
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.1.00 PAGE 2

remaining elem8nts are interpreted as arguments for this
procedure. Appropriate data type conversion is applied to
these values before the procedure is called.

A number of commands separated by semi-colons and terminated
by NL (new line) form a command sequence. Hence a command
is terminated by NL or semi-colon 1 usually NL.

IJ emfill.!

There are four types of element:

1. string
2. literal string
3. 1 ist
4. bracketed command

The most common type of element is a string. A string is a
sequence of one or more ASCII characters not including the
punctuation marks:

(J () { 1 II ' I . , NL blank

For example, a command consisting only of strings is:

delete file_name1 file_name2

The value of a string is the string itself.

L i te r:.9..L) t r in a

A literal string is a sequence of characters (not including
unmatched accents, ' 1) enclosed by a grave accent on the
left and an acute accent on the right. Literal strings may
contain literal strings. The value of a literal string
is the string with enclosing punctuation removed.
For example:

delete 'file I
name

would cause the Shell to call delete with.one argument,
file name. The Shell removes the enclosing punctuation
before passing the argument. Literal strings may be
nested, in vJh j ch case the She 1 1 removes the QU t? rmos t enc 1 os­
ing punctuation

dmultics SYSTEMS-PROGRAMMERS' MANUAL

de 1 ete \ f i 1 e
\

name II one·

SECTION BX.1.00 PAGE 3

would cause the Shell to call delete with one argument~
file 'name one'.

A list is a sequence of zero or more elements separated by
one or more blanks enclosed by (on the left and) on
the right. The value of a list is a list (i.e., structure)
of the values of the enclosed elements.

For example~ suppose the parame'er type information on the
alpha subroutine says that alpha has two arguments~ an array
of strings and an jnteger.

alpha (f i 1 e_name 1 ' f i 1 e name2 1)

would cause the Shell to call alpha with two arquments:
1) the array containing t~;'Jo strings~ f i 1 e_name 1 and f i 1 e
name2~ and 2) the. integer 1.

It is interesting to note that

alpha f i 1 e __ name

and

alpha (file_name)

are not equivalent. The first is an example of a command
with one argument - a string. The second is an example of
a command with one aroument - a one-element arrav of strinas.

~ . ~

B r ac_~ t.?.d_ \:..Qmman d.

A bracketed command is a command enclosed by { on the left
and } on the right. The value of a bracketea command is the
va 1 ue of the command v1h ich is enc 1 ose.d by {1 . The va 1 ue of
a command is the value returned by the procedure which is
c a 1 1 e d as a res u 1 t of i n t e r pre t in g the co mrna n d . F o r
example,

delete [get name oldfileS

causes the Shell to call getname with the argument oldfile.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX. 1.00 PAGE 4·

Suppose the value returned by getname is the string, file
name1, the Shell then calls delete with one argument~ the­
string, file_name1.

{getname delete_functio~ file_name1

causes the Shell. to call getname with the argument delete_
function. If getname returns the string delete, the Shell
then calls the delete subroutine with one argument, the
string file_name1.

Parameter type information is always applied to a subroutine
called by the Shell. For example, suppose compute is a
subroutine whose parameter type information indicates that it
has two arguments, a floating point scalar and an integer
scalar; and the subroutine getval has parameter type informa­
tion which indicates that it accepts one argument, a string,
and has a value which is a string. Then,

compute ~etval tern~ 3

causes the Shell to call getval with the string,temp; getval
returns the string 92. The Shell converts the string 92 to
the floating point scalar 92 and the string 3 to the integer
scalar 3 and calls compute with the floating point scalar 92
and the integer scalar 3.

Conversion when required is performed on the value of
commands, but further evaluation is not done. Consider the
example:

{getname} arg

If getname returns as its value, the string {subr} , the
Shell calls the subroutine whose name is [subr} with one
argument, arg.

Ar;idJ t iqna 1 fea ttlL_es

J_abe~

A command may be labeled. A label is an identifier termin­
ated by a colon(:). The initial Shell ignores labels.
When macro facilities are added to the command language, an
interpretation will be defined for labels.

A comment may appear before or after any element in a com­
mand. A comment begins vJith a double quote mark (") and

MULTICS SYSTEMS-PROGRAMMERS' MANUAL SECTION BX.1.00 PAGE 5

terminates \\lith a 11 , NL, or semi-colon. Comments are
stripped from the command and discarded by the Shell.

Subroutine Fntry Point Names

The value of the first element in a command must be a sub­
routine entry point name or an ITS pointer to a subroutine
entry point. This requirement limits the first element to
the following types:

1. string
2. 1 iteral string
3. bracketed command

If the value of the first element is a string, the Shell
interprets the string as a subroutine entry point name. If
the string has the form,

segl symb

then seg is assumed to be a segment name and symb is assum­
ed to be the name of an entry point in seg. If the string
does not contain a 1~ but has the form ..

name

then the Shell interprets this as an abbreviation for,

name I name

If the value of the first element is a pointer, it is assum­
ed to be pointing to a subroutine entry point.

Shell Escaoe Cha@cter

The character o/ is the Shell escape character. Use of this
character suppresses syntactic interpretation, by the Shell,
of the immediately following character. The escape character
itself is discarded during evaluation except in the inner
literal strings of nested literal strings.

For example,

de 1 ete o/, {j i 1 e..,. name(;/}

causes the Shell to call delete vJi th the argument, {fi le_name}.
Note that,

delete f i 1 e

causes the Shell to call delete with the argument .. ~file.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.1.00 PAGE 6

An example of the use of the escape character in nested
literal strings is:

alpha 'a~::~.
, I

causes the Shell to call alpha with a single argument 1 the
string 1

a· 'bq~. c/
I '-'I

Null-Valued Elements

Most elements may have null values;

{}
()
\ I

is a bracketed null command; the value of the
null command is null;
is the null list 1 i.e., a list with zero elements;
is the null string, i.e., a string of zero length.

Evaluation of a command.element may produce a null value.
If the subroutine com returns a null value, then

delete {com} a

causes the shell to call delete with two arguments, the first
null and the second, a.

The Interjected Command

There are certain data bases which the Shell and the system
commands use that must be managed by the Shell. When the
Shell begins evaluation of a new command (right after NL or ;)
or a bracketed command, a copy of the current data bases is
put on a stack, i.e., at the end of evaluation of a ne\i'J
command or a bracketed command the data bases are refreshed
by popping up the copy on the top of the stack.

Evaluation of an interjected command does not cause pushing
down and subsequent popping up of these data bases. Further­
more, an interjected command, although evaluated when encount­
ered by the Shell, has !lQ bearing on other commands being
evaluated when it is encountered .

. 4 typical use of the interjected command is the setting of
options in Multics (see BX.12.08). There is a group of
permanent opt ions as soc ia ted v.J i th each user vJh ich the ·user
is free to set according to his ovvn choosing by use of the
option command. There also is a group of comnands which will
reset the current options. The options group is one of those

' ' .

.r

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.1.0, P.AGE 7

data bases which is pushed down at the beginning of a new
command or a bracketed command and popped up at the end.

If the brief option is off in the user's permanent options
and the command brief turns on the brief option in the
current copy of the user's options, then, consider the
following examples:

alpha a. Lbrie{l {beta b}

alpha a {beta [brief] b}

alpha a {beta b} [brief]

In the first example, both the commands beta and alpha
operate with the brief option on. In the second example,
only beta operates vJith the brief option on. In the third
example, only alpha operates with the brief option on~ In
all three examples, the arguments to alpha are a and the
value returned by beta after it is called with its one
argument, b.

Append L':S

Form9.L.Qesc r ipt ion of the ~ommand U~ma~

The notation used here is an ~ugmented form of BNF.
augmentation permits nested () bracketing. It also
a subscript to be attached which indicates bounds on
number of repetitions, i.e. ,

The
permits
the

(.class/
k

means k or more repetitions of (class)

(class(
k-

For exa.mple,

(.s) : : = I/ a"'
''- I

is equivalent to

1

means k or fewer (including zero)
repetitions of (class)

(b))
2-

(ab> : :""' (a';(b) J (a) (cb)

is''-1 •• ::-:: \l-=--b'-1 }. /;=->i-)'> /ab)
'-.. • • J ,~ ·- '- ~ .. I ,., '

in standard BNF.

- ' ' ..

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.1 .00 PAGE 8

The syntax is described in terms of the canonical form
(see BC.2.02), i.e., a single blank is (SP) and a sequence
of more than one blank is ~RHT).

(command sequence) := ((left space> (labeled command>

(terminal fill> I (space));)
. 0

(b 1 ank> : = <sP> I (RHT)

({left space) (labeled command)

(term ina 1 fi 11 >I (space)) <NL)

(labeled command> := <'~label> (separator)> <command>
0

< labe 1) : = (!dent i fier).

(right space) :=.((blank) (fi 11>) <l?lank)
1 - 1 -

(left space) :=(blank> (<.fi 11> (blank))
1- 1 -

'terminal fill) :=(right space> <Zblank) (!erminal comment))

~pace) :=<.blank'? (~fill) (blank))
1- 1- 1-

(?eparator) :=(blank) (.<.fi 11)' (blank>)
1 -

(.fi 11) := ((interjected command> I <._comment))

.(.(blank) ~interjected command I (comme~t/)) 0

<command):= (command name) ~(separator) (element list))
1 -

(comment) : = 11 .(_character except unquoted 11 ; or (..NL)) "
0

1 -

-'

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.l.OO PAGE 9

(terminal comment)::: 11 (character except unquoted 11 ; (NL))
0

(command name) : := .(string) I (1 i teral string) I (bracketed command)

(element list)::= (element) <<separator)' <element)/
0

(element)::= (string) I (literal string) I (Jist),(_bracketed command>

(strin9) : := (character except unquoted punctuation mark)
1

(punctuation mark(::{!j iclll{j} "1'1'1; I =I (_NL)I(SP)I <RHT)

<quoted character) :: = %(character)

. , I' <strlng quote>::=

(literal string) ::='(<character except unquoted string quote)
0

(literal string>>
0

/
~character except unquoted string quote)

0
(bracketed command>::= {(<_left space((command)(right space)

I <space>>}

<interjected command)::= r ((left space) ~omrnand/ (_right space(

[(space >8
(list)::= ((<:_left spa~e) ~element list) (!::ight space) I (?pace)))

