
r 

TO: 
FROM: 
SUBJ: 
DATE: 

MSPM Distribution 
C. Marceau 
Options 
January 13, 1967 

The following MSPM Sections, BX.12.00- BX.12.02, represent 
a complete redesign of options in Multics. Previous BX. 12 
sections are obsolete and should be discarded. 



MULTICS SYSTEtv1-PROGRA~'!MERS" MANUAL SECTION BX.12.00 PAGE 1 

Published: 01/18/67 
(Supersedes: BX.12.00, 2/3/66) 

Identification 

The use of options in Multics - an overview 
C. l'-1arceau 

Purpose 

An option is a sort of argument to a procedure. It is 
like an argument in that it enables the user to exert 
some measure of control over procedures in execution. 
Unlike an argument, however, it need not be explicitly 
stated each time the procedure is invoked. This has 2 
major consequences: 

1 ), it is an obvious convenience to the user who 
invokes the procedure very often; 

2) it enables the user to affect even those procedures 
which he does not call directly, viz. system 
procedures called by other system procedures called 
by other system procedures •... 

Section BX.12.00 presents an overview of options, what 
they can do and how to use them. It is divided into 3 
parts: 

A) what options are and what they do 

B) the stacking of options 

C) how to set and read options. 

Section BX. 12.01 discusses the representation of options 
in storage. It is very detailed and not of interest to 
the general user of options. BX.12.02 discusses usage 
and implementation of the option commands: option, delopt, 
and printopt. BY.9.01 - BY .9.05 discuss usage and imple­
mentation of the option procedures in the Multics library. 

A. What option~ are and what they do 

Definitions 

In Multics, an option is a binary switch which the user 
may set on or off as he wishes. Some options also have 
a soecification, a character string which provides additional 
informaLicn about the user's wishes. The combination 
of an on/off switch and a specification (if any) is called 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.12.00 PAGE 2 

th~ value of the option. 

Since an option is only a switch with a specification, 
it has no meaning in itself. An option has meaning only 
when it can affect some procedure which checks the option 
and modifies its actions according to the value of the 
option. What an option means is defined by the procedure(s) 
which check it, not by the user who sets it. Thus if 
a user sets his "zilch" option on, but no procedure ever 
checks "zilch", then "zilch'' has no meaning. This is 
an important point to remember, for it can happen that 
some procedure checks the option "glitch" even though 
the user has never set "~litch". Then "glitch" has a 
meaning-namely, the mean1ng given to it by the procedure 
which checks it. 

An option like glitch is said to be unset. By convention, 
all procedures should act as though an unset option is 
off. CA subtle distinction between unset and off will 
appear later in this section.) In Multics, a record is 
kept only of options which are set, so that options overhead 
is kept to a minimum. 

A user may set an option and sometime later cease to need 
the option-for example, he no longer uses the procedure 
which checks that option. He can then delete the option. 
Deleting an option is the opposite of setting it: when 
a user sets an option, he b~gins to keep a record of the 
value - on or off - of the option; when he deletes the 
option, he ceases to record any value for the option. 

Note that deleting an option does not keep any procedure 
from checkin~ the option; a procedure which tries to check 
the option w1ll find it is unset, and should act as though 
the option were set off. 

Thus an option may be set or unset. If set, it may be 
on or off. If an option is unset, no record is kept of 
it, and an off value is assumed. 

Further, an option may be either local or global. A local 
option is an option checked by only one procedure. It 
has the meaning given to it by that procedure alone. 
It is uniquely defined. 

A global option is an option checked by more than one 
procedure. It is therefore defined by more than one procedure. 
Needless to say, it is very desirable that all procedures 
which check a single option assign to it approximately 
the same-meaning. Nonetheless, the detailed effect of 
the option on each procedure which checks it is bound 
to be different. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.12.00 PAGE 3 

A gl~bal option is not useful if the procedures which 
check it assign to it wildly differing meanings. It is 
useful in defining, for example, a common mode of activity 
for a number of procedures. 

Local value of a alobal option 

Suppcse that zilch is a global option, checked by procedures 
alpha, beta, and gamma. The user can set zilch on globally 
so that all three procedures consider it on. It is also 
possible for him to set it locally for procedure alpha, 
so that alpha considers the option on, but beta and gamma 
consider it off. 

He refers to the local setting by concatenating the name 
of the procedure with a period and the option name: 

alphp.zi lch 

\11/hen he sets 11 alpha.zilch11 on, only alpha will consider 
zilch to be on. 

N01.oJ suppose that the user wants zilch to be on for every 
procedure exceot a 1 ph a. Then he sets 11 z i 1 ch'' on, and 
sets ''alpha.zi lch11 off. Even though zilch is on, the 
local setting takes precedence over the global setting, 
and alpha considers zilch to be off. 

Note that a global setting will hold for all procedures 
which check the option, unless a local sett~ng specifically 
overrides it. 

Thus if zilch is set on and is not set locally for alpha 
(i.e. alpha.zilch is UDSet), then alpha.zilch is not considereq 
to be off. Alpha.zilch must be set in order to override 
the global setting of zilch. This is the exception, noted 
above, to the general rule that an unset option should 
be considered off. 

A global option zilch is spoken of as one option, just 
as we speak of one mode in which several procedures operate. 
But the option is defined by several procedures, and hence 
we can speak of ''the value of alpha.zilch" or say 11 beta.zilch11 

is unset. Zilch should be thought of as one option, but 
one which can have local settings and local values as 
well as its global setting and global value. 

System Options 

System options are options which commands and system procedures 
check. Hence they are defined by the system. They enable 
the user to exert some control over the way system procedures 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.12.00 PAGE 4 

operate. The user can· set or delete system options (recall 
that deleting an option means that the procedure will 
consider it off.) . _ 

The options facility does not differentiate between system 
options and other options. The only distinction of system 
options is that system procedures define them. 

System options~ like any options~ can be local or global. 
The user is free to check a global system option in any 
procedure of his own, but he should make sure that his 
procedure assigns a meaning to the option which is similar 
to its meaning in system procedures. 

For example, "brief" is a global system option which means~ 
if it is on, that only essential messages are to be printed 
at the (interactive) user's console. Brief curtails, 
for example, long chatty messages which many users do 
not want to read. Brief does not stop important messages, 
such as news of a fatal error in execution. Any user 
can have his procedures check "brief'' and modify their 
actions according to the value of the "brief" option. 
The user can also set brief locally for his procedure. 

Note that options are not magic. The user cannot set 
brief on and expect his procedure beta to operate in brief 
mode. Beta will operate in brief mode only if it is writteh 
so that it checks the brief option, and curtails printout 
if brief is on. All system procedures respect system 
options and follow the conventions described in this section. 

Names of system options 

Since system options are defined by system procedures, 
system option names are reserved. Suppose a system procedure 
checks the "sysglop'' option and a careless user sets sysglop 
on without knowning what it means or even that the system 
procedure checks it. He is courting horrible disaster. 
MSPM section BB.4.05 lists the names of all local and 
global options defined by the system. The user must check 
this list before b1ithely setting an option. 

B. The stacking of options 

A record is kept of all options which are set (remember 
that an unset option is considered to be off and need 
not be recorded). We call the record of set options the 
options list. 

In Multics the options list is stacked. That is, there 
is a push-down stack (the options stack), each frame of 



,.. 

,... 

MUL TICS SYSTEM-PROGRAMMERS" tvlANUAL SECT ION BX. 12.00 PAGE 5 

which records the values of options which are to hold 
for some length of time. The options stack operates in 
a way similar to the temporary storage stack 1 but is inde­
pendent of the temporary storage stack or any other stack 
in Mu 1 tics. 

The first frame of the options stack records 11 permanent'' 
va 1 ues of opt ions. \'Jhen the user wants an opt ion to have 
a certain value each time he logs in 1 he sets the option 
in the first 1 or permanent, frame. Permanent frame values 
remain the same from one console session to another. 

If the user wants to set an option for the duration of 
a single console session, he sets it in the second~ or 
console session 1 frame. Values in this frame are valid 
only until logout. 

The user <;:an override a "permanent" va 1 ue by setting the 
option in frame t~.r1o. Thus if he usually .wants 11 zilch' 1 

on 1 he sets it on in frame one. But one day he wishes 
to operate 1 for that day only~ with 11 zilch11 off. So he 
sets zilch off in frame two. The off value for zilch 
holds until he logs out. The next time he logs in 1 zilch 
is on. Values of options set in one frame hold in all 
later frames until explicitly changed. 

Stacking options through the Shell 

All commands which the user issues pass through the Shell 1 

the command language interpreter (see BX.2.00 on the Shell). 
Each time the Shell calls a command 1 it pushes down the 
options stack. The user has the opportunity, when issuing 
a command, to set cer~ain options for the duration of 
the command. If the user has just logged in, values·which 
he gives to the options in a command line are set in frame 
three of the options stack. When the command is finished, 
the Shell pops up the stack to frame two. 

For example, suppose the user writes 

alpha arg [glitch] 

to issue the command aloha with an argument E£9. In square 
brackets he puts the name of the option he wants to set. 
In the Multics command language (see BX.1.00) [glitch] 
is an interJected command which sets the option glitch. 
For every system option there is a command by the same 
name which sets the option. Of course the user can also 
write simple commands which set options for his procedures. 
In the example above 1 ' 1glitch11 could be a user-defined 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX. 12.00 PAGE 6 

option, as \iiJell as the name of a procedure which the user 
wrote to turn "glitch'' on. Or "gl itch11 could be a system 
option, set by a system-provided command. 

The shell also handles stacking for immediate-value commands 
(see BX.1.00 for a discussion of immediate-value commands). 
Suppose the current frame of the options stack is 5, and 
the user issues the command line: 

alpha arg {beta [glitch]] 

The Shell pushes down the options stack once for alpha 
and once for beta. The "glitch" option is not set in 
frame 6 (it retains whatever value it had before), but 
is set in frame 7. The values in frame 7 hold for the 
duration of command beta. ltlhen beta is comp 1 eted, the 
shell pops the stack~frame 6 and calls alpha. 

Suppose'the user (again at stack frame 5) types 

alpha arg [brief] {beta [glitch]} 

and assume that "brief" is a global option. In the r•!ultics 
command language (see BX.1 .00), this command line has 
the effect of setting "brief" on for both alpha and beta. 
The interjected command also sets "alpha.brief11 on. (This 
is done because the user might have set alpha.brief off 
previously, and the value of alpha.brief if set takes 
precedence over the global value of brief, even if brief 
is set in a later frame.) 

To avoid any possible confusion, please note that "global'' 
does not mean 11 holding in all frames". A global option, 
like a local option~ may be set in one frame, or many, 
or none. A global option is an option defined by more 
than one procedure. 

Note: In the above example, the interjected command does 
not set 11 beta.brief11 • If the user has set beta.brief 
off, then beta will remain under control of the beta.brief 
option and will not operate in brief mode. 

Further, the three following command lines are possible 
in the Multics command language: 

1) [brief] alpha arg1 

In this example, brief is set on, but alpha.brief is not 
set. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.12.00 PAGE 7 

2) {_get_command} [brief] arg1 

In this example~ get_command returns a character string~ 
for example, ''alpha"~ which is interpreted as a command 
name. Then brief and alpha.brief are set on~ but get_ 
command.brief is not set. Get command is executed before 
the interjected command 11 [brief]" is executed. 

3) [brief] {get_command} arg1 

Only brief is set. 

Interjected commands which set system options on can also 
be used to set them off. Thus if the user normally operates 
with brief on 1 but wants to execute command alpha with 
brief off 1 he types 

alpha arg [brief off] 

Normally the user need never concern himself with frames 
of the options stack. The Shell and other system procedures 
push the options stack down and pop it up at appropriate 
times. However~ the more sophisticated user may wish 
to set options for very short periods of time~ viz. within 
one group of procedures. When he does this he must push 
down the stack before setting the option(s)~ and pop up 
the stack later. System procedures are provided for pushing 
and popping the stack (see below~ p. 8). 

Note: options may be stacked to a virtua1ly unlimited 
depth. To avoid catastrophe 1 the option procedures set 
11 unlimited11 =40. Cancerous stacking \iiJill result in an 
error condition should that depth be exceeded. The user 
can change the value of "unlimited'' by setting the 11 option_stack11 

option on~ with a specification which sets the maximum 
depth to which opt ions may be stacked~ e.g. 11 1011 or 11 50011 • 

MSPM section BX.12.01 discusses the representation of 
options in storage. It tells where the cptions stack 
is located in the file system hierarchy~ and describes 
how the stacking of the options list takes place. 

C. How to set· and read options 

The Multics system provides commands and other procedures 
to handle the setting and reading of options. The user 
does not have to manipulate any data bases. He calls 
a command or procedure to set or read his options. 

The options procedures do ·not distinguish between user-defined 
options and system-defined options. They do distinguish 
bet\veen local and globaJ options when reading options. 



MULTICS SYSTEM- PROGRAMI-1ERS' l'v1ANUAL SECTION BX.12.00 PAGE 8 

There are three commands to set and read options. 

The option command is used to set options. It can change 
the value of an option permanently (i.e. in frame one) 
or for the duration of the console session (in frame two). 

The delopt command is used to delete options. The option 
is deleted from all frames. After deletion an option 
is unset and procedures consider it to be off. 

The printopt command prints the values of all (set) options 
in all frames of the options stack. 

Section BX.12.02 tells how to use these commands and discusses 
their implementation. 

Option handling procedures 

To check and to set options a procedure calls one of the 
option-handling procedures. Read_opt is the procedure 
to check local options. Given the option name and a frame 
number, read_opt returns the value (switch and specification) 
of the option and tells whether the option is set. If 
the option is unset, read_opt returns an off value for 
the switch and no specification. 

The procedure which checks global options is read_global. 
Read_global first checks for a local value of the global 
option. If the option is locally unset, read_global returns 
the global value for the option. Section BY.9.01 describes 
read_opt and read_global. 

vJhen the user \rJishes to set options from his own procedures, 
he calls on options procedures. Push_opt pushes do1tm 
the options stack, pop_opt pops it up. These procedures 
are described in BY .9.02. 

To set an option in a given frame, the user calls modset. 
Another primitive; modopt, sets the option in the given 
frame, and in all subsequent frames. If 5 is the current 
frame, and the user \vants to change the value of zilch 
in frame 2, he calls modset. To change zilch in frames 
2, 3, 4, and 5, he calls modopt. If zilch was previously 
unset, or if it is being set in the current frame, modset 
and mod opt have the same effect. But if zi 1 ch \iiJas on 
in frame four, and the user calls modopt to set zilch 
off in frame 2, then zilch will now be off in frame 4. 
Modset and modopt are described in BY.9.03. 

Three procedures give information about the options list: 



r 

MULTICS SYSTEt~-PROGRAMMERS' MANUAL SECTION BX.12.00 

option_frameno~ which returns the number of the current 
frame of the options stack; 

option_names~ which returns the names of options which 
are set; 

PAGE 9 

option_values~ which returns values of an option (the values 
in all stack frames). 

These three procedures are described in BY.9.04. 

Other primitives are addopt and delete_opt~ used primarily 
by other options procedures. The user will probably not 
need them. Addopt is used to set an option for the first 
time; delete_opt deletes an option from the options list 
(the user can do this by calling the delopt command). 
Addopt and delete_opt are described in BY.9.05. 

Example 

The user wishes to set certain options for the duration 
of his group of procedures phi~ psi 1 and chi. All three 
check the option "help''. Furthermore, chi should run 
with the "alone" option on only when it runs alone, hence 
should find "alone" off whenever it runs with phi and 
psi. In execution, phi calls psi and chi as closed sub­
routines. 

Phi begins by pushing down the options stack through a 
ca 11 to push opt. Phi then ca 11 s modopt to set "a 1 one" 
on. (In this examp 1 e, phi assumes that "he 1 p" a 1 ready 
has the appropriate value.) 

Chi checks the "alone" option by calling read_opt. All 
three procedures call read_global to check the "help" 
option. 

Before returning to its caller, phi pops up the options 
stack. Section BY.9.03 shows how the above example might 
be coded, with calls to the appropriate option-handling 
procedures. 


