
t·1ULTICS SYSTEf'I)_PROGRAt1~1ERS' ~,1ANUAL Section ~X.lO.OO

Identification

Interactive debugginr, aids
D. B. \'/agner

Purpose

Puhl i shed: . 6/7/66

PAGE 1

The need for an "arsenal of nev-1 exterminators" for the
"bup;s" v1h lch have plagued prop;ranMers since the earliest
days of computing has been thoroughly discuss~d elsewhere
(e.p,. see R0021). The collection of programs described here
(proh~, tracer, break~r, and monitor, nX.lO.Ol-BX.10.04)
form an interactive dehu~r,ine aid which gathers into a very
general framework most of the Ideas in rlebur,ging which have
been floating around In separate prograMs In different
systems. This debu~ging aid Is intended for interactive use
but will certainly be usable by the hatch-oriented user
(simply read "control card" for "request" throughout),

A great deal of flexibility Is provided throu7,h the use of
the macro facility (described in RX.l,Ol) of the comnand
language. One very importa~t feature of this macro facility
ts that vJithin a macro definition a mixture of commands
(lines acted upon by the Shell) anrl requests (this Is the
most com:-:1on \'lord for lines acted upon by Individual
Interactive prop,rams) Is possible. Users vlill not normally
communtcat~ directly with the debu7,gin~ pro~rams but use
macros defined in terMs of the "bare-bones••. requests
described in this anrl the following sections. A collection
of "system macros" \·Jill be defined, docuMented, and made
available so that the user will not have to know about the
full generality of the debugging language unless he wishes
to de f in e Mac ro s h i mse 1 f.

Notice

A number of points in this and the follo\'llng four· ,...Sections
(RX.l0,00-RX.10,04) are Jntentionally vague because··at this
writing certain parts of -the System are not completely
" n a i 1 e d d m-m • 11 T h i s i s p a r t i c ul a r 1 y t r u e of t h e mac r o
facility. Intentionally V<lgU(~ nolnts are marked with 11 * 11 in
the narg in.

Oehu~~inr:: Facil it ie~

lnterro~ation: At an interruption or normal termination of
a program, the user nay interrogate the values of variables
and the contents of Machine loc~tions; a rather complete
expression lan~uage makes it possible to conduct these
lnterro~ations in terns of the source language of the
prograM. For exaMple if a user, noting sor1e peculiar
program output, hits the quit button while a PL/1 program is

MULTICS SYSTEt~1-PROGRAr11\ERS' ~1.l\~lUAL SCctton BX.lO.OO PAGE 2

~ runnlnr, and types the comnan~

probe

followed by the request to probe,

print a+b

he means that prohe is to find the storage assir,ned to the
variables a and b in the proeram, add their values to~ether
In the same manner as a compiled PL/1 program, and print the
result on the console.

Rreaknoints: A user may specify that pror,ram execution Is to
be Interrupted upon the occurrence 6f certain (more or less
hardvlare-oriented) events such as control reaching a certain
point or a certain amount of time belnp, used up. For
example a standard macro nam~d tran could be defined \·1hich *
·makes arrangements so that the program \·1111 be Interrupted
\then control reaches a certain point (label) in the program.
(This example t s enlarged upon in section BX.l0.03) A user
\'o'ould then type

trap sym

to cause execut ton to he Interrupted \'then control reached
the statement labelled syr~ in his program. Then the user
would start' up his program (probably with a cal 1 through the
Shell) and wait for the break to occur. When and if It did
occur (i.e. when and if control reached syM), he v1ould·
perhaps type print requests and snoop around in the values
of variables at this point in the program's execution
exactly as if he had just hit the quit button as dlscusse~
above. Finally he might allow execution to be continued, by
typIng

proceed

or cause execution to be resumed at some other point, by
t YP 1 ng

transfer sym2

where syn2 is a statement label in the source program.

Tracing: Breakpoints may be used in another way. The tracer
Command may be used to store up comMands to be executed at
specific breakpoints so that what takes place at the break
ts automatic. A macro named r::J.Y.iir. night be defined v1hich *
Causes the value of a variable to be printe~ every 10
mill !seconds. (This macro would contain the conmand.
b r o a k P. r , seve r a 1 r e q u e s t s t o b r e a k e r , t he c o mr.1 and t r a c ~ r ,
and again several requests. See the enlarp;eMent of this
example in BX.10.03.) The user could then type,

MULTICS SYSTEt1_PROGRAMMERS 1 MANUAL Section RX.10,00 PAGE 3

mvar a+b

start his progra~ hy a call through the Shell, and receive
the output

a+b
a+b
a+b
a+b

3,265
3,123
3,145
3,142

interspersed of course with any output his program produces.

Process History: One of the actions which can be specified
to be performed at breakpoints is that of savin~ the state
of a process so that it can be restored later. One may for
example specify that the process state Is to be saved every
10 ms. Then for example when and If something goes wrong
in the program, probe requests can be used to hack
conditions up in time so that the user can search through
time for clues to what \'lent \'.Jronr, in the prografTl.

limitations

The debugger is designed to he most convenient to users of
PL/1 and the standard assembly language, Users of algebraic
languages other than PL./I, such as FORTRA~J IV, \'Jill have to
learn sofTie new and occasionally confusing conventions, or
else supply a replace~ent for the expression-evaluating
machinery used by the debugging programs. Users of the
languap;es sonetines unkindly called "oddball," such as
Cm11T, LISP, f1YNAt10, ELI~:A, ancf their llk, \·Jill find the
debugger as presently conceived less useful, although the
trace and breakpoint facilities v1ill probably see sone use
in connection with these languages. It seefTls unwise to
build in any aids to users of specific special-purpose
languages at this time since only an active user of LISP,
for example, can have any clear Idea of what facil itles are
useful in debugging LISP programs.

The ProP:rons

Probe (described In RX.10,01) allows the user to exafTline and
modify machine conditions and the contents of his segments
using both machine- and PL/1-oriented formats. This is the
core of any debugging aid. Considerdhle experience has been
acquired tn the matter of machine-oriented formats (e.g., tn
DDT, Ff\POP.G, FAP!'3UG, and Gf:Btlr,), hut hip;her-lanp;uage
oriented formats are still in a rather primitive state.

Tracer (described in RX.l0,02) provides a convenient tracing
facil tty, In order to use It, the user inserts at strategic
points in a pro~ram calls to a certain entry in the trac~r
comnand. Various ways of making these calls occur
automatically at specific events will be available, e.g. the

....

HULTICS SYSTE~1-PROGRM-H-1F.RS 1 t-~NJUA.L Section BX.lO.OO PAGE 4

,...._ hreaker and monitor commands and possibly a rlebus; node in
the compiler. The tracer command accepts requests \vhich
specify "lrlhen a rr;urne nt 1 of the trace c a 11 is thus, do
this.•• ("This" may be any sequence of commands and requests
to commands.)

The breaker command (described in BX.10.03) accepts requests
from a console or macro expansion to place a variety of
event breakpoints into a program. It makes arrangements
with the System to gain control whenever specified events
occur. Breaker amounts to one way of causing trace calls to
occur automatically.

The monitor comman~ (described ln DX.10.04) accepts requests
from a console or macro expansion which indicate that
certain blocks of machine code are to be executed
Interpretively instead of being allowed to run free.
Hhenever an "execution" access is Made to such a block of
c ode , a t rap oc c u r s a n d an i n t e r p r e t e r I s c a 1 1 e d • T he
interpreter calls the trace entry with appropriate arguments
after the execution of each machine Instruction.

The Debup;p;inp; Lanr;uap;e

An interactive pror,raM is an interpreter for a kind of
computer lanr;uage--an "Interaction lan~uage 11 rather than a
"programming; lan.r;uage." The "debur;p;inp; language" described
here uses a number of the conventions of PL/1, e.g.1 the
form of expressions and the control functions lf, else, do,
and enrl.

A request Is a 1 lne which is read and acted upon by one of
the prograMs probe, tracer, breaker, and monitor. (A better
word might be nrimitive, since the requests which are
actually seen by the pro.r;rams v!lll only rarely be typed by
the user at his console. As \vas mentioned earlier, they
will normally be used only In macro expansions.) A request
consists In general of the request name follm·1ed by
arguments delimited by blanks. Th2 conventions of the Rasic
Command Syntax (see BX .1. 0 0) are foll m·ted v1he rever
applicable, especially \'lith respect to the "Shell escape
character" and the semicolon convention.

Expressions

An expression Is somethinp; 1 ike "a+b" or "sin(a)+6" v-1hich
can be evaluated to yield a value. Expressions are used in
the debugging language In references to variables in the
user's program and also wherever numbers, strings, etc. are
arguMents to requests Cas in the specification of loops, see
do request, belm'l'). Symbols used In these expressions ore
normally i~entifiers fron the source program associated with
·the object prograM under exaMination. It Is absolutely
necessary that assemblers anrl coMpilers make available to

-:..

~.1ULTICS SYSTF.t-1-PROGRAt·H·iERS' tMNUAL Section BX.lO.OO PAG F. 5

the debu,p;·ger the details of 'each compilation: this has *
traditionally been done vltth the "symbol table file," a list
of the identifiers deflneri by the prograMmer in the source
program and an indication of "vthat \'Ius done" in ir1plernentinp;
that identifier. (The standard format for these symbol
tables is described in BD.2.)

A quick description of the debugging expression lanp;uage
would be that it is the PL/1 expression lan~uage with the
values of express ions 1 imited to seal ars (a PL/ I express ion
May have a vector or structure value) but with the addition
of the data type "address.'' (The data type "address" may
turn out to be identical in implementation to the PL/1 data
type "pointer", but it seel'ls \·torthvthlle to keep the hto
concepts separate.) Expressions are divided into two
classes, "machine-oriented expressions" and "algebraic
expressions." The difference hangs primnrily upon \•thether
the "value'' of a symbol refP.rred to in the expression is
taken to be the address (if any) associnted with the symbol
or the contents of the storaf!e re(Tion (ap;ain, if any)
associated with the symbol. The values of machine-oriented
expressions are not constrained to be nddresses, since a
"contents" function Is part of the lanp;uage. This function
takes an address and returns Its contents In the form of a
36-blt bit-string which may then be used In any of the usual
ways that bit-strings are used In PL/1 expressions.

An nlP:ebrnic exorc~ssion is any valid PL/1 scalar expression
In \·lhich the variables referred to come from. proP;rams
written in alr,ebraic lanp;uages such ns PL/1 or FORTR/I.i-1 IV.
The value of a variable Is taken to be the contents of the
associated storage at the time expression evaluation takes
place. If the variable Is Internal to a (PL/1) block v1hich
is not now active, the expre~sion-evaluating machinery
attempts to find its value at the last exit from the block.
This Information may or mnY not currently exist, depending
for lnstnnce on the declaration of the variable {e.g. static
or automatic) and the strategy used for dynamic storage
allocation. The debugger attempts to find a symbol in any
of the symbol tables it "kno\o.JS about." A nur11ber of
aMbiguities present themselves: /1. name may be used for
variables in different serarately compiled pror,rams or In
different blocks of the same prop;rnm, and one variable may
have more than one generation active (e.g. when a recursive
procedure calls itself). .To provide a· notation for "this
symbol in this block," the question-mark (?) Is used. For
example "a?b" refers to the variable b In the block a. File
or sep;ment names may be used in the same way as block names.
if a block hi'ls no name, Its number (counted 1 inearly throup;h
the source progrnm) Is used instead, so that "a?c?3?b"
refers to the varl2ble b in the third block internal to the
block c Internal to the block a. In the case of a "multiply
active" variable (one for \o.Jhich more than one generntion *
exists), the latest generation (representing the deepest

~1lJLTICS SYSTEt"-Pr.OnR.t\rWERS' t'NIU/I.L Section RX.lO.OO PAG ~ 6

recursion) vlill arbitrarily be useri.

A rna~hin"-ori~nt~rl exoressinn is an expression in which the
"variables 11 rtre symbols from assembled source pro9;rams.
Here symbols reoresent either arlciresses, base-offsets (such
as stack symbols), or Integers (symbols rlefinerl with soMe
analov, of the SF.T pseudo-operation in FAP). Expression
syntax reMains that of PL/1. In order to allm1 the
expression of complicated ~oolean condlt Ions, such as those
needed In the specification of searches for Machine words
\1Ith certain content or effective arldress, s~veral sp~ctal
bull t-In functIons are provided: the "content" funct ton ~,
the "effective adrlress" funct ton ~, and the 8oolean
function saf" \1hlch tells whether it Is "safe" to use the

·effect ive-adr:iress function. This 1 ast Is marie necessary by
the fact that in the 645 there are numerous funny kinds of
Indirection that do not yield proper arldresses. The
"contents of register" function u recor;ntzes mnemonics for
special rev,lsters, so that for exanple 11 cr(a) 11 refers to the
contents of the accumulator as a 36-blt string.

The treatMent of the dollar-sign {$) In de.,up;~.;ing
expressions Is slightly rllffenmt froM its treatMent In
PL/1. It is an operator \•/hose precerllnr, operand is a
segment name, segment number, or base-register name and
vrhose follo\'llng operanri Is an integer giving relr:~tlve
a rl d r e s s • T h e r e s u 1 t I s of co u r s e an a -1 d r e s s • T h u s
"alpha$7 11 means locr:~tlon 7 in the segment named alpha, l)ut
"6$7" m~ans location 7 In segment nuMber 6.

"~Hxed" expressions, those Hhlch lnclurle both alr;ehratc
Identifiers and machine-orlenterl Identifiers, most
emphatically do not have an official interpn:~tation. These
prohr:~bly vrlll nnt cause an error conrlition but vlill he
Interpreted In soMe reasonably lntelllr,ent Manner, anrl may
be useful in some contexts; nothln_p; More will be said nbout
these here.

The Control neauests

The four parts of the debugger vrtll reco.r;n tv~, through a
corr.~on Interface, the control requests lf., el SP, r:io, an--I
enrl. The request

if conrlltlon then r~guest

causes the request to he perforr1erl if anri only If the
conditlon~l expression cv~luates true. Then

else recuest

causes the specified request to he perform~d if anri only If
the con~ltlonal expression in the last hnl2nceci lf request
evaluated false. The request

t1ULTICS SYSTE~··-PRO'lRAt111F.RS 1 nANUAL S tction RX.lO.OO PAGF. 7

do (same options as in PL/1)

causes requests following, up to a balanced

end

to be executed under control of the options specified
(options are loop-control sp~cificattons as in "do j=l by 1
wh t 1 e a = b ; ") •

In a .,dQ specification such as "rlo j= ••• " the VCJrlable
specified ts a "pseudo-variable" \'Jhich is to be specially
set up for the purpose. The variable Is assigned a
data-type consistent with that of the value of the
expression to Vlhich It Is beinp; set, storap;e is r~ssigned,
and the variable name is placed in the symbol tabl~. W~en
the ranp;e of the do Is left, the storap;e is freed and the
name removed from the symbol tr~ble.

In addition to the above requests, each of the four parts of
the debugger recognizes the request

exit

which means ~o return to the call ine program, normally the
She 11 •

....

