MULTICS SYSTEM-PROGRAMMERS ' MANUAL SECTION BX,1,00 PAGE 2

remaining elements are interpreted as arguments for this
procedure, Appropriate data typs conversion is applied to
these values before the procedure is called.

A number of commands separated by semi-colons and terminated
by NL (new line) form a command sequence. Hence a command
is terminated by NL or semi-colon, usually NL.

E

Eleme

=N}

s

There are four types of element:

1. string

2. literal string

3, list

L, bracketed command
String

The most common type of element is a string. A string is a
sequence of one or more ASCII characters not including the
punctuation marks:
ca ¢y {3y " Y7 5 : NLblank
For example, a command consisting only of strings is:
delete file_namel file_name2

The value of a string is the string itself.

Literal String

A literal string is a anuence of characters (not including
unmatched accents, ‘' /) enclosed by a grave accent on the
left and an acute accent on the right. Literal strings may
contain literal strings. The value of a literal string

is the strlng with enc1051ng punctuation removed.

For example:

/
delete \file_ name

would cause the Shell to call delete with one argument,

file name. The Shell removes the enclosing punctuation
before p»ssing the argument. Literal strings may be

nested, in which case the Shell removes the putermost enclos-
ing pdnbvu» ion :

)
=
(3]
rm

dmultics SYSTEMS-PROGRAMMERS ' MANUAL ~ SECTION BX,1.00

S \ Vi
delete file name ong’

would cause the Shell to call delete with one argument,
file "name one

List

A 1ist is a sequence of zero or more elements szparated by
one or more blanks enclosed by (on the left and) on
the right. The value of a list is a 1ist (i.e., structure)
of the values of the enclosed elements.
For example, suppose the parame‘er type information on the
alpha subroutine says that alpha has two arguments, an array
of strings and an integer.
- . /

alpha (file_name! *file name2’) 1
would cause the Shell to call alpha with two arguments:
1) the array containing two strings, file_namei and file
name?, and 2) the integer 1.
It is interesting to note that

alpha file _name
and

alpha (file_name)

are not equivalent, The first is an example of a command
with one argument - a siring. The second is an example of

a command with one argument - a one-element arrav of strings.

Bracketed Command

A bracketed command is a command enclosed by { on the left
and on the right, The value of a brackete

valug of the command vhich is enclosed by {3} . The value of
a command is the value returned by the procedure which is
called as a result of interpreting the command. For
example,

delete éﬁﬁmama o]dfile?

causas the Sh=all to call getname with the argumant old’

ile.

)

ad command is the

(6N}

MULTICS SYSTEM=-PROGRAMMERS ' MANUAL ~ SECTION BX.1.00 PAGE L

Suppose the value returned by getname is the string, file_
namel, the Shell then calls delete with one argument, the
string, file_namel,

{?etnamo delete_ Functioi} file_namet

causes the Shell to call getname with tho argument delete_
function. 1If getname returns the string delete, the Shell
then calls the delete subroutine with one argument, the
string file_namet,.

Parameter type information is always applied to a subroutine
called by the Shell. For example, suppose compute is a
subroutine whose parameter type information indicates that it
has two arguments, a floating point scalar and an integer
scalar; and the subroutine geraI has parameter type informa-
tion which indicates that it accepts one argument, a string,
and has a value which is a siring. Then,

compute {éetva] temé} 3

causes the Shell to call getval with the string,temp; getval
returns the string 92. The Shell converts the string 92 to
the floating point scalar S2 and the string 3 to the integer
scalar 3 and calls compute with the floating point scalar 92
and the integer scalar 3,

Conversion when required is performed on the value of
commands, but further evaluation is not done. Consider the
example

{getname}

If getname returns as its value, the string fsubﬁ} , the
Shell calls the subroutine whose name is {subr} with one
argument, arg.

Additional features

Labels

A command may be labeled. A label is an identifier termin-
ated by a colon (:). The initial Shell ignores labels,
When macro facilities are added to the command languags, an
interpretation will be defined for labels.

Comnznts

A comment may appear before or after any e1ﬁm Nt in a com-
mand. A comment begins with a double quote mark (") and

MULTICS SYSTEMS-PROGRAMMERS' MANUAL SECTION BX, 1,00 PAGE 5

terminates with a ", NL, or semi-colon. Comments are
stripped from the command and discarded by the Shell,

Subroutine Entry Point Names

The value of the first element in a command must be a sub-
routine entry point name or an ITS pointer to a subroutine
entry point. This requirement 1imits the first element to
the following types:

1. string

2, literal string

3. bracketed command
If the value of the first element is a string, the Shell
‘interprets the string as a subroutine entry point name. If
the string has the form,

seg!symb
then seg is assumed to be a segment name and symb is assum-
ed to be the name of an entry point in seg. If the string
does not contain a l, but has the form,

name
then the Shell interprets this as an abbreviation for,

name | name

If the value of the first element is a pointer, it is assum-
ed to be pointing to a subroutine entry point.

Shell Escane Character

The character % is the Shell escape character. Use of this
character suppresses syntactic interpretation, by the Shell,
of the immediately following character. The escape character
itsel is discarded during evaluation except in the inner
literal strings of nested literal strings.

For example,
delete %{%i]e@nameﬂ}

causes the Shell to call delete with the argument, {}i]e_nam%}.
Note that,

delete 9%file

causes the Shell to call delete with the argument, “file.

MULTICS SYSTEM-PROGRAMMERS ' MANUAL SECTION BX.1.00 PAGE 6
An example of the use of the escape character in nested
literal strings is:

alpha Ma”; ‘v, c”

causes the Shell to call alpha with a single argument, the
string,

\
a; b%; c’/

Null-Valued Elements

Most elements may have null values;

{} is a bracketed null command; the value of the

null command is null;
O is the null list, i.e., a list with zero elements;
N/ is the null string, i.e., a string of zero length.

Evaluation of a command. element may produce a null value.
If the subroutine com returns a null value, then
delete {com} a .
causes the shell to call delete with two arguments, the first
null and the second, a.

The Inter jected Command

There are certain data bases which the Shell and the system
commands use that must be managed by the Shell. When the
Shell begins evaluation of a new command (right after NL or ;)
or a bracketed command, a copy of the current data bases is
put on a stack, i.e., at the end of evaluation of a new
command or a bracketed command the data bases are refreshed
by popping up the copy on the top of the stack.

Evaluation of an inter jected command does not cause pushing
down and subsequent popping up cof these data bases., Further-
more, an interjected command, although evaluated when encount-
ered by the Shell, has no bearing on other commands being
evaluated when it is encountered.

A typical use of the interjected command is the setting of
options in Multics (see BX.12.00). Thare is a group of
permanent options asscciated with each user which the user

is free to set according to his own choosing by use of the
option command. There also is a group of commands which will
reset the current options. The options group is one of those

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX, 1,07 PAGE 7

data bases which is pushed down at the beginning of a new
command or a bracketed command and popped up at the end.

1f the brief option is off in the user's permanent options
and the command brief turns on the brief option in the
current copy of the user's options, then, consider the
following examples:

alpha a- [brie{] {beta 5}
alpha a {beta [brief]l b}
alpha a {beta b} [brief]

In the first example, both the commands beta and alpha
operate with the brief option on. In the second example,
only beta operates with the brief option on. 1In the third
example, only alpha operates with the brief option on. In
all three examples, the arguments to alpha are a and the
value returned by beta after it is called with its one
argument, b.

Appendix

Formal Description of the Command lLanauage

The notation used here is an.augmented form of BNF. The
augmentation permits nested (O bracketing. It also permits
a subscript to be attached which indicates bounds on the
number of repetitions, i.e.,

~ v e ’
{class/ means k or more repetitions of <p1ass>
k
{classT means k or fewer (including zero)
k- repetitions of (class)

For example,

(“5) $ = ((a71 >2

is equivalent to

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX,.1,00 PAGE 8

The syntax is described in terms of the canonical form
(see BC.2.,02), i.e., a single blank is ¢SP» and a sequence
of more than one blank is (RHT).

{command sequence} := ((left space) (labeled command’

{terminal fill}' (space}) ; >
, 0

({1eft spaced> {labeled command)
(terminal fill)l {spaced {NL)
(blanky = {SP) | (RHT)
| {1abeled commandy := label) <separator>>b {command >

{label) := identifier)
{right spacey := {{blanky (Fillyy dblank)
1- 1

{left spacey := (blanky (Fill) (blank)y
13 1

{terminal fi117 := (right space} &blank) <terminal comment’)
. 1 -

{space) :=blanky 1<<fi11> {blank) 1 Y 1

{separator) := (blank) /¢Fi11> {blank)) 1

{FiNY := (interjected command} ,<pomment>>

&blanky Kinterjected commandl (pommeht7>>
0

{commandy := {command name) ({separator) (element 1istH)

{comment) := " (character except unquoted " ; or {NL) "
0

MULTICS SYSTEM=-PROGRAMMERS' MANUAL SECTION BX.1,00 PAGE 9
(terminal comment) ::= " {character except unquoted " ; {NLD)
0

command name) ::= (string) [literal string)l {bracketed command)
(element 1ist) ::= (element) ((separatory (element))

{element) ::= <string) | diteral string)[Uist7,¢bracketed command ®

{string) ::= {character except unquoted punctuation marky

1
¢punctuation marky {1 [()ol{]}

A
l; \ :I /\NL>'<5P>l (RHT >
{quoted charactery ::= %<{character)
\l/

ll\

{string quote) ::=
(literal string) ::=“{character except unquoted string quote}

{literal string)y
0

{character except unquoted string quote)ol
{bracketed command) ::= J/Lleft spacey {command){right space
‘(space)7}
{interjected command? ::= [({]eft space’y {command) {right spacey
I(space)?:l

(list 2= ((eft space) (element 1ist) (right spacey |{spacey)

