
TO: 

FROM: 

DATE: 

SUBJ: 

Carla Marceau 

December 18, ·1967 

BQ.3.03 

The attached minor revision of BQ. 3.03 on the stop procedure allows 

ring 1 procedures to declare themselves uniquittable for short per

iods of time, according to conventions soon to be described in 

BQ.3.06 on inhibiting quits. 



•. 

MUL i I CS SYSTEM-PR:>GPAMMERS 1 MANUAL SECTION BQ • .).OJ . PAGE 1 

DRAFT TYPED: 12/4/67 

I dent i ficat i oh 

stop procedure 
J.J. Donovan, P.A. Belmont 

·Purpose 

Stop is called by the overseer procedure (See BQ.J.01) in response to a quit, ~.OO'j "J"" 
. t..it '\ ~,t.s v 

automatic logouY, or suspension event. Stop hal t.s the execution of a user's 

work as soon as possible and establishes a state in which the Overseer may 

alter, destroy or save the user's work. Stop is a ring 1 procedure, callable 

only in ring 1 and called by the overseer. Stop operates only in the Overseer 

Pr.ocess. 

The user's work is being done by processes in his process group known as· 

Working Processes. Asynchronously the users' 1/0 is being done by Universal 

Device Managers operating in other groups and (possibly) by Device Managers 
0 • 

UAlA . 
in the user's own group. (See Section BQ.J.OO on the,process-group). The 

functions of stop are to halt the Working Processes and 1/0 of the user and 

prevent the halted processes from waking up. The Overseer may then alter, 

destroy or save the halted processes. 

Basic Outline 

The stop procedure must perform the following functions: 

1. Halt all working processes.· 

2. Prevent the halted processes of a process group from 

receiving any wakeups, except those initiated by the start 

· procedur.e. (See Sections BQ.J.04.and BX.J.06) 

3. Halt all 1/0 processing for this process group. 

4. Help in housekeeping by marking for destruction unwanted 

previously quit working processes. 



MSPM DRAFT SECTION BQ.J.03 

Stop lmRlementation 

The stop Firocedure will""'be- called by the following: 

call stop; 

See flow chart for stop in figure 1. 

. PA(I 2 

The stop procedure is a table driven routine; the table is the Working Process 

Table. The Working P.rocess Table (see BQ.J.01) ,is a per User Process Group 

data base used by the overseer and its subrou.tines in administrating the User 

Process Group. It contains one entry per working process in the group. Each 

entry contains the following information of interest to the stop procedure: 

The process id 

The quit_flag~ set when a process is quit and reset by the start 

and. hold procedures.· (See BQ.J.04) '· r •1 • (:. 
r '- ~-'o •'• ~'.·\-~~I 

. . ...... -.._.. ..,)''·' ,-.J 

The qui~_pending_flag: set by stop(when~sire#'to quit a working 

process. 4 a• \ 

The destroy_flag: set by S:.op if the cor responding qui t_flag is found 

set; 'he Overseer'~ quit.procedure (which calls stop) destroys 

all working processes whose destroy_flags are set. 

The quit_inhibit_counter:· a court of the level of unquittability of 

the working pro cess. Level zero means ~qui ttable". · (See BQ.J.06) 

The i_am_quittable event channel: channel on which a working process 

signals upon becoming quittable and finding its quit_pending_flag on. 

Stop sees that all of the working poocessesof the group are quit in two steps. 

First it passes through the Working Process Table quitting quittable processes, 

marking for destr~ction t~e processes whose quit_~lags it finds set, and listing 

the i_am_quittable event channels of the processes it finds unquittable. Second, 

it waits for these i_am_quittable events. When one is received, its corresponding 



MSPM DRAFT SECTION BQ.,3.0.3 PACE .3 

quit_inhibit_counter is again tested. If zero, the process is quit and the 

count of unqu iit processes is decremented. Stop continues to wait for i_am_ 

quittabl.e events until all the processes have been quit. 

When all working processes have been qu·it, stop calls io_control$stop to stop 

all the 1(0 attached to the process group and then returns. 

Let us look in some detail at how stop quits a working process (with process_id=A). 

Quitting the process means bringing it to a blocked state (that is, removing it 
• 

from the running or ready state), insuring that it receives no wakeups and thus 
s remain blocked, and setting its quit_flag. 

In MULTICS there are two freely used sources of wakeups, the interprocess 

communication facility (See Section ~Q.~.04) in th~ administrative ring and 

the process wait and notify module in the hardcore ring. (See Section BF.15.01). 

· irect .calls to wakeup are used sparingly, for example by "start" (See BQ.,3.04) 

The quit_proces.s procedure in the Process Exchange ensures that' wakeups are 

not sent from the process wait and notify modu~. ·The quit_process procedure 

. .causes the 'target process to block itself. If, however, fu~r~ ~m~tin~ ~ f ~}~?.target process was executing in ring z~ro, quit_process establishes the 

necessary mechanism to run the target process out of ring zero and have the· 

target process go blocked as soon as it leaves ring zero. The quit_p!ocess 

procedure returns only after the target process has run out of ring zero and 

then called block. Since the process wait and notify module only sends wakeups 

to a process while the process is in ring zero, no wakeups will be sent to a 

quit p~~9ess from the pr~ess wait and notify m9dule. The only remaining source 
VI\'_.:1):.,·-C). 

of possible wakeups is, then, the interprocess communication facility. 

()' sv "' 
To prevent the quit Working Process from receiving any.\wakeups 1 stop sets a 

flag (wakeup inhibit flag) in the event table of the ·process that is to be quit. 



MSPM DRAFT SECT I ON BQ.·J. 03 .PAGE 4 

The interprocess communication facility examines the wakeup inhibit flag before 

issuing any wakeups. To avoid races, stop must set this flag before calling the 

quit_process entry in the traffic controller. 

Stop sets the wakeup inhibit flag in the event table of a process that is to 
I 

be quit by the following call to the event channel manager (See Section BQ.6.04): 

call .ecm$set wakeup sw (A 11011 b) • - - ' ' 
Stop quits the process by a call to the traffic control module·· (See BJ.J.03); 

call quit_process (A). 

'· 

,· 



SaL FLOH OF STOP 

~~ ~·=IJ l >J ~f-entry of ~:orkinr; --~ro~~ss rroM NPT I~ 

' ~ . . - _. (is l"'ro.c-:>ss ~uit1 yes I 
I no ,,, 

-s~t--~-~-it=P~n-1 i nr:.-_~ 1 c'!Wt "[~t -"'estroy_~loi'P-

.----------1/test r.u i t_i nh jh i t_count~ r 
not 0 J -~\ ~J ~ • 
writ~ i_arLquitta~l~ 
~vent c~annel nam~ 
in ch1.1nn~l 1 ist. 

"JL 

s~t v?k~un inhi~it ~1a~ 
ccill ~uit proc~ss · 
s~t quit~fla& 

~ 
. ·_.,) 

'Kl"Cfl+ 1 r 
( .1\rc there any rnorc Hork ing Proc~-;-s~sr----------------1 

which ~av~nt heen ~xarnined? : yes 

I 

· s~t \'J;Jt~~uf\_ 
inhi~it ~la7 
ca 11 quTt_process 
sr-t ~uit ~l<JI'P 

~ 

... no --,.- , ,, 
<fs r~=O? >· yes '=i ~-all _i o_con t ro 1 ~ s tooJ 

. . M1> p.rrt.·r~• -
walt for i a~ quitt~~le • 
~vents in cl--vnnel list. 

; 

(ev~nt rec~ivf"d) 
,ft 

is correspcnrling quit_inhi~it_coutpr=O? 

Y"S· 

J 

1'!0 

_-, 


