
TO:
FROM:
SUBJECT:
DATE:

MSPM Distribution
R. H. Thomas
BX . 1 4 • 01 ~ BX . 1 4 . 02
August 2 6~ 1968

The attached revisions of BX.14.01 and BX.14.02 reflect
changes in both the coding scheme for relocation information
(BD.2.01) and the implementation strategies for the binder
and post_binder.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.14.01 PAGE 1

Published: 08/26/68
(Supersedes: BX.14.01, 12/28/66)

Identification

The Binder
bind
R. H. Thomas, D. L. Boyd

Purpose

The basic binder combines two segments into one segment.
Binding is useful in reducing the number of system table
entries necessary for a group of segments and thus the
system overhead required to maintain the tables. In addition
binding provides a means of dealing with the storage fragmentation
problem. With binding the necessity of inter-segment
links between bound segments is eliminated (see BX.14.02).

Introduction

A segment <input_name1> is actually a collection of three
segments; <input_name1>, <input_name1. link>, and <input_
name1.symbol> (BD.2.01). This collection wi 11 be referred
to as a segment group. The binder combines the segment
group <input_name1> with the segment group <input_name2>
as follows: segment <input_name1> is combined with segment
<input_name2>; segment <input_name1. link> and segment
<input_name2. link> are combined; and segment <input_name1 .symbol>
and segment <input_name2.symbol> are combined. To the
user, two segments that have been bound appear the same
as one unbound segment. It is not possible to unbind
or update a segment that has been bound.

Usage

The command to bind is given as follows:

bind input_name1 input_name2 output_name

Input_name2 is the name of a segment group which is to
be bound to the end of the segment group named input_name1.
The segment group which results from binding is called
output_name.

It is possible to bind a newly bound segment group with
still another segment group by giving the bind command
again. The machine time used to bind two segments increases
proportionally with the length of the segment input_name2.
Therefore, it is advantageous to assign the shorter of
the two segment groups to input_name2.

There is no console interaction with the bind command.

MULTICS SYSTEM-PROGRA~ERS' MANUAL SECTION BX. 14.01 PAGE 2

Implementation

Binding is done in two stepso The first step consists
of performing the necessary initialization and the second
step does the actual binding. All errors use the error
handling mechanism described in BY.11.00.

Assume in all the following paragraphs that segment group
y (input_name2) is being bound to segment group x (input_name1)
and that the bound segments are placed in segment group
z (output_name). With the initial version of the binder,
for binding to occur, it is necessary that all six input
segments mentioned in the introduction be available.

A) Initialization for Binding

The bind command attempts to initiate the six segments
necessary for binding. If it fails an error comment is
made using the error handling mechanism.

If the six segments can be initiated, pointers are created
to each of them and to their binding information. The
output segment group, output_name, output_name. link,
output_name.symbol, is created and pointers to each output
segment are saved. In addition the following parameters
are calculated:

(1) len_ text = length of segment x rounded up to
0 modulo 8.

(2) len_ link = length of segment x. link rounded up
to 0 modulo 8.

(3) len_symbol = length of selment x.symbol rounded
up to 0 modu o 8.

B) The Binding Process

Given the case where the definition section for segments
x andy are in segments x andy. link respectively, an
example of how the bound segments appear follows:

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.14.01 PAGE 3

s.link a. symbol

X

f header '

>- x.symbol

.,. x.link

I~ y.symbol
definitions

for x
... -

header \
I binding
\information for
x and y padding to

make > y.link J
0 mod 8

y ... ~ definitions
for y

;>'

}

binding infor­
mation for
x.link and
y.link

~~ binding infor­
mation for
x.symbol and
y.symbol

The binder copies input_name1 and input_name1. link into
output_name and output_name. link and appends words of
zeroes as padding in order to make each component segment
have length 0 modulo 8. Input_name1 .symbol is copied
into output_name.symbol up to the start of the binding
information; it also is padded with zeroes to make it
have length 0 modulo 8.

The binder then uses the binding information in input_name2.symbol
to bind segment group input_name2 to segment group input_name1.
Each segment is bound successively starting with input_name2~
then input_name2. link and finally input_name2.symbol.

The binding information is arran~ed so that there is relocation
information for every ei~hteen b1ts of each segment.
The binding information 1s stored using the code described
in MSPM 80.2.01. The chart below shows how this code
is used to adjust each eighteen bit half-word. To read
the chart assume K is the value of the half-word being
relocated.

,

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.14.01 PAGE 4

Code

0 Absolute

10000 Text

10001 Neg Text

10010 Link Pointer 18

10011 Neg Link Pointer 18

10100 Link Pointer 15

10101 Definition Pointer

10110 Symbol

1 011 1 Neg Symbol

11000 Link Block

11001 Neg Link Block

11010 Self relative

1 101 1 Unused

11100 Unused

1 1101 Unused

1 1 1 10 Unused

1 1 1 1 1 Escape

Action

no relocation

K = K + len text -
K = K - len_ text

K = K + len 1 ink -
K = K - len link -
The left-most three bits
are left unchanged and
len link is added to
the-remaining 15 bits of
the word.

no relocation

K = K + len_symbol

K = K - len_symbol

no relocation

no relocation

no relocation

Should never occur

Should never occur

Should never occur

Should never occur

Should never occur

Binding is done for each segment in segment group output_name2
using the following loop. An eighteen bit half-word is
read, the eighteen bits are adjusted according to the
binding information for that half-word, and the new eighteen
bit half-word is stored in the appropriate output segment.

MULTICS SYSTEM-PROGRAr+1ERS' MANUAL SECTION BX.14.01 PAGE 5

Structure of the Bound Segment Group

The binder sets the binding indicator on in each symbol
table header and threads the symbol table headers together.
The symbol table header entries that contain the length
of the component text and linkage sections are updated
to account for the padding necessary to make them of length
0 modulo 8.

A segment group with a linka~e section always contains
11 external symbol definitions' and ''link definitions" threaded
together (MSPM 80.7.01). When binding is completed~ the
definition sections of the two segment_groups are not
threaded together; however~ the linkage sections are threaded
together as shown in figure 1.

The binder searches the definitions sections for any duplicate
entry points or segment definitions. If any duplicates
are found, it is considered an error.

Each definition section corresponding to a component segment
will have a definition for the symbols rel_text~ rel_link
and rel_symbol. The binder updates these definitions
so that each occurrence of rel_text points to the binding
information for the bound text segment, each occurrence
of rel_link to that for the bound linkage section, and
each occurrence of rel_symbol to that for the bound symbol
segment. In addition each definition section will contain
a definition for the ~ymbol: symbol_table (see 80.1.00).
After binding each occurrence of symbol_table will point
to the symbol table header correspondin~ to the first
component segment. The duplicate defin1tions of these
four symbols will be removed when the segment is post_bound.
(S ee BX . 1 4 • 02 •)

