
TO a
FROM:
DATE:
SUBJECT:

MSPM Distribution
Karolyn Martin
November 6, 1968
Multics Command Language- BX.1.00

A number of minor changes to the Multics Command Language
have been made and the writeup has been completely rewritten
to present the ideas more clearly. These changes simplify
implementation or incorporate wanted features.

1) Arguments to commands are passed as non-varying
character strings, rather than varying character
strings.

2) Arrays of varying character strings (formerly called
lists) are no longer valid arguments to commands.

3) The delimiters for various syntax elements have
changed. The summary of the syntax should be studied
closely (page 6).

4) The concept of iteration has been added.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.1.00 PAGE 1

Identification

Published: 10/29/68
(Supersedes: BX.1.00, 09/15/66J

BX.1.00, 05/27/66)

Multics Command Language
w. H. Southworth, G. Schroeder, R. Sobecki, D. Eastwood

Purpose

The Multics Command Language provides the user with a
concise means of expressing his wishes to the Multics
system. The language and implementation are based on
the work and suggestions of L. Peter Deutsch, E. L. Glaser,
R. M. Graham, c. N. Mooers, J. H. Sa

1
ltzer, and C. Strachey.

Introduction

Most time-sharing systems provide the user with various
services which may be invoked from his console by means
of "commands" to the operating system. A small number
of time-sharing systems go beyond this and allow any user
to define (with varying degrees of ease) his own commands,
which may be used in exactly the same way as the system
supplied commands·. Nearly a 11 command programs, whether
user defined or system provided, require additional information,
which must be supplied by the user, before they can complete
their function. Some systems require that every command
program directly interrogate the user for the additional
information it needs. A more general method is to accept
"arguments", in addition to the command name, at the time
the command is issued by the user. These arguments are
then passed on to the command program by the system.
This approach permits great flexibility in the design
of command programs. Information may be supplied by arguments,
interrogation or a combinaton of both.

Issuing a command is analogous to executing a function
or subroutine call in a language such as PL/1 or FORTRAN.
With this view, the name of the command is· simply the
name of a command program to be either interpreted, if
it is a user defined macro (see BX.1.01 for a description
of the Macro facility), or executed if it is the name
of an entry point in an executable segment which conforms
to Multics standards (.as defined in BD.7 .02). The arguments
are either used in the expansion of the macro or passed
to the executed procedure in the standard manner. The
link between the issuance of the command by a user and
the calling of the command program is the command language

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.1.01 PAGE 2

interpreter. It performs many of the functions of a compiler,
principally, parsing the command (which is initially a
character string) into its basic elemen.ts (e.g., command
name and arguments) and formatting the arguments for use
by the command program. Finally, the command language
interpreter calls the macro expander if the command name
is the name of a macro or calls the command program directly.

rm_ Coqmand

A command is a sequence of zero or more elfment§. The
first element is interpreted as the name o the command
program and any additional elements are arguments. The
normal command program will expect input arguments which
are fixed length character strings, and return a value
which is a varying character string. If the command program
does not expect arguments in this form the command language
interpreter, the Shell, will convert the type of the arguments
according to information contained in the symbol table .
for the command program. The elements of a command are
separated by spaces and terminated by a semicolon or a
new line char~cter. For example, to change the name of
a file from 11 a" to 11 b11 , using the change_name command,
a user would type

(1) change_name a b

'lt!ments

The simplest type of element is a string of characters
not containing any spaces or other characters reserved
by the command language. The semicolon and new line characters
are reserved. Other reserved characters will be identified
as they are encountered. The three elements in example 1,
at the end of the previous section, are the simple character
strings "change_name", "a••, and 11 b".

Any element (or part of an element) may be a command.
The user can tell the interpreter to evaluate an element
as a command by surrounding the element with brackets
(which are reserved characters). For example in ·

I (2) change_name [oldestfile] b

the second element is a COfiiDand. When an element is evaluated
as a command, the result of that evaluation (i.e., the
returned value of the function) replaces the original
element. Suppose ttlat the command 11 oldestfi1e11 returns

•

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.1.00 PAGE 3

as its value the name of the oldest file in the users'
directory, then example 2 changes the name of the oldest
file to ''b11 • In this case, the first argument to the
command program change_name is the character string returned
by the command program "oldestfi le" and the second argument
is the character string 11 b11 •

Note that the spaces before and after the brackets are
necessary to indicate that the result of "oldestfi le"
is an element and not a portion of an element. Suppose
that the user had a program ''me'' which returned as its
value his default working directory,· (e.g., "me11 \\IOUld
return a character string of the form ''>user dir dir>
Southworth.~C11). While working in some other directory
the user might link to a file in his default directory
by typing:

(3) 1 ink [me]>test.epl

This command consists of two elements, the character string
11 1i nk11 and the resu 1 t of the commal')d program "me" concatenated
with the character string ">test.ep1 11 • Similarly a command
of the form

(4) 1 ink [me]>[fi lename 17]

would consist of only two elements, where the second element
is formed using the values returned by the two command
programs 11 me11 and"filename••. Note that the command"filenarne"
has one argument, the character string "17''.

Sometimes it is necessary to use a reserved character
without its special meaning. For example, a command name
might contain an irrt>edded space. ·.The characters quote
and left and right accent are reserved for this purpose.
Reserved characters within any string of characters surrounded
by quotes or accents, will be treated as ordinary characters.
For example,

(5) 'change name' a b
change" "name a b
"change name" a b
change' 'name a b

are all acceptable methods for executing a command whose
name contains an imbedded .space. Also, since quotes and
accents are reserved characters it may be desirable to
suppress the special meaning of one or the other. This
may be done by surrounding quotes with accents, and accents
with quotes. For example, the operator could issue the
command

broadcast "Don't do anything!"

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BX.1.00 PAGE 4

Active~ Neutral~ and Empty Commands

There are three types of commands which may appear in
elements; active~ neutral and empty commands. In order
to understand how these three types differ it is necessary
to have a basic knowledge of the scanning and interpretation
algorithm of the shell. A command line is scanned from
left to right. The shell maintains a pointer which indicates
its current position in the line. Whenever a command
has been completely scanned it is evaluated (i.e., the
command program is executed). For example in

(6) change_name a b 4
when the pointer has reached the indicated location the
shell will recognize that the end of a command has been
reached and ca 11 the command program 11 change_name11 • In
the case of an element which is a command, nothing to

• the right of the element will be scanned until after the
command element has been executed and its value has been
inserted back into the command line. For example~ in

(7) change_name [oldestfi le. bJ

when the pointer has reached this point the command program
"oldestfi le11 wi 11 be called. If the returned value is
"xyz"~ the transformed command line is

(8) change_name tyz bJ

Note that the pointer is set to the beginning of the inserted
value. This is important because the returned value will
now be scanned in the same manner as the original command .
element. If "oldestfi le" had returned the string •• [myoldest]",
then the scanning pointer would have encountered this
string as a command because of the brackets and executed
the command 11 myo 1 des t" •

The type of command in the previous examples. which returns
a value which is rescanned we will define as an "active command".
The command language recognizes two other kinds. a "neutral
command" and an ••empty command". A command preceded by
11 f[" rather than 11 [11 is said to be "neutral". Its value
is not rescannecl. This is particularly useful in defining
certain macros. If our previous example with "oldestfi le"
had read

(9) change_name I [oldestfile] bJ

and "oldestfile" had returned the string 11 [myoldest]11 ,

then this value would have been inserted into the command
line and the scan pointer set to the next character after

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.1.00 PAGE 5

the inserted character string, i.e.,

(10) change_name [myoldest]

' In this case the inserted string would not be recognized
as a command and "change_name" would be called with "(myoldest]"
as its first argument. An "empty" command is preceded
by ''II[". After an empty command is executed its value
is thrown away.

The vertical bar is a reserved character only in the context
of "I['' or ''II[". An easy way to remember the three types
of commands is to think of a command as performing the
three actions: evaluation, insertion, and reevaluation.
A single vertical bar suppresses reevaluation leaving
evaluation and insertion, while a double vertical bar
suppresses reevaluation and insertion leaving only the
first evaluation.

Iteration

Sometimes the user wishes to repeat a command with one
or more elements changed. The iteration facility of the
command language is provided for economy of typing in
this case. The" iteration set'' is a set of zero or more
elements enclosed by parentheses (parentheses are reserved
characters). If it contains no elements it is ignored.
Otherwise, each element of the set will, in turn, replace
the entire set in the command line. For example

(11) print (a b c).epl

is equivalent to the three commands

print a.ePlJ print b.ePlJ print c.epl

More than one iteration set may appear in a command.
All possible combinations will be executed. For instance,
the compound command

(print delete) xyz (.ep 1 .ep lbsa) J

would expend into the commands:

print
print
delete
delete

xyz.epl
xyzeeplbsa
xyz~epl
xyz.eplbsa

\

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.1.00 PAGE 6

Nested iteration sets behave in exactly the same manner
as unnested sets. Evaluation of parentheses occurs from
the outside in. The principle use of nested iteration
sets is to reduce typing when subsets of an element are
repeated. For example

(12)
make_directory >user_dir_dir>((Southworth Martin).MAC Stone.GE)

would make three directories

>user dir dir>Southworth.MAC
>user-dir-dir>Martin.MAC
>user-dir-dir>Stone.GE - -

Summary 2f Command Language Syntax

The Multics Command Language contains the following syntactical
elements.

command line

command

iteration set

command program

element·

active command

the character string representation of a
command or sequence of commands.

a sequence of zero or more elements separated
by spaces (in the command line). The
first element is taken as the command name
and additional elements as arguments.

a sequence of zero or more elements~ enclosed
by parentheses, which are inserted in turn
in the command for evaluation.

either a defined macro to be recognized and
expanded by a macro expander program, or
executable machine instructions.whose name
repres~nts an entry point in a segment which
conforms to multics standards (as defined
in BD. 7. 02) •

the basic component of a command; it may
repre!sent a command name, or argument.

a s~quence of zero or more elE~ments surrounded
by brpckets (it is not necessary to enclose
the character string typed in at the user's
console with brackets, in this case brackets
are assumed). The character string within
the brackets is treated as a command - it is
evaluated, its value is inserted into the
command line and its value is rescanned as
part of the command 1 ine.

~ .

. ·~

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.1.00 PAGE 7

neutral command

empty command

li te ra 1 s t r i ng

semicolon

new line

Implementation

a sequence of zero or more elements
sut"rounded by ''I['' on the left and '']"
on the right which is evaluated, as a
command line, but is not rescanned.

a sequence of zero or more elements
surrounded by 11 II[" on the left and "]"
on the right which is evaluated. Its
value is thrown away.

a character string surrounded by quotes
or balanced left and right accents. Its
value should be taken literally, i.e.,
reserved characters within the string
should not be recognized for their special
meaning.

denotes the end of a command and the
beginning of another command of the same
type.

new line characters within the command
string passed to the command language
interpreter are ignored if encountered
in the scan of the command 1 ine. This
should not be confused with the fact that
the new line character may serve as a
delimiter for whatever program called the
interpreter.

The command language interpreter the Shell, is normally
driven by the Listener. The shell provides the necessary
parsing to process a character string as a command. The
Listener can be conceptua 1. ly described as

[[read_line]]J listener

Its function is to listen for requests in the form of .
command lines typed In at the user console. In the above
command language description, the listener reads in a
line from the console, evaluates the line as a command,
and re-ca 11 s l tse 1 f to repeat the function. In actua 1 i ty
this is usually accomplished by a multics procedure which
calls the shell which accepts as its single argument a
character string (fixed length or varying) to be evaluated
as a command •

MULTJCS SYSTEM-PROGRAt4MERS"' MANUAL SECTION BX.1.00 PAGE 8

Formal.Description of~ Multics Command Language

The following Backus-Naur description formally defines
the syntactic components of the Command Language. For
simplicity we have not provided definitions for the ascii
characters, based on the assumption that the alphabet
is not open to design changes. If a construct is enclosed
in parentheses it is to be interpreted as zero or more
occurrences of that construct.

<command sequence> ::=<command> (<semicolon> <command>)

<command> ::=<element list>

<element list> ::=<element> (<spaces> <element list>)

<element> ::=<element component> (<element>)

<element component>::= <function> I <iteration set> I
<literal string> I <unreserved character>

1

<function>::= <active function> I <neutral function>
<empty function>

<active function>::= <left bracket> <command> <right bracket>

<neutral function> ::=<vertical bar> <left bracket>
<command> <right bracket>

<empty function> ::=<vertical bar> <vertical bar> <left
bracket> <command> <right bracket>

<iteration set> :.:= <left paren> <element list> <right paren>

<literal string> ::=<quoted string> I <balanced quoted string>

<quoted string> ::=<quote> <balanced quoted string> <quote> I
<quote> <unquoted character string> <quote>

<balanced quoted string> ::=<left accent> <balanced quoted
substring> <right accent>

/<balanced quoted substring> : := <character string not containing
' or "'> I <balanced quoted
strin9>

•.

