MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BX.13.01 PAGE 1
Published: 01/26/67

Identification

Searching Rule Statements
S.L. Rosenbaum :

Purpose

When a user wishes to provide a special searching technique
for finding segments in the file system hierarchy, he
takes the following steps:

1. constructs searching rule statements in the 1anguage
recognized by the Search Module

2. stores searching rule statements in segments

3. tells the Search Module which segments to use for
searching (sets the system option '"search")

This paper describes the syntax and vocabulary of the
language for constructing searching rules.

Usage

A searching rule statement consists of one of the keywords
which this paper defines followed by any relevant arguments.
One or more blanks separate the keyword from its arguments
and the arguments from each other; a semi-colon separates
consecutive searching rule statements, i.e.,

keywordl argll! argl2; keyword2;...

The user can insert extra horizontal and vertical spacing
characters to increase readabi]wty Parentheses must
enclose an argument which is a list of more than one element,
The user can label any searching rule statement by preceding
its keyword with a character strlng Tfollowed by a colon.

The character string is the label of the statement, i.e.,

Tabe11:keyword? argT1 argl2; label2:keyword2;...

Special charavtors

The Search Module attaches a special meaning to some graphic
characters in specific contexts. This special interpretation
is built into the Search Module’s scanning mechanism and

in gzneral follows the conventions established by section

MULTICS SYSTEM-PROGRAMMERS © MAMUAL SECTION BX,13.01 PAGE 2
BX.8.00--"0Overview of File System Commands'", and the conventions
of section BX.1.00--"The Multics Command Language'.

Throughout this section a special interpretation of a

character is described when contextually meaningful.

A summary of the special interpretations appears in Appendix

IT at the end of this section.

The "special' characters used in common with the file
system commands are:

1. the asterisk-- %
2, the period-- .
3. the "greater than'-- >
L, the "less than"-- <
In common with the Shell, the Search Module uses:
1. the horizontal space-- <sp>
2., the semi-colon-- ;
3, the colon-- :
L, pairs of parentheses-- (and)
5

. pairs of braces-- {énd}

[0)}

the per cent sign-- %
7. the new line-- <NL>

Changing the data base of special characters (section
BX.2.01) affects both the Shell and the Search Module,

In general, the Search Module processes searching rule
statements sequentially, ignoring user inserted comments.

A comment is a statement beginning with the keyword 'c*,
i.e.,

c This is a comnent;

Processina failures

A processing Tailure results whan

ch Module cannot
successfully process a searching r e

ement. Some

C

MULTICS SYSTEM-PROGRAMMERS “ MANUAL SECTION BX.13.01 PAGE 3

causes for processing failure are:
1. an unrecognizable keyword
2, the wrong number of arguments for a keyword

3. the inability to perform the operations indicated
by a keyword

The discussion for each keyword includes a description

of the specific circumstances which can cause the keyword’s
processing failure. The procedure followed in the event

of a processing failure depends upon the specific processing
failure and the status of the system options "brief'" and
"go_ahead". (See BX.12.00 for a discussion of options.)
When a processing failure occurs, the Search Module terminates
the processing of the searching rule statement at fault.

It puts messages in the user”s output stream and in his
error segment, errout, which describe the reason for termination.
If the "brief" option is off, a detailed message is put

in the output stream; if "brief" is on, an abbreviated

form of the message is used. (Appendix III at the end

of this section lists the error codes and their related
messages which can be sent to the user.) The Search Module
then checks the setting of the "go_ahead" option to see

if it should return to its caller or resume processing.

When the '"'go_ahead" option is "off'" the Search Module
signals to its caller with an error code which indicates

the reason for the processing tfailure. If the "go_ahead"
option is "on'", the Search Module resumes processing with
the next statement after the one at fault.

Fscape character

The Search Module’s escape character normally is the per cent
sign "%'". when the user wants to use a graphic character

in a context which ordinarily has a special meaning to

the Search Module, he precedes the character in question

with the escape character. For example, he wants to use

the colon, which normally terminates a label, as part

of a label. For example, :

labe11%: :keyword1;

defines the character string "labell:" as the label of
the searching rule statement. .

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BX.13.01 PAGE L

Path_names

Some keywords take path names as arguments. (See sectio

n

BX.8.00 for a discussion of path names.) The Search Module

interprets path name arguments according to the followin
rules:

1. {root} represents the root directory.

g

2. an absolute path name is a path name relative to the
root directory and begins with the character ">" or
one of the special character strings enclosed by
braces which represents an absolute path name
(see 3., L., 5., and 6.).

3. {wdir} represents the absolute path name of the current
working directory.

L, {pdir} represents the absolute path name of the current
process directory.

5. {]dir} represents the absolute path name of the current
system library directory.

. {cdir} represents the absolute path nams of the calling
directory, i.e., the directory of the procedure which

wants the segment being sought,

7. all otner path names are interpreted relative to the

current working directory,
For example,
a>»hb

)

represents the path name "a > b" relative to the current
working directory.

It can also be represented by:
{wdir} > a > b

direct, astmatch

g}

“hen the user wants to specify a particular sequence of

directories for the Search Module to search, he uszs the
keyword "direct". This keyword takes two argumznts,

The first is an ordered list of directory path names to

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BX.13.01 PAGE 5

search; the second is a list of search
to process if, and only if, the name i
Thus,

ng rule statements
found

i
s fou in a directory.

direct directlist actionlist;

.means

"Search directories in directlist for the name sought, and
only when it is found, do actionlist."

For example, the searching rule statement:
direct (>a >b >c) getmatch;

searches directories >a, >b, and >c, in that order, for
the name sought.

The parentheses indicate that ">a", ">b" and ">c" comprise
the list of elements for the directlist argumant where
elements are separated from one another by blanks. In

the above example, parentheses enclosing the actionlist
argument are optional since the 1ist consists of only

one element, "getmatch'.

Yhen a matching name is found in one of the directories
searched, "getmatch" directs the Search Module to return
to its caller with a path name comprised of the path name
of the directory containing the matching name concatenated
with the matching name. For example, if thz Search Module
seeks and finds the name "alpha" in directory ">a", it
returns the path name ">a> alpha'.

The user must specify the directories to search; the Search
Module assumes '"getmatch" as the default action if the

user does not specify any statements to process when a
match is found. Notice that the Search Module interprets
the statement

direct getmatch;

as a request to search the directory relative to the current
working directory by the name of "getmatch'", i.e., directory
"{wdir} > getmatch",

Althougn the search specified by "direct" may not yield

a matching name, only an incorrect form for the directlist
argument can cause "directs'" ‘s processing failure. A
failure exists if:

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BX.13.01 PAGE 6

1. an element of directlist does not represenL the path
name of a directory.

2. an element of directlist does represent a directory
path name but the user does not have access to read
the directory.

In the event of a processing Fallure the Search Module

leaves a message both in the user’s error file and in

his output stream. If the '""go_ahead" option is "off"

the Search Module signals its caller with the error code
signaling that a processing failure occured, If the ''go_ahead"
option is "on'", the Search Module goes to the next sequential
searching rule statement following the "direct" statement

at fault., A processing failure occurs for '"getmatch"

if no matching name is found by the time the Search Module
processes '"getmatch",

name, name_not

When the user wants to specify restrictions to the Search
Module with respect to the name being sought, he can use
the "nam2" and '"'name_not" keywords. .These keywords require
two arguments; the first is a list of symbolic entry names
with which to compare the name being sought (see section
BX.8.00 for a discussion of entry names); the second is

a list of searching rule statements. Thus,

name namelist actionlist;

means

"Do actionlist only if the name sought is in pamelist;
otherwise go to the next searching rule statement."

and

name_not namelist actionlist;

means

"Do actionlist only if the name sought is not in namelist;
otherwise, go to the next searching rule statement."

"direct (>a >b >c)" can be written as:
name =%

direct (>a >b >c);

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BX.13.01 PAGE 7
where "*%' means '"any name". (See section BX.8.00 for
~a complete discussion on the use of "#' “s in entry names.)
The searching rule statement
name (*.pl1 *.,epl)
direct >a>pl;

searches the directory ">a>p1" only if the secondary component
of the name being sought is either "pl1" or "epl".

(Note: The conventions of section BX.8,00 define "*"

as "a single component of an entry name" and "+ as "any

number of components'. Hence, "% X" means a two component
name whose second component is "X'"; '"¥%% X" means the last

component of any name is "X", The ".," character separates
the graphic components of an entry name.)

"name" and "name_not'" have no special processing failures.
The searching rule statement

name_not (*.pl1 *.epl)
direct >a>pl.not;
searches the directory ">a>pl.not" only if the secondary
Fomponent of the name being sought is neither "pl1" nor
lep]n .

The following example illustrates how restrictions may
be nested.

name (x,% y_;’: z.%)
(name *,pl1 direct >a>pl;
name *,epl direct >a>epl);

The single statement above could also be expressed as
the pair of statements:

name (x.pl v.pl z.pl)
direct >a>pil;

name (x.epl y.epl z.epl)
direct >a>epl;

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BX.13.01 PAGE

caller, caller_not, rina, ring not

At times the user may want a statement’s processing to
depend upon the caller of the name for which a segment

is sought. He can establish this type of restriction

with the "caller", “caller_not", "ring"' and "ring_not"
keywords. The first pair refer to the name of the caller
and the second pair refer to the ring number of the caller.

These keyword statements take the same form as the '"name"
and "name_not'" statements.

caller callerlist actionlist;

takes the meaning:

"Do actionlist if the name sought is wanted by a
procedure whose name is in callerlist."

caller_not callerlist actionlist;

means

"Do actionlist only if the name sought is wanted by a
procedure whose name is not in callerlist."

ring ringlist actionlist;

means

"Do actionlist only if the name sought is wanted by
a procedure which resides in a ring whose number is in
ringlist."

and

ring_not ringlist actionlist:

means

"Do actionlist only if the name sought is wanted by a
procedure which resides in a ring whose number is not
in ringlist." ‘

For example:
caller x direct {bdir};

indicates that a procedure named "x" wants its procedures
froim the same directory in which "x" resides. (Reminder:

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BX.13.01 PAG

{cdir} means the user’s current calling directory.) The
statemznt:

ring_not (3 4 5)
direct {dir};

searches the user’s current system library if the procedure
seeking the name is not in rings 3, 4, or 5.

Neither "caller" nor "caller_not" have processxng failures
other than insufficient arguments The processing failure
for "rind' and "ring_not" is an unrecognizable ring number.

detseg

I¥ the user knows the location, i.e., path name, of the
segment he wants to use, he can specify it directly with
the "getseg" keyword. For example, the searching rule
statement:

name sort.* getseg >sort.radix;

uses the scgment ">sort.radix" if the primary component

of the name sougnt is "sort'". The Search Module returns
to its caller with the path name ">sort.radix"., '"getsegd"
requires as its argument the path name of the segment
to be used. The omission of this argument is "getseg

~

processing failure,

||l

return

Yinen the user decides that further searching is in vain,
1
e says:

return;

The "return" statement causes the Search Module to retuin
to its caller without a path name, i.e., with a null path
name.

go

When the usar wants to interrupt sequential processing
by transferring to a searching rule statement, he uses
the "go" statement. It has the genaral form:

go labgl pathname;

ana means

tement labellec labsl be

"TransTer search control to a sta
ith the path nams pathname.

residing in the segment w

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BX.13.01 PAGE

Upon encountering a "'go" statement, the Search Module

gets the segment located by pathname and, starting at

the beginning of that segment, looks for the first statement
labelled label.

For example, the statement:
name sort,*
go noget >b;

transfers to the first statement labelled "nogot" residing
in the segment with the path name '">b" when tne primary
name sought is "sort", A processing failure occurs if
either the Search Module cannot get or cannot read the
segment indicated by the path name. In the above example,
a processing failure occurs if: 1) a segment with the
absolute path name '">b" does not exist, 2) it does exist
but the user does not have read access to it or 3) the
Search Module cannot find any statement in the segment
which is labelled "nogot". 1If the user omits the path
name, the Search Module assumes that the labelled statemant
resides in the segment currently being processed. In
addition, the omission of the path name indicates that

the labelled statement appears in the segment after the
"go'" statement, i.e., the Search Module looks for the
first statement labelled Jlabel after the '"go" statement
which resides in the same segment as the '"go" statement.

The user must be very careful to avoid creating infinite
loops with the "go" statement. Assume that a certain
segment starts with the following sequence

statementl: go statement?;
statement?:

The omission of a path name in the "go' statement causes

the Search Module to begin looking for the statement labelled
"statement1" after the "go' statement and, hence, the

Search Module ignores the fact that the ''go' statement

itself has the label desired., On the other hand, assume

a certain pathological segment has the path name ">pathl"

and starts with the sequence:

statementl: go statementl >pathil;
statementl:

.
.

In this case the '"go" statement causes the Search Module
to start looking for the labelled statement at the beginning

10

MULTICS SYSTEM-PROGRAMMERS “ MANUAL SECTION BX.13.01 PAGE 11

of the segment ">path1“. The result is an infinite loop
around the first statement of the segment ">pathi'".

In general, it is advisable to keep all labels unique
within a single segment,

default

The user can switch to the standard searching rule statements
which would have been processed if the search option had
been "off". The statement:

default;

causes the Search Module to terminate its current processing,
obtain the standard searching rule statements and process
them, See section BD.L.01 for a description of the standard
searching rule statements. No processing failure exists

for the "default" statement.

rename
The user can direct the Search Module to look for a name
different from the name for which the Seach Module was
called. The statement:

rename dummy
directs the Search Module to search for a segment named
"dummy" instead of the segment name for which it had been
searching., The statement:

name (sort.* graph,¥)

rename dummy, *;

directs the Search Module to search for a segment with
the name with the primary component '"dummy" whenever it
had been seeking a segment for the name with the primary
component "sort" or '"graph".
A Vrename" is in effect until the Search Module encounters
another "rename" and only operates on the name the Searcn
Module is seeking at the current time. For example, in
the sequence: '

name (sort.¥* graph,¥)

rename dummy, *;

name sort.epl default;

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BX.13.01 PAGE 12

\]

the second "name" statement is superfluous and its actionlist
never gets processed--if the Search Module originally

had been looking for a segment named '"sort.epl", by the

time the Search Module processes the second "name" statement
it is seeking a segment named "dummy.epl". '

listen, endlisten

IT the user wants to give the Search Module some instructions
during its actual operation rather than presetting all

his directions, he uses the keyword "1listen'"., This statement
puts the user in the Search Module’s listening mods, an
operational mode from which the user can submit searching
rule statements for immediate processing. When the Search
Module encounters

listen;

it prints out a message informing the user that he should
submit a statement for the Search Module to process.
For example, the sequence:

name sort.* (listen; default);
direct >a;

puts the user Into the listening mode when the primary

name sought is "sort". After being notified that he is

in the listening modes, the user can proceed to obtain
information (by calling Search Module procedures as explained
later in this section) concerning a processing failure,
perform a search, create a suitable segment, try a searching
rule statement, etc.. The user inputs 2 statement or
sequence of statemants, terminated by the break character
(nermally the <NL> character). After recognizing the

break character, the Search Module performs the indicated
actions, notifying the user if an action cannot be processe
or completed and returns to the listening mode for further
instructions upon processing competion or failure. A
successftully executed "go", "getsed', "getmatch", "default"
or "return' statement automatically removes the usar from
the listening mode, and, except for the '"go" and "default"
statement, returns the user to the Search Module’s caller.
If the user wishes to return to his pre-set searching

rule statements, he types

endlisten;

and the Search Module resumzs processing with the keyword
statement immediately following the "listen" statement.

(In the previous example, the Search Modulzs resumes processing
with "default", switching to the default searching rule
statements.)

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BX.13.01 PAGE 13

When the user has declared himself to be incommunicade

by setting the "no_auestions' option "on" (see BX.12.00- .
”Options”%, the Search Module treats the "listen" searching
rule statement as an error, i.e., the inability of the
Search Module to interact with the user is "listen" “s
processing failure., (Note: "Endlisten" has no meaning
outside the listening mode.)

In the above example, if both the "no_guesticns" option
and the "go_ahead" option are "on'", the Search Module
processes the "direct" statement,

call

When the user wants to execute a system routine or private
procedure, he uses the keyword "cail'. "call" takes as
its argument a character string which is enclosed by a
auoting character and which is to be passed to the Shell
for interpretation as a command sequence. For example,
assumz there is a procedure named "alpha" which takes

two arguments: a directory path name and an integer.

The searching rule statement:

call /alpha >a>b L4/;
invokes the procedure "alpha® with ">a>b" and "4" as arguments
where the slash character functions as tha quoting character,
Any character not occurring within the character string
may be usead as tha quoting character.)
If he wants to use the path name of the directorv las
searchad as an argument instead of '">a>b', he uses t
value of the Search Module procecure "smdirect" and
call /alpha {smdirect} L/;

The other Search Module procedure values are:

{smname} - the symbolic name for which the Search Module
was cailed to search ‘ :

{smrename} - the symbolic namz Tor which the Search
Module is currently searching

{smmatch} - the directory path name in which the name
sought was last found by searcning. {smmatchJ}
is a null character string, if no match
has been found.

{smlabel} - the label attached to thz last processad

labelled statemant.

MULTICS SYSTEM-PROGRAMMERS © MANUAL SECTION BX.13.01 PAGE

When the Shell encounters the above procedure values,
it calls the respective Search Module procedure as an
immediate-value command (section BX.1.00).

error

If the user has set the 'go_ahead' option "on" and wants
to supply an error procedure for a statement which may
fail, e.g., the labelled statement for a 'go" does not
exist, he uses the "error" statement which takes the form:

error actionlist;

where actionlist is the list of statements processed only
if the previous statement resulted in a processing failure.
For example,

direct >a go x;
error return;

directs the Search Module to return to its caller if ">a"
is not a path name of a directory to which the user has
read access., In this example, "error" applies to the
"direct" statement and not the "go". On the other hand,
the sequence:

direct >a (go x;error return);
directs the Searct Module to return to its caller if the

"go" statement fails, i.e., no statement labelled "x"
appears in the same file as and after the "go'" statement,

14

MULTICS SYSTEM-PROGRAMMERS © MANUAL

SECTION BX.13.01

APPENDIX I - Keywords

keyword arguments processing failure for
keyword

call commandlist ‘error return from Shell

caller callerlist actionlist ‘none

caller_not callerlist actionlist none

default none none

direct directlist actionlist | directlist incorrect

endlisten

error
getmatch

getseg

go

listen
name
name_not
rename
return
ring

ring_not

none

actionlist

none

pathname

label pathname

none

namelist actionlist

namelist actionlist

name

none

rinalist actionlist

not in "listen" mode
none

no matching name found

no accessible segment for

pathname

no accessible statement
for label

no_questions option is "on"

none
none
none
none

rinalist incorrect

rinaglist actionlist

rinaglist incorrect

PAGE 15

MULTICS SYSTEM-PROGRAMMERS = MANUAL

SECTION BX.13.01

PAGE 16

APPENDIX II - Special Character Set

graphic interpretation comments
<sp> separates arguments
3 separates searching rule need not be followed by
statements a <sp>
: ends a statement label "
(and) begins and ends a 1list,
respectively
<NL> ends a request only in "listen" mode
0, L
% escape character
{"char'} value of function "char" only in path names or
sent to the Shell
* one component of a only where segment name
segment name allowead
w any number of components "
of a segment name
. separates name components .
< one level superior only wnere path names
allowed
> one level inferior "
Appendix III1 to be specified later

s e

