
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6.01 PAGE 1

Published: 03/13/67

Identification

·Summary of Calfs of the Interprocess Communication Facility
B. A. Tague ..

f.yrpose

This section briefly summarizes the calls of the interprocess
communication facility described in section B0.6.DO.
Details of the implementation and use of the ~alls can
be found in the sections BQ.6.02 1 and follo•tJing. This
document merely gives~ for each module of the facility~
the name and arguments of each entry, the protection rings
in which the entry is accessible, and a very brief statement
of what a call to the entry accomplishe?.

Argument Definitions and Declarations

In the para9raphs that foll0\'11 1 the entry points to each module
are given w1th th~ir parameter lists. The PL/I declarations
of each parameter that. appears in those paraaraphs is
provided here for reference~ along with a brief statement
of \'llhat the parameter is. A kno\'\/ledge of 80.6.00 is presupposed.

channel_data_location bit(18)

This is a relative pointer to an entry in the
event table or the interuser event table.

channel_id bit (72)

This is the unique identifier of an event channel.

channel_id_list arrayU.-) bit(72)

This is an array of channel ids .. .
I

channel_key array(2) bit(72)

This is an array consisting of a .channel. id and
its receiving process id. It identifies a channel
for the sending precess.

MUL TICS SYSTEM- PROGRArv1MERS' MANUAL SECTION BQ.6.01 PAGE 2

channel key list - - array(*) bit(72)

This is an array of channel keys, two successive
array positions holding each key. It should properly
be a ·structure of an array of array(2) bit(72) arrays~
but it is undesirable to use structures for arguments
for efficiency reasons.

channel_mode bit(3).

This is a bit string identifying th? channel
mode as event queue (001)~ event count (010)~
or event time (100). The channel mode determines
the kind of signalling possible over the channel.

channel_type bit(3)

This is a bit string identifying the channel type
as intrauser (001), interuser (010)~ or device
signal (100). The channel type determines the
class of processes permitted to signal over the
channe 1.

device index fixed binary (17)

This is an index into the device signal table. It
points to an entry in that table containing
information about one device (GIOC channel~ tape
drive~ etc.) attached to the system.

event count ·fixed binary(17)

This is a count of the number of events signalled
over an event channel operating in event count mode.
The count is zero when the channel is created or
after it is reset. It is increased by one for each
event signalled.

event id bit (72)

This is a unique identifier gene~ated when an event
is signalled over an event channel operating in event
queue mode. It is added to the channel event queue
by the sending process.

·-

MUL TICS SYSTEM-PROGRAM~1ERS' MANUAL SECTION BQ.6.01 PAGE 3

event_id_list array(*) bit(72)

This is an array of event ids generated when an array
of event channels is signalled in a single call. If
some of the channels are operating in event count or
event time mode, the corresponding array positions
may contain counts or times rather than event ids.

event_queue array(-;'() bit(72)

This is an array of event ids read but ·of an event
channel queue. If the channel mode is event count
or event time rather than event queue, the array will
have size 1 and will contain the count or time read.

event time bit (72) -
This is a system clock reading. It is placed

. in a longer bit string than necessary for reasons
of uniformity.

procedure_entry , entry (bit(72))

This is an entry point to a procedure of one
argument that is to be called as an event call.
The argument is the channel id that signals the call.

receiving_process_id bit(72)

This is a unique identifier, the process id of
the process that created an event channel.

reset_switch bit(1)

route

This is a bit which is one if the call in which it
appears is to read and reset the event channel read.
If the bit is zero, the channel is read, but not reset.

bit(18)

This is a piece of data it6red in the device signal
table giving information about the physical address
of the device. The interpretation of this data depends
on the class of device.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6.01 PAGE 4

sending_process_id bit (72)

This is the id of the process which is permitted
to signal over an event channel. If it is zero,
it is interpreted as 8ither any process of the
process group of the receive~ (intrauser channel),
or any process at all (interuser channel). ·

waking_channel_id bit (72)

This is the id of that event channel which
causes return from a wait call.

wakeup_svJi tch bit(1)

A bit that is one if the sender of an interprocess
event signal wishes that a wakeup be sent to the
receiving process. If the bit is zero, the event
is signalled, but no wakeup is sent .

.
Event Channel Manager Entries

For additional details on the follo\iiJing calls, see section
BQ.6.02. All of the entry points of this module are accessible
in the user ring. The module itself resides in the
administrative rin.

create_ev_chnl (channel_id, channel_type, channel_mode,
sending_process_id)

This call causes an event channel to be set up
with the calling process as receiving process.

index_ev_chnl (channel_id, channel_type, channel_data_
· location)

This call makes an entry in the event channel
index for a channel created by a hard core procedure.

. . '
send_ev (C hanne l_key, event_ i d; 1:1akeup _svJft'ch)

This call sends a signal over an event channel.

get_ev_q (channel_id, eventqueue, channel_mode, reset_
s~;'li tc h)

This call reads out an event channel for the
receiving process.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BQ.6.01 PAGE 5

inquire (channel_id~ event_count~ reset_switch)

This call reads the number of events signalled
over an event channel for the receiving process.

delete_ev_chnl (channel_id)

This call deletes an event channel for its
receiving process.

ev_error

This function ret~rns an error status string
for the last call to the interprocess communication
facility. See BQ.6.~7 for details.

ev_chnl_info (channel_id, channel_data location~ c~annel_
type~ channel~mode~ send1ng_process_1d)

This call reads out channe1 data for the
receiving process.

Interuser Event Table .Manager Entries

For additional details on the following calls~ see section
BQ.6.03. All of the entry points to this module are accessible
in ~he administrative ring, but not in the user ring.
The module itself resides in the hard core ring. The
entries are for the use of the event channel manager in
controlling interuser event channels~ and for the use
of hard core ring procedures.

create_inter_chnl (channel id~ channel data location~
channel_mode, sending_process_id)

This call is used by the event channel manager and
hard c6re procedures to create interuser event channels

send_inter _ev (channe l_key ~ event_id, wakeup_svJi tch)

This call is used by th~ ~vent channel manager
and hard core procedures to signal over interuser
event channels.

get_inter_ev (channel_data_location, event_queue, channel_
mode, reset_switch) ·

This call is used by the event channel manager and
hard core procedures of the receiving precess to read
out an interuser event ·channel.

MUL TICS SYSTU1-PROGRA~·1tJiERS' f'1Af\lUAL SECTION BQ.6.01 PAGE 6

delete_inter_chnl (channel_data_location)

This call is used by the event channel manager
and hard core procedures of the receiving process
to delete an event channel.

inter_chnl_info (channel_data_location~ channel_mode~
sending_process_id)

This call is used by the event channel manager
and hard core procedures of the receiving process
to read out inter~ser event channel data.

Device Sional Table i-1anaoer Entries

For additional details on the follovvina calls, see section
80.6.04. Aside from the get dev_signal entry which is
accessible in the administrative ring, all the entries
to this module are accessible only to hard core procedures.
The module itself resides in the hard core ring with some
of its procedures in "~Jired dm·m'' core.

get_dev_signal (device_index, event_time, reset_switch)

This call is used by the event channel manager
and hard core procedures to read device signal
channels.

send_clev_signal (device_index, receiving_process_id,
vJakeup_svJi tch)

This call is used by hard core procedures to signal
over device signal channels.

set_auth (device_index, receiving_process_id)

This call is used by hard core procedures to
assign a device signal channel to a receiiving process.

check_auth (device_index, r~c~iving_process_id)
• r

This call is used by hard core procedures to check
that a receiving process has been assigned the
device signal channel located by the device index.

"MUL TICS SYSTEM- PROGRAMMERS' fv1ANUAL SECTION BQ.6.01 PAGE 7

set_route (device_index, route)

This call is used by hard core ring procedures to
store certain routing information needed for device
management.

get_route (device_index, r~ute)

This call is used by hard core procedures to read
out the information stored by the preceding call.

Wait Coordinator Entries

For additional details on the following calls, see section
80.6.05. All of the entries of this module are accessible
in the user ring. The module itself resides in the
administrative ring.

wait (channel_id_list, waking_channel_id, event_queue)

This call is used to vvait upon signals from
event channels ..

signal_ev (channel_key_list, event_id_list)

This call is used to signal events. It does not
resu 1 t in redundant vvakeups to receiving processes
that have more than one channel on the channel
key 1 is t.

on_ev_call (pt~ocedure_entry, channel_id)

This call is used to set up an event call on
an existing channel.

reset_ev_call (chonnel_id)

This call is used to reset the event call mechanism
to enable it to receive another call over the channel.

delete ev call (channel_id) ·· :

This call is used to delete an event call. It
does not delete the associated channel.

