MULTICS SYSTEM PROGRAMMERS' MANUAL Section 8X,10,00 PAGE 1

Publ ished: .6/7/66

ldentification

Interactive debugging aids
D. B, VYWagner

Purpose

The need for an '"arsenal of new exterminators' for the
"bugs" which have plagued programmers since the earliest
days of computing has been thoroughly discussed elsewhere
(e.g. see R0021), The collection of programs described here
(probe, tracer, breaker, and monitor, ©BX.10.01-8BX,10.04)
form an Interactive debugsing aid which gathers into a very
general framework most of the lideas in debugging which have
been floating around 1in separate programs in different
systems. This debugging aid is intended for interactive use
but will certainly be usable by the batch-oriented wuser
(simply read "control card" for '"request'" throughout),

A great deal of flexibility is provided through the wuse of
the macro facility (described in BX.1,01) of the command
language., OCne very important feature of this macro facility
Is that within a macro definition a mixture of commands
(1ines acted dpon by the Shell) and requests (this f{s the
most corimon word for lines acted upon by iIndividual
interactive programs) is possible. Users will not normally
communicate directly with the debuzging prosrams but use
mac ros defined in terms of the 'bare-bones'" requests
described in this and the following sections, A collection
of "system macros" will be defined, documented, and made
available so that the user will not have to know about the
full generality of the debugging language unless he wishes
to define macros himself,

Motice

A number of points in this and the following four .Sections
(PX,10,00-RX,10,04) are intentionally vague because at this
writing certain parts of -the Systern are not completely
"mailed down.," This 1is particularly true of the macro
facility. Intentionally vague points are marked with "*'" in
the nmargin. :

Debucering Facilities

Interrogation: At an interruption or normal termination of
.a program, the user may interrogate the values of variables
and the contents of machine locations; a rather comonlete
expression language makes it possible to conduct these
interrogzations in terms of the source language of the
program. For example If a wuser, noting some peculiar
program output, hits the quit button while a PL/! program is

MULTICS SYSTEM=-PROGRAMMERS'

running and types the command

followed by the request to praobe,

print

he means that probe is to find

MAMUAL SCctlon BX,10.00 PAGE 2
probe
a+b
the storage assigned to the
add their values together

variables a and b
result on the console.

Breaknoints:

hardware-oriented) events such
point or a certain amount of
example a standard macro named
‘makes arrangements so that the
when control reaches a certain

in the progran,
in the same manner as a compiled PL/I

program, and orint the

A user may specify that program execution is to
be interrupted upon the occurrence of certain (more or

less
as control reaching a certain
time being used wup. For
tranp could be defined which

be interrupted
in the program.

program will
point (label)

(This example 1s enlarged upon in section BX.10,03) A user
would then type

trap sym
to cause execution to he Interrupted when control reached
the statement labelled sym in his program. Then the wuser

would start up his program (probably with a call through the

Shell) and wait for the break to occur.
control

occur (i.e. when and if

perhaps type print requests and snoop around

of variables this

exactly as

at point

if he had just hit the quit button

Yhen and {f it did

reached sym), he would:

in the values

in the program's execution

as discussed

above. Finally he might allow execution to be continued, by
typing

proceed
or cause execution to be resumed at some other point, by

typing

transfer sym2

where sym2 is a statement label in the source program.

Tracing: Breakpoints may bhe used in another way. The tracer

Command may be used to store up commands to be
specific breakpoints so that what takes place at
A macro named nmvar
variable

is automatic,
Causes the value of a
milliseconds. (This
breaker, several
and again several requests.
example In BX.10,.03,)

macro

requests to breaker,
See
The user could then type,

executed at

the break
might be defined which
to be printed every 10
vould contain the cormand.
the command tracer,

the enlargement of this

MULTICS SYSTEM_PROGRAMMERS' MAMUAL Section BX.10.00 PAGE 3

mvar a+b

start his program by a call through the Shell, and receive
the output :

a+b 3,265
a+b 3,125
a+bh 3,145
a+b 3.142

interspersed of course with any output his program produces,

Process History: One of the actions which can be specified
to be performed at breakpoints Is that of saving the state
of a process so that it can be restored later. One may for
example specify that the process state is to he saved every
10 ms. Then for example when and {if something goes wrong
in the program, probe requests can be used to bhack
conditions up in time so that the user can search through
time for clues to what went wrong in the program.,

Limitations

The debugger is designed to be most convenient to users of
PL/! and the standard assembly language. Users of algebraic
languages other than PL/I!, such as FORTRAM 1V, will have to
learn some new and occasionally confusing conventions, or
else supply a replacement for the expression-evaluating
machinery used by the debugging programs. Users of the
languages sometimes unkindly called "oddball," such as
COMIT, LISP, DYMAMO, ELIZA, and their 11k, will find the
debugger as presently conceived less useful, although the
trace and breakpoint facilities will prohably see some use
In connectlion with these languages. It seems unwise to
build In any aids to wusers of specific special-purpose
languages at this time since only an active user of LISP,
for example, can have any clear idea of what facilities are
useful in debugging LISP programs.

The Programs

Probe (described in BX.,10,01) allows the user to examine and
modify machine conditions and the contents of his segments
using both machine- and PL/l-oriented formats. This is the
core of any debugging aid. Considerable experience has been
acquired in the matter of machine-oriented formats (e.g., in
DDhT, FAPDERG, FAPBUG, and GEBUR), but higher-language
oriented formats are still in a rather primitive state.

Tracer (described in BX.10,02) provides a convenient tracing

facility. In order to use it, the user inserts at strategic
points in a prosram calls to a certain entry in the tracer
command, Various ways of making these <calls occur

automatically at specific events will be available, e.g. the

MULTICS SYSTEM=-PROGRAMMERS' MAMUAL Section BX,10.00 PAGE L

breaker and monitor commands and possibly a debug mode In
the compiler. The tracer command accepts requests which
specify "Wlhen argument 1 of the trace call is thus, do
this.," ("This" may be any sequence of cormmands and requests
to commands.)

The breaker command (described in BX.10.03) accepts requests
from a console or macro expansion to place a variety of
event breakpoints into a program, It makes arrangements
with the System to gain control whenever snecified events
occur, Breaker amounts to one way of causing trace calls to
occur automatically.

The monitor command (described in BX.10,04) accepts requests
from a console or macro expansion which indicate that
certain blocks of machine code are to be executed
interpretively instead of being allowed to run free,
Whenever an "execution'" access is made to such a block of
code, a trap occurs and an interpreter 1is called. The
interpreter calls the trace entry with appropnriate arguments
after the execution of each machine Instruction.

The Deburgeging Lancuage

An interactive program is an interpreter for a kind of
computer language-=-an "interaction language'" rather than a
"orogramming language." The "debugging language'" described
here uses a number of the conventions of PL/I, e.s., the
form of expressions and the control functions if, else, do,
and end.

A request 1s a line which is read and acted upon by one of
the programs probe, tracer, breaker, and monitor. (A better
word might be primitive, since the requests which are
actually seen by the programs will only rarely be typed by
the user at his console, As was mentioned earlier, they
will normally be used only In macro expanslions.) A request

conslsts in general of the request name followed by
arguments delimited by blanks. The conventions of the Basic
Command Syntax (see BX.1,00) are followed wherever

applicable, especially with respect to the "Shell escape
character" and the semicolon convention.

Expressions

An expression is something 1ike "a+b" or "sin(a)+6" which
can be evaluated to yield a value. FExpressions are used in
the debugging language In references to variables in the
user's program and also wherever numbers, strings, etc. are
arguments to requests (as in the specification of loops, see
do request, below). Symbols used Iin these expressions are
normally identifiers from the source program associated with
‘the object program under examination. It is absolutely
necessary that assemblers and corpilers make available to

MULTICS SYSTEM-PROGRAMMERS' MAMUAL Sectlon BX,10,00 PAGE 5

the debugger the detalls of ‘each compilation: this has
traditionally been done with the "symbol table file," a list
of the identlifiers defined by the programmer in the source
program and an indication of '"what was done" in implementing
that identifier. (The standard format for these symbol
tables is described in BD.2,)

A quick description of the debugging expression language
would be that it is the PL/| expression 1language with the
values of expressions limited to scalars (a PL/l expression
may have a vector or structure value) but with the addition
of the data type "address.'" (The data type 'address'" may
turn out to be identical in implementation to the PL/! data
type "pointer", but it seems worthwhile to keep the two
concepts separate.) Expressions are divided into two
classes, "machine-oriented expressions'" and '"algebraic
expresslions." The difference hangs primarily upon whether
the "value'" of a symbol referred to 1In the expression is
taken to be the address (if any) associated with the symbol
or the contents of the storagse recion (again, if any)
assoclated with the symbol, The values of machine-oriented
expressions are not constrained to be addresses, since a
"contents'" function is part of the language. This function
takes an address and returns Its contents in the form of a
36-bit bit-string which may then be used in any of the usual
ways that bit=-strings are used in PL/! expressions.

An algebraic exporession is any valid PL/Il scalar expresslon
in which the variables vreferred to come from. programs
written in algebraic languages such as PL/Il or FORTRAN IV,
The value of a variable Is taken to be the contents of the
associated storage at the time expression evaluation takes
place. |If the variable Is internal to a (PL/I1) block which
is not now active, the expression-evaluating machinery
attempts to find its value at the last exit from the block.
This information may or may not currently exist, depending
for instance on the declaration of the variable (e.g. static
or automatic) and the strategy used for dynamic storage
allocation, The debugger attempts to find a symbol in any
of the symbol tables it '"knows about." A number of
ambiguities present themselves: A name may be wused for
variables in different separately compiled programs or in
different blocks of the same program, and one variable may
have more than one generation active (e.g. when a recursive
procedure calls itself), To provide a notation for '"this
symbol in this block," the question-mark (?) is used. For
example "a?b'" refers to the variable b in the block a. File
or segment names may be used in the same way as block names.
{f a block has no name, its numbher (counted linearly through

the source program) 1s used 1instead, so that "a?c?3?b"
refers to the variable b in the third block internal to the
block ¢ Internal to the block a. In the case of a "multiply

active' variable (one for which more than one generation
exists), the latest generation (representing the deepest

MULTICS SYSTEM-PROGRAMMERS' MAMUAL Section BX.10,00 PAGF 6

recursion) will arbitrarily be used,

A machine-oriented expression is an expression in which the
"variables'" are symhols from assembled source programs,
Here symbols represent either addresses, base-offsets (such
as stack symhols), or integers (symbols defined with sorme
analog of the SET pseudo-operation in FAP), Expression
syntax remains that of PL/I. In order to allow the
expression of complicated Boolean conditions, such as those
neceded in the specification of searches for machine words
with certaln content or effective address, several special
built-in functions are provided: the "content'" functlon ¢,
the "effective address'" functlon ea, and the PRoolean
function safe which tells whether it is "safe'" to wuse the
-effective-address function., This last is made necessary by
the fact that in the 645 there are numerous funny kinds of
indirection that do not vyield proper addresses. The
"contents of reglister" functlon ¢r recosnlizes mnemonics for
special reglisters, so that for example '"cr(a)" refers to the
contents of the accumulator a2s a 36-blt string. :

The treatment of the dollar=-siegn ($) 1in Adebugeing
expresslions s slightly different from its treatment In
PL/1. It is an operator whose preceding operand is a
segmant name, segment number, or base-register name and
vhose following operand 1s an integer giving relative
address, The result 1is of course an address,. Thus
"alphas$7" means location 7 in the segment named alpha, but
"687" means location 7 in segment number 6..

"Mixed" expressions, those which Include both algebraic
identifiers and machine-oriented Identiflers, most
emphatically do not have an official interpretation, These
probably wlll nnot cause an error condition but will bhe
Interpreted In some reasonably intelligent manner, and may
be useful in some contexts; nothing more will be said about
these here.,

The Control Reaquests

The four parts of the debugger will recognize, through a
cormon interface, the control requests if, else, 4o, and
end. The request

if condition then request

causes the request to be performed Iif and only 1If the
conditional expression evaluates true. Then

else reauest
causes the specified request to be performed 1f and only If

the conditional expression in the last balanced 1f request
evaluated false, The request

MULTICS SYSTEM=PROARAMMERS' MANUAL S tction BX;l0.00 PAGE 7

do (same options as in PL/I)
causes requests following, up to a balanced
end
to be executed under control of the options specified

(options are loop-control specifications as in "do j=1 by 1
while a=b;"),

In a do specification such as '"do j=.;." the varlahle
specified is a "pseudo-variable'" which is to be specially
set up for the purpose, The wvariable 1is assigned a

data=type consistent with that of the value of the
expression to which it Is being set, storage 1is assigned,
and the variable name !s placed in the symbol table, When
the range of the do is 1eft, the storage Is freed and the
name removed from the symbhol table.

In addition to the above requests, each of the four parts of
the debugger recognizes the request
exit

which means to return to the calling program, normally the
Shell,

