Multics Distribution

To: - \Jultics Distribution J
FROM: Carla Marceau

DATE: December 18, 1967
SUBJ: BQ.3.03

The attached minor revision of BQ.3.03 on the stop procedure allows
ring 1 procedures to declare themselves uniquittable for short per=-
iods of time, according to conventions soon to be described in

BQ.3.06 on inhibiting quits,

K}

Ao berfy

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.3.03 : - PAGE 1

DRAFT TYPED: 12/4/67

ldentification

stop procedure
J.J. Donovan, P.A. Belmont

"Purpose | ‘
Stop is called by the overseer procedure (See BQ.3.01) in response to a quit, %706r
automatic logou}/,mc;?i’:‘spension event. Stop halts the execution of a us-er‘s'

work as soon as possfble and establishes a state in which the Overseer may

alter, destroy or save the user's work. Stop is a ring 1 procedure, callable

only in ring 1 and called by the overseer. Stop operates only in the Overseer

Process.

The user's work is being done by processes in his process group known as
Working Processes. Asynchroﬁously the users' 1/0 is being done by Universal
Device Managers operating in other groups and.(possibly) by Device Manégers
in the user's own group. (See Section BQ.3.00 on the;;ﬁzcess-groué). The

~ functions of stop are to Halt the Working Processe; and 1/0 of the user and
prevent the halted proceséés from waking Qp. The Overseer may then alter,

destroy or save the halted processes.

Basic Oniiine
The stop procedure must perform the following functions:
1. Halt all working processes;
2, Prevent the halted processes of a process group from
receiving any wakeups, except those initiated by the start
“procedure. (See Sections BQ.B.OA,and BX.3.06)
3. Halt all 1/0 proéessing for this process group.
4. Help in housekeeping by marking for destruction unwanted

previously quit working processes.

MSPM DRAFT ' SECTION BQ.3.03 PAGE 2

Stop Implementatjon
The stop pirocedure MA44:iaa called by the following:
call stop;

See flow chart for stop in figure 1.

The stop procedure is a table driven routine; the table is the Working Process
Table. The Working Process Table (see BQ.3.01) is a per User Process Group
data base used by thé overseer and its subroutines in administrating the User
Process Group. It contains one eniry per working process in the group. Each
entry contains the following information of interest to the stop procedure:
The process id
The quit_flag: set when a process is quit and reset by the start

and hold procedures.: (See BQ.3.04)

P 3
L LAY AR _J(
/AR A W'») W C’ : -

o o

The quit_pending_flég: set by stqp(-'/when %sireﬁto quit a working

process. ' ‘“‘”’r ’

The destroy_flag: set by dop if the corresponding quit_fiag is found
set; the Overseer's quit.procedure (which calls stop) destroys
all working processes wHose destroy_flags are set.

The quit_inhibit_pounter:; a count of the level of unquittability of
the working pro cess. Level zéro means "quittable". - (See BQ.3.06)

The i_am_quittableievent channel: channel on which a working process

signals upon becoming quittable and finding its quit_pending_flag on.

© Stop sees that all of the working processes of the group are quit in two steps.
First it passes through the Working Process Table quitting éuittable processes,
marking for destruction the processes whose quit_fllags it finds set, and listing
the i_am_quittable event channels of the processes it finds unquittable. Second,

it waits for these i_am_quittable events. When one is received, its corresponding

MSPM DRAFT SECTION BQ.3.03 | PAGE 3

quit_inhibit_counter is again tested. If zero, the process is quit and the
count of unquit processes is decremented. Stop continues to wait for i_am_

quittable events until all the processes have been quit.

When all working processes have been quit, stop calls io_control¥stop to stop

all the |/0 attached to the process group and then returns.

Let us look in some detail at how stop quits a working process (with process_id=A).
Quitting the process means bringing it to a blocked state (that is, removing it
from the running or ready state), insuring that it receives no‘wakeups and thus

remai#’blocked, and setting its quit_flag.

In MULTICS there are two freely used sources of wakeups, the interprocess
communication facility (See Section BQ.6.04) in the administrative ring and

the process wait and notify module in the hardcore ring. (See Section BF.15.01).

1Z _g Direct calls to wakeup are used sparingly, for example by "start" (See BQ.B:SZZJF_
° The quit_process procedure in the Process Exchange ensures that wakeups are
not sent from the process wa{t and notify module. "The quit_process procedure
.causes the target process to block itself. I[f, however, ;%gitg;égérig:%éégmgiiné,{t>
/ggij:fh?‘target process was executing in ring zero, quit_brocess establishes the
necessary mechanism to run the target process out of ring zero and have the-
target process go blocked'as saon as it leaves ring zero. The quit_process
procedure returns only after theAtarget prdcess has run out 6? ring zero and
then called block. Since the process wait and notify module only sends wakeups
to a process while the process is in ring zero, no wakeups will be sent to a

quit process from the process wait and notify module. The only remaining source
Vit Oane ’ ‘

of peseible wakeups is, then, the interprocess communication facility.

),
To prevent the quit Working Process from receiving any,wakeups, stop sets a

flag (wakeup inhibit flag) in the event table of the process that is to be quit.

MSPM DRAFT SECTION BQ.3.03 PAGE 4

The interprocess communication facility examines the wakeup inhibit flag before
issuing any wakeups. To avoid races, stop must set this flag before calling the

quit_process entry in the traffic controller.

Stop sets the wakeup inhibit flag in the event table of a process that is to

be quit by the following call to the event channel manager (See Section BQ.6.04):
| call .gcm%sei_wakeup_sw (A, "0"b); . |

Stop quits the process by a call to the traffic control module(See BJ.3.03);

call quit_process (A).

Fizl

FLOW OF sSToP

<,

fnt entry of 'orking Process from

veT

(is "rocess ?uit?}

ves

no
N

set "uit_Pendine_Flars

v

AJﬁost cuit _in

I}

-

L‘it__,c-ountf%?

r:ﬂx'

v

i_arm _aquittahble
ctannel name

;anne} list.

snat wakeun_

in~ihit “lag
call quit process '
set quit_flag

\

/

Ivsnt Pestroy_Ffla-~

S
A<

(:

\re there any more Yorking °rocasso§h;
ichk havent heen examined?

> > no

yes

—
<15 1=p? >
B —

wait for i_am_cuittahle
events in ctannel list.

yes

\j'

call fo_ control‘stoo

peTnM

<

F

(event received)

<:;is correspending

auit_inkikit_couter=0? _

no

ynrs.

—

