment 
faults), using direct calls rather than assignment statements 
to perform string operations will prevent the compiler 
from creating varying-string temporaries. The compiler 
may be clever enough to avoid these unnecessary temporaries, 
but it is probably not advisable to count on this. 

Implementation 

See BP.2.01 and BN.S.OO for the representation of strings. 
There are three possible identity codes in the dope for 
a string: 

200(8) non-varying, aligned 
240(8) non-varying, packed 
202(8) varying 

Thus the procedures can easily work with any kind of string 
passed to them. 

If the result of an operation is varying, so that its 
current value is kept in a free storage area, the procedure 
must allocate sufficient storage for the new value, perform 
the operation, and then free the storage associated with 
the old value. (Allocating and freeing is done using 
the procedures described in BP.4.02.) The reason for 
the insistence upon not freeing the old value until the 
new value has been calculated is that otherwise the compiler 
would have to make a special case out of such a statement 
as 

a = a; 

where 2 is a varying string. 


