
,. ..
'

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BR.2.00 PAGE 1

Published: 12/06/66

Identification

OvervievJ of On-1 ine Test and Diagnostic Operation
Ha r 1 ov.' E. Frick

Purpose

The following parts of this section contain a general
description of the on-line test and diagnostic system.
The description for each system component is divided into
integrated tests, periodic tests, and diagnostics in accordance
with the philosophy described in section BR.0.01.

Jntegrated processor tests

The Multics supervisor checks for various unexpected conditions,
including all unexpected processor faults. Unexpected
conditions do not include any conditions lr·Jhich may be
generated by undebugged ordinary user programs. They
indicate a program error in the system soft~,.._,are or a hardv.rare
fa i 1 ure.

Peciodk· prQ_cessor test

The periodic processor test described in this section
will be provided in the initial Multics T and D system.
The final T and D system may replace or augment the t~st
described here in order to correct some of the deficiencies;
namely, no master mode or absolute mode tests, no instruction
timing tests, and incomplete instruction seq~ence tests.

The purpose of the periodic processor test is to verify
that a specific processor module is operating properly~
It should not in any sense concern itself with operation
of other system components except as required in order
to execute the. program.

Basic processor functions knmvn to be operable because
the Multics system is apparently operable, are not necessarily
tested.

The processor time required to complete the test is expected
to be quite small (probably less than 50 milliseconds).
The period and priority level should.be adjustable by ·
the field engineer. The ~eriod of the processor test
should be adjusted such that the test runs as often as
possible v.1ithout having a 11 noticeable'' effect on system
throughput. An execution frequency of somewhere between
once per second and once per hour seems reasonable. The

,....
•

MULTICS SY~TEM-PROGRAMMERS' MANUAL SECTION BR.2.00 PAGE 2

reason for making the period as short as practical may
be rationalized as follovJs. Fi1~st, let's assume that
the pe~iodic processor test tests all of the processor
logic. Also, let's suppose the system uses an average
of 70 per cent of the processor logic over a 10 second
period, 80 per cent over a 10 minute period and 90 per
cent over a 1 day period.

I

Nmv, if the periodic processor test ~t'Vere never run a failure
would go unreported until detected (and probably painfully
isolated) by one or more users or an operator. Any number
of users might be affected by the failure, but at least
one \'Jou 1 d be.

If the periodic processor test were run once per day the
failure would go unreported a maximum of one day and 10
per cent of the failures might be detected and corrected
without user awareness (if an average of 90 per cent of
the processor logic is used in one day).

If the periodic processor test were run every 10 minutes
a failure would qo unreported a maximum of 10 minutes
and 20 per cent ~f the failures might be detected and
corrected I:Ji thout user awareness (if an average of 80
per cent of the processor logic is used in 10 minutes).

If .the periodic processor test were run every 10 seconds
a failure would go unreported a maximum of 10 seconds
and 30 per cent of the failures might be detected and
corrected without user awareness (if an average of 70
per cent of the processor logic is used in 10 seconds).

Processor diaanostics

Processor diagnostics fall into the following categories:

1. A diagnostic run in the Multics environment on .a
processor which is currently being used by Multics.
This diagnostic might be run under the following
circumstances.

a. Could be used as a periodic test.

b. Could be executed automatically under control of
Multics v~en an undefined system failure occurs.

This type of diagnostic should be useful in diagnosing
failures in processor logic which is not used by the
Multics Supervisor or the file system and should be
provided in the initial Multics T and D system .

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BR.2.00 PAGE 3

2. A diagnostic run in the Multics environment on a processor
which is not currently being used by fv1ultics. Obviously,
this type of diagnostic would apply only to multiple ·
processor installations and could diagnose only certain
categories of failures (admittedly a larger category than
1., above, but excluding absolute mode tests, timing tests,
associativ~ memory tests, and tests of the appending and
paging hara'vJare). One important point to note is that
there could be a failure in the processor being diagnosed
which might cause the system to crash even though the
system were not using the processor except to execute.the
diagnostic. This type of diagnostic should be investigated
as part of the feasibility study to determine requirements
of the final T and p system.

3. Off-line diagnostics

These diagnostics can perform a complete processor
checkout. They do not run in the Multics environment
and they require an entire system (GIOC with console,
printer and magnetic tape, and one system controller)
in order to operate.

Jnteqrated system controller tests

Core parity errors wil 1 be detected by system softvJare.
The absolute location and data read should be available
to the field engineer. When a core parity error occurs,
the system softvvare should abandon the 6L~ v1ord page vvhich
the parity error occurred in and mal(e the entire 64 v1ord
page available to the test and diagnostic system.

Periodic tests and diagnostics for .$..VS tem cont ro 11 ers

On-line tests and diagnostics for system controllers might
be quite limited in the initial Multics T and D system.
HOI.rJever, a feas ib i 1 i ty study shou 1 d be made to determine
tests and diagnostics for system controllers which should
be included in the final T and D system. (Note: System
clock testing is considered separately ·in the last part
of this section.)

Inte,grateq tests for §..LO_C_ fOntrol lers

The major portion of the GIOC should be tested with integrated
tests. The GIM (GIOC Interface Module) should include
tests for correct GIOC hard0are operation wherever possible.
This approach is desirable because, initially it will
help isolate software as well as hardware errors and because
once the sofh•Jare is debugged, it "'Ji 11 help isolate hard1r1are
malfunctions as GIOC failures rather than undefined failures.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BR.2.00 PAGE 4

Periodic tests for G~OC controllers

Periodic tests of th~ common GIOC logic would not be very
useful because most failures would be immediately detected
by the system or user. (Note: Common GIOC logic includes
al 1 GIOC logic except adapter channel logic) Thus, if
the GIOC appea~s to function properly while being used
by the system at a reasonable capacity, the probability
of a failure being detected by a periodic test would be
very lov·J. Besides, periodic GIOC tests vvould be difficult
to implement. Two approaches are possible:

1. Test the GIOC as it is being used by the GIM. This
approach seems impractical even if one were to take
unlimited freedom in the modifications made to the
GH-1 to allo\JIJ it to interface vJith the test program.

2. Periodically de-allocate the GIOC to customer use
while it is tested. This approach would c~rtainly
work but it is doubtful if it would be worth the effort.

Ho\JIJever, as part of the study to determine programs vJh ich
should be provided for the final T and D system, this
subject should be reviewed. It might be worthwhile (but
I doubt it) to de-allocate an entire GIOC during slack
time·and test for certain GIOC failures 1 ike failures
in priority logic which might not normally be detected
by the system software. Another approach which should
be investigated is the use of diagnostic GIOC comm3nds
to periodically test the GIOC while it is being used by
the GIOC Interface Module.

§..toe d iag_oos tics

No on-line GIOC diagnostics should be included in the
initial l'lultics T and D system. However, a feasibility
study should be made to determine GIOC diagnostics which
should be includ~d in the final T and D system.

]ntegrated test~ for lLQ devices

Generally, system soft\tJare should check for correct operation
of all I/0 device commands and generate a file describing
errors. A process should exist which analyzes and generates
reports from th~ error file.

Periodic tests foe lLQ ~leviGes

Periodic tests will be provided for most or all of the
system I/0 devices because integrated tests cannot detect
all I/O device failures and degradation on a timely basis.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTIOr·~ BR.2.00 PAGE 5

All of the I/0 device tests described below have priority
and execution periods which may be individually adjusted
for each device by the field engineer.

The Equipment Test Scheduler is a Multics module which
schedules test programs to periodically run. This is
done by making requests to the transactor at appropriate
times and with appropriate priority. For example, the
standard period might be adjusted such that each I/0 device
is tested no more than every six hours, and at least every
24 hours. Each of the tests described below should include
a complete logical test of the device, excluding timing
tests and tests which would require manual intervention
after the test started.

1. Magnetic Tape Test

The magnetic tape test might be integrated with
maintenance of a library of scratch tapes. A user
may wish to release a tape reel because he no longer
needs it or because he suspects the tape may be damaged.
He n1ight do this by making the reel number available to
the tape test.

The r~agne"t ic tape test v'JOU 1 d perform the following
functions:

a. Check handler fot proper .logical operation.

b. Check handler for read vvr i te en'ors using knovvn
good tape.

c. Check e~ch tape reel which was previously made
available by other user. The test would first
make a write pass guaranteed to erase all privat~
information on the tape. The test would then
re-classify the tape as good or bad, and issue
instructions to the operator as to the disposition
of the tape.

2. Printet- Test

The printer test might consist of printing four printer
pages. The first page might consist of an identification
heading followed by an alignment test pattern. The
second two pages might consist of a rotating pattern
which causes each character to be printed in each column
position. The fourth page might test those control
characters and pri11t commands v!hich t·Jere not tested in
the first three pages.

.
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BR.2.00 PAGE 6

3. Card Punch Test

The card punch test might consist of punching a deck
of about 200 cards. The front portion of the deck
could contain identifier information. If the deck
were successfully punched, instructions might be
transmitted to the operator requesting him to save
the deck. The next time a card reader test was
scheduled, the operator could be requested to place
all accumulated outputs from punch tests behind two
knovvn good decks and insert a 11 in the card reader to
be tested.

4. Card Reader Test

The card reader test might consist of reading and
comparing to standard data, two known good decks of
about 200 cards.

The test could also read and compare each deck punched
by a punch test which had not yet been run through a
card reader to verify that it was properly punched.

Diagnostic for Jl..Q devices

At least two types of diagnostic~ will be available for
each I/O device. One type wi 11 be provided by allowing
the field engineer to specify his own diagnostic by inputting,
compiling, and executing a program written in TDL. The
other diagnostic will be a TDL diagnostic existing as
a permanent file. This diagnostic might be similar or
identical to the periodic test for that device.

In tegrateq tests· for. H1tV1's (Extended f'!ieJ}1ory ~~odu 1 es)

EMM logic should be tested with the standard EMM interface
module, as the· logic is used, whenever it is practical
to do so. The following are types of features which it
\.Vou 1 d be des i r~ab 1 e to incorporate in the standard G•lfvl
interface modules.

1. Test that an Abnormal Status Word has been stored
for each increment of the Status Entry Pointer.

2. Report all EMM errors to the field engineer.

3. Upon detection of a non-recoverable data error,
effectively remove the EMM sector address from
the system EMM memory map and add it to the
diagnostic EMM memory map. (The diagnostic EMM
memory map contains EMM sectors which the diagnostic
system may access.)

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BR.2.00 PAGE 7

4. 'Upon detection of a core parity error during a
data transfer between ~ore and EMM provide a
facility for the field engineer to determine the
core address of the parity error and the data read
from that address.

,
Periodic EMM t~sts ---.--
Periodic EMM t~sts will not be included in the initial
Multics T and D system because the need for a periodic
test of EMM hardware, which is continuously being used,
is very doubtful. HovJever~ routines to periodically check
EMM error counters may be included.

U·1~~ d iaanos tic~

Complete EMM diagnostics will not be included as part
of the initial Multics T and D System. A feasibility
study should be made to define EMM diagnostics which should
be inc 1 uded in the f ina 1 T and D s ys tern. Hovvev·er I diagnostics
for failures 1.r1hich are 0 111''1 address sensitive v.Ji 11 be included
as part of the initial Multics T and D system. The field
engineer should be able to specify DCW~s to be executed
for any EMM address which is in the diagnostic EMM memory
map. He should also be able to specify the data transferred
and should receive messages reporting command results.
These facilities should be provided by a new version of
TDL. (TDL is described in section .BR.0.01.)

At EMM initializat:on time there should be a facility
for effectively transferring EMM sectors from the system
El-'\~·1 memory map to the d iagnos t 1c Efiii·1 memory map. The
field engineer should be able to transfer sectors from
the diagnostic EMM memory map to the system EMM memory
rr.ap at any time. The reason to this facility is because
each un-recoverable read error on the EMM is expected
to transfer a page to the diagnostic memory map and it
is likely that sometimes there will be a need to return
these pages to the system EMM map without going through
an Initialization procedure.

Integrated svste.D_l clock test~

Most .system clock failures will cause an interrupt to
notify the system of the failure. The system should respond
to this interrupt with an appropriate error message.

Although the system clock is expected to be very reliable
(MTBF of at least 8000 hours)~ and although most failures
will be detected by an interrupt, there is a possibility
of failures causing the calendar clock to count incorrectly

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BR.2.00 PAGE 8

with no indication to the system. The probability of
losing counts or readirg all zeroes is higher than the
probability of picking up counts. The system should therefore
make periodic checks to insure that successive clock values
are greater than the value previously read. It is not
necessary that this be done by every user each -time he
reads the calendar clock because of the overhead required.
However, it is recommended that this check be made in
at least one system procedure which is used repeatedly
and often. The routine which generates unique identifiers
and process exchange are two recommended candidates.

Periodic system clock test

This section describes a testing scheme for system clocks
which might be implemented in the initial Multics system.
The test is outlined in some detail as an example which
wi 11 help define details and potential pt-oblems in the
Multics/diagnostic system interface.

If the system has two system clocks, both clocks·should
be set as accurately as possible and as close together
as possible before Multics is initialized. During initialization,
the system reads both clocks and uses the one with the
slowest time o.s the primary clock. (Note: The slowest
clock should be used as the primary clock because if a
switch to the backup clock is necessary and if the backup
block is behind the primary clock, the ·system must be
locked up until the backup clock catches up to the last
stored value of the-primary clock. Otherwise there would
be a possibility of generating duplicate unique identifiers.)
If the clocks are within 5 seconds of each other, the
clock with the fastest time is assigned as the backup
clock and the system will begin operation in dual clock
mode. If the clocks are not within 5 seconds of each ·
other a message will be outputted indicating that only
the clock with the slovl!est time is being used, and the
system will begin operation in single clock mode.

If a clock failure is detected while in the single clock
mode, the system is down until repair is made.

If a clock failure is detected while in dual ·clock mode,
the system will continue operating in single clock mode
with no user disruption.

The periodic system clock test will run only on systems
currently operating in dual clock mode.

The purpose of the test is to:

1. Verify that both c.locks are functioning properly
by comparing the operation of the two clocks.

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BR.2.00 PAGE 9

2. Switch to the good clock without user disruption
when a failure occurs in either clock.

3. Generate messages describing failures and request
adjustment when times drift out of prescribed
limits.

The periodic system clock test will be initially a~akened
by the T and D demon if the system is initialized in dual
clock mode. This might be done as follows:

1. Reset the primary wakeup flag.

2. Set the backup wakeup flag.

3. Store current times from both calendar clocks.
(Note - This must be done by two adjacent store
calendar clock instructions with bit 28 on in Master
Mode. Thus, a facility must be provided to allow
the T and D demon to do this.)

4. Request the primary clock test procedure to wakeup
at 1/2 delta + current primary calendar clock time.
(Note - Delta is the period of execution of the
clock test.)

5. Request the backup clock test procedure to wakeup
at delta +current backup calendar clock tim~ via
VJakeup using the backup alat~m clock. (Note- This
means that the alarm clock co-ordin~tor must be able
to perform scheduling using the backup clock for this
procedure. Also, the procedure must be awakened only
via an interrupt from the:backup clock.)

When the primary clock test procedure is awakened, it
might proceed as follO\-JS:

1. If the backup vJakeup flag is on, go to Step 2. If the
backup vJakeup flag is off, it indicates either that vJe
got a wakeup too soon from the primary clock or \•Je have
missed a wakeup from the backup clock. The following
procedure mi~ht be executed to determine· which of these
error condit1ons occurred: .

a. Enter Master Mode and set bit 28 on to inhibit
a 11 interrupts.

b. Save interrupt masks from each system controller.

c. If interrupts were inhibited on either alarm clock,
generate appropriate arguments and go to an ''undefined
erro~' procedure. ·

..,.____ - .-----
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTIOf~ BR.2 .00 PAGE 10

d. Set interrupt masks to mask all interrupts except
alarm clock interrupt from the primary clock.

e. Set the system interrupt handling mechanism to
immediately transfer control to the test procedure
whenever a primary or backup alarm clock interrupt
occurs.

f.

g.

h.

i.

j.

k.

Set bit 28 off to allow primary alarm clock interrupts.

If the primary alarm clock can be made to ring when
the alarm is maintained greater than the current time,
store the test case parameters and set a flag indicating
that the primary calendar clock has failed.

Set interrupt masks to mask all interrupts except alarm
clock interrupt from the backup clock.

If the backup clock can be made to not ring when it
should, store the test case parameters and set a flag
indicating that the backup clock has failed.

If neither or both clocks failed, generate appropriate
arguments and go to an "undefined error'' procedure.

If only one clock failed the test. generate an error
message, switch the good clock as the primary clock,
change to single clock mode, set the alarm clock to
go off immediately, return the interrupt masks to their
value at entry to the test, and exit. It should be
noted that if a switch to the backup clock is necessary,
and if the backup clock is behind the primary clock,
the system must be locked up until the backup clock
catches up to the last stored value of the primary
clock. Otherwise there would be a possibility of

.generating duplicate unique identifiers.·

2. If the primary vvakeup flag is· off, go to Step 3. If the
primary wakeup flag is on, it indicates that we got more
than one wakeup from the primary clock or that we missed
a wakeup on the backup clock. A procedure similar to
the one described in Step 1 above might be executed to
determine which of these error conditions occurred.

3. Reset the backup wakeup flag.

4. Set the primary wakeup flag.

5. Store current calendar clock times in primary time and
backup t 5.me.

MULT ICS SYS TEM-PROGRAMt~ERS' MANUAL SECTION BR.2.00 PAGE 11

6. Schedule the primary clock test to wakeup at primary
time + delta.

7. Block this process.

l.rJhen the backup clock test procedure is awakened, it might
proceed as follows:

1. If the primary wakeup flag is on go to Step 2. If
the primary wakeup flag is off, it indicates either
that we got a wakeup too soon from the backup clock
or we have missed a wakeup from the primary clock.
An error routine could attempt to determine which of
these error conditions occurred.

2. If the backup \IIJukeup flag is off, go to Step 3. If

3.

the backup \.vakeup flag is on, it indicates that we got
more than one wakeup from the backup clock or that v-Je
missed a wakeup on the primary clock. An error routine
could attempt to determine which of these error conditions
occurred.

If the difference between the primary and backup clock
times is less than 5 seconds, go to Step 4.

If the difference is between 5 and 30 seconds gene~ate
and output a message requesting the clocks to be-adjusted
(unless the message has already been given within the
last 15 minutes) and go to Step 4.

If the difference is greater than 30 seconds, mask
interrupts and attempt to determine which clock is
counting at the wrong rate. If this cannot be determined,
output a message containing both times to the operator
and request him to select which time should be used.
After his· response, set the clock he selected as the
primary clock, switch to single clock mode, generate an
error message to the field engineer and block this process.

4. Reset the primary wakeup flag.

5. Set the backup wakeup flag.

6. S~hedule the backup clock test to wakeup at 1/2 delta +
backup time (which I!Jas stored during the primary clock
test procedure) via wakeup using the backuQ calendar clock.

7. Block this process.

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BR.2.0Q PAGE 12

System clock diagnostics

No on-line diagnostics are planned for the system clock.
The system clock is designed such that almost any failure
can be diagnosedJ repaired, and tested off-line.

I
I

. \

