
/
~~UL..,..!CS SY~·'EM-PROGRAMMERS' MANUAL SECTION BQ.7.00 PAGE 1

Published: 11/15/67

Identification

The Locker facil~ty
Michael J. Spier

Puroose

Shared data bases (corrmon to more than one proce·ss) have
to be protected from possible damage which could be caused
by concurrent parallel manipulation. By a systemwide
convention, access to such data bases is subject to the
state of an associated '' lock. 11 A process which does access
such a shared data base ''locks" it prior to any manipulation
and "un locks11 it as soon as the data base can once more
be safely accessed by another process. A process refrains
from accessing a locked data base; it "waits" for it to
become unlocked. The Locker facility handles these locking,
unlocking and waiting functions.

The Locker is a user of the Interprocess Communication
Facility (MSPM section BQ.6.00). A thorough knowledge
of Interprocess Communication is required of those who
wish to understand how the Locker functions. However,
no such knowledge is required in as far as the ~ of

- the Locker is concerned. ·

The Locker resides in the Administrative ring. It is
invoked to handle the locking of any data base within
the system regardless of its. process group affi Hat ion.
Hardcore tables are managed by the Standard Interlock
Mechanism (MSPM section B.G. 15.03). ·

The Locker has no special tables associated with it.
It may be invoked from rings 1-63.

Introduction

We define "shared data base" to be a shared data segment
(accessible to more than one process) or any data structure
within that segment. Data bases can be nested within
one another. The data base's size and depth of nesting
are arbitrary. However, a nested da.ta base must be accessed
progressively, by locking and unlocking its containing
data bases.

The 11 lock" is a word of memory having a bit(36) EPL attribute
and known to be associated with a data base. (Due to
the 645-dependent method of locking, "lock" has to have

PAGE 2

a mach:. ne-dependent de~f in it ion). It is cons ide red to
be "unlocked" if its value is zero and "locked" if its
value is non-zero. By convention, a bit(36) process-id
is always used for the lockin~ constant. The locking
is done by means of the STAC 1nstruction which --within
the same read-write memory cycle-- reads the contents
of " lock'' and stores the accumu later into it on 1 y i.f " lock" 's
previous value was zero (we name this condition "stac
successfu 111). If 11 lock" contains any other value its
contents remains unmodified and this condition made known
to the program. (Note that the hardware allows only one·
processor at a time to access a given word of core).

Unlockin~ is done by conventionally storing a zero-constant
in "lock'. Normally, unlocking is permitted only to the
process which has previously set the lock. .

ay a systemwide convention, the Locker facility considers
a lock to have the following structure:

declare 1 x based(lock_ptr)
2 lock bit(36)
2 channel bit(?O)

I* lock structure *I,
I* lock word *I,
I* event channel name *I;

In practice, however, the user must reserve a zone of
4 contiguously addressable words per lock. When corresponqing
with the Locker, the user refers to the first of these ·
4 words. (Example: del lock(4);)

When using the PLII language, care must be taken to avoid
the possible packing of the lock structure with adjoining
data items. It is therefore recommended to have the lock
structure declared as a substructure (or array) of 4 fixed
binary variables.

When the Locker fails in its attempt to set a lock (STAC
unsuccessful), it invol<es its waiting mechanism which
sends the current locking process an event signal, asking
to be notified when the data base is once more unlocked,
then blocks itself in the Wait Coordinator.

A detailed description of the Locker's internal logic
and its waiting mechanism is given under'' implementation".
The following paragraph discusses general problems associated
with the locking of shared data bases.

Possible error conditions

Normally a process may block itself in its Wait Coordinator,
awaitin~ a specific lock to be reset. If, for some reason,
the awa1ted event signal does not arrive, the process
wi 11 remain blocked indefinitely.

.,

/

~~ULTICS SYSTEM-PROGRAMMERS' M14NUAL SECTION BQ.7.00 PAGE 3

This may happen because of two possible conditions:

1. The process which currently locks the data base
attempts to set the same lock recursively (i.e. ft goes
blocked waiting to be awakened by itself).

2. The process which has set the lock has been quit
or destroyed.

To intercept the first error condition~ the Locker compares
its 0'.11/n process-id.to the lock's current value. An error-status
return is made if both values are found to be equal.

The second error condition makes it necessary for the
Locker to know whether or not the locking process has
been quit. This information is available to the Interprocess
Communication Facility (the wakeup switch in the Event·
Channel Table). Set event returns a status indicator
if the target process was found to have been quit. The
user of the Locker determines (see "implementation") whether
or not this actually is an error condition, and how it
is to be handled. Within a process group, for instance,
it can, in most cases~ be disregarded; for normally, if
one working process of that group is quit, all other working
processes of thqt group are quit as well. Similarly,
certain processes which do not belong to the same process
group (notably in the 1/0 system) might choose to wait
for a data base which is currently locked by a quit process.

The user may wish to insure himself against the eventuality
that he be blocked indefinitely in the Wait Coordinator
awaiting an event signal from a quit (and possibly destroyed)
process. He specifies that unless an event signal arrives
--within a given time limit-- from the process which currently
1 ocks the data base, the locker is to try that lock again.
A status indicator returned by set_event to the effect
that the target process was quit or destroyed causes an
error-status return from the Locker.

A number of shared data bases --in the Administrative
ring-- must always be correctly updated; the system does
not tolerate a process being quit while manipulating such
a data base, as this would result in the data base being
indefinitely locked as well as being in an unpredictable
state.

Hardcore data bases are automatically protected in that
a process is never quit while executing in ring o. Likewise,
the Quit Inhibit Counter (see MSPM sect on BQ.3.06) inhibits
quitting in the administrative ring unt 1 no more "sensitive"
data bases are endangered.

SYST~M-PROGRAMMERS' MANUAL SECTION BQ.?.OO PAGE 4

Another problem is that of accessing the lock structure.
A process that succeeds in s~tting the lock (storing its
process-id in 11 x~1ock") proceeds to store an event channel
name in "·x.channe1 11 • A unique identifier (event channel
name) is known· to never contain a zero value in its leftmOst
36-bits. Consequently. a second process which reads the
(locked) lock structure accepts 11 x.channel'' as a valid
event channel name only if the first 36 bits of the event
channel name are unequal to "O"b. If this condition is
encountered. the Locker reads "x.channel" again.

I mol ementation

The Locker is invoked by calling:

locker~wait(lock_ptr.wait_sw.,time_limit)status);
declare lock_ptr pointer. wait_sw bit(1 •

time_limit fixed bin(17). status bit(36);

lock_ptr is a pointer to the 3-word lock structure
wait sw is a switch which indicates whether the Locker

is-to wait indefinitely for a lock to reset ("O''b) or
whether it should wait for a given time interval only
(11 111 b).

time_limit (provided that wait_sw=11 111 b) is the time in
seconds to be waited before the Locker aban9ons the
lock.

The logic of the wait-sw is the following:

"O''b= The Locker waits for the lock to be reset. ignoring
the possibi 1i ty that the (current) locking process ··
might be quit. Locking is abandoned and an error-status
return is made only if the locking process is known to
have been destroyed.

"1"= The Locker is to "mistrust11 the locking process. If
an event signal is not received from that process within
a given time limit, an error Status return is made.
Likewise. an error-status return is made if the other
process is found to have been quit.

When the Locker (executing in process A) is invoked. it
goes through the following steps:

a. It creates an event-queue-mode channel. having event
channel name "a".

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BQ.7.00 PAGE 5

bo It attempts to set the lock, using its own process-id
(A) for locking value.

If the STAG is successful, it puts event channel
name 11 a" into 11 x .channe 1" as exp 1 ained above.
The Locker returns to its caller.

If the STAC is unsuccessful (lock set by process
B), it tries to read event channe 1 name 11 b'' out of
11 x.channel". If successful (the event channel
name's leftmost 36 bits are non-zero) it proceeds
to step Co Otherwise, it resumes step b after
having blocked itself for a certain length of time.
Note: Functionally, this amounts to a transfer to
step d. Ho.Never, the ''time_limit'' argument may be
either absent or of too high a value. The Locker
therefore sets its ONn time limit.

c. The Locker (sti 11 executing in process A) sends
process Ban event signal over event channel ''b". It
uses event channe 1 name ''a" as event indicator (see
unlocking step d). Set_event may return four status
indicators which, if present, are interpreted as
follows:

1. The target process, B, cannot be reached (process
destroyed). The Locker makes an error-status return
to its caller.

2. The target process has been previously quit.
The Locker makes an error return to its ca 11 er if
wait sw=" 111 b - .
3. Event channe 1 '' b11 cannot be found. The Locker
reads once more ''x.channel". If it sti 11 contains
event channe 1 11 b11 " an error return is made.
Otherwise, the Locker loops back to step b.

4. Event channel "b" has been inhibited (process 8
called ecm$cutoff(b), see unlocking step b). The
Locker loops back to step b after waiting for a
certain length of time.

d. The Locker tests "wait sw'. If it is set to 11 1"b, it
calls upon the Calendar Clock Coordinator (MSPM section
BD. 1 0 o 03):

call set_wakeup_interval(interval,a)

M!.J;_'I':S SYSTEM-PROGRAMMERS' MANUAL . SECTION BQ .7 .00 PAGE· 6

where interval is a function of ''time limit" and a is
event channel "a11 • This insures that-ei ttier process B
or the Calendar Clock Coordinator will signal over
event channel "a" within (time_limit) seconds.

If wait sw is set to "O"b, the Locker calls set wakeup
interval and specif.ies an arbitrary time ·constant (e •. g-: a
minute). This insures that, even though the Locker will
wait unti 1 th~ lock has been reset, it sti 11 retains the
capability of checking every once in a while to see
whether or not the other process has, in the mean time,
been destroyed.

e. The Locker ca·lls the Wait Coordinator to wait on
event channe 1 11 a" •

f. Upon return from the Wait Coordinator, the Locker
loops back to step b.

To unlock a data base, locker~reset(lock_ptr) is called
which does the following:

(The Locker is executing in process B, process A is waiting
for the lock to be reset).

a. Compares its process-id (B) to the value of "x. lock".
An error return is made if the process which tries to
reset the lock is not the one that has set it.

b. Inhibits the event channel (11 b11) which is associated
with that lock by calling ecm$cutoff(b).

c. Resets the lock structure.

d. Reads event ch~nnel 11 b11 • Reading is done by CC~lling
we~ test event. The received event-id 11 a" is interpreted
as being an event channel name (see lockin~ step c). It
sends an event signal over that channel us1ng the channel's
name as event-id. Reading th~ event channel is repeated
until it is found to be empty.

e. De 1 etes event channe 1 11 b" •

f. The Locker returns to its caller.

(Note: By matching the procedures of locking and unlocking,
it becomes evident why the Locker interprets the four
status indicators returned by set_event in four different
ways.)

..
~··_,_.,..!CS S,VSTEM-PROGRAMMERS' ~NUAL SECTION B;>.7.00 ·PAGE 7

Locker9try

C~rtain users of the Locker facility do not wi~h to wait
for a lock (i.e. process their locks sequentially). Such
users, notably the Device Manager Process Group, lock
their data bases by calling locker~try rather than locker~waito
Locker~try is a stripped-down version of locker~wait,
with the automatic waiting functions (notably the interface
with the Interprocess Communication Facility) removed.
It is intended for the more sophisticated user which wants
to access several shared data bases 11 in parallel. 11

It is invoked by calling:

locker~try(lock ptr,ev_chn,wait_sw,time_limit,status)
declare ev_chn bit(70);

where ev_chn is the name of an event-queue-mode channeL

The basic difference between loc.ker~wait and locker~try
is that the latter never calls the Wait Coordinator.
It always returns to its caller, whether or not the attempt
to set the lock was successful. It performs, basically,
the same way lock~wait does. The following lists the
differences between the two procedures, with reference
to the 11 locking steps11 outlined under 11 implementation":

step a. It c;loes not create an event channel, but
uses the event channel name which it received as
argument.

step b. same

step c. The Locker tests ev_chn for a zero-value
(ev_chn=11 011 b).

ev_chn<="O"b no signalling is to take place. The
Locker returns to its caller.

ev chn~11 011 b same as locking-step c.

step d. The Locker calls the Calendar Clock Coordinator
ifwait_sw is set to"1"b.

step e. The Locker returns to its caller.

The unlocking of a lock is done conventionally, by calling
1 ocker~ reset.

MULTICS SYS.,D11-~0.0GRAMMERS' ~NUAL SECT! ON 8Q. 7. 00 PAGE 8

The 1ogic of the wait __ sw is the following:·

"O'b =The Calendar Clock Coordinator is never invoked.
An event may or may not be signalled over event
channe 1 "a" •

"1"'b = An error-s tat us return is made if, while 1 ocker~ try
is executing, it is found out that the other process (B)
has been quit. Event channel 11 a" wi 11 be signalled over
within a maximum delay of (time_limit) seconds. · .

Ca ll.s to the Locker facility

call locker~wait(lock_ptr,wait_sw,time_limit,status)

call locker~try(lock_ptr,ev_chn,wait_sw,time_limit,status)

ca 11 locker~ reset(lock_ptr)

declare lock ptr pointer, time_limit fixed bin(17), status
bit(36), ev_chn bit(70);

_,

