
~· 

,. MULTICS SYSTEM-PROGRAMMERS' MANUAL 

Identification 

Login and Quit Responders for Operators 
K. J. Martin 

Purpose 

SECTION BX.15.01 PAGE 1 

Published: 01/23/68 

Operators face special problems which make it necessary 
that they have different procedures invoked immediately 
after login and following each quit than those invoked 
for other users. The normal login and quit responders 
are combined in the listener procedure described in BX.2.02. 
The operators' login and quit responders are also combined 
in a single procedure. op_listener. which closely resembles 
the listener. This section explains the need for and 
describes op_listener. 

References 

Section BX.15.00 presents an overview of the operator 
commands. Sections BX.15.02 and upward describe individual 
operator commands. BX.2.02 describes the listener. BQ.2.03 
explains the concept of login and quit responders and details 
their manipulation. 

Discussion 

Operators of a Multics installation must cope with at 
least two problems not encountered by other users. These 
two problems arise because of unsolicited requests which 
are associated with certain operator functions. The media 
management function, for example, must deal with requests 
originated by other users to handle m~gnetic tapes and 
other appropriate media. 

The first problem arises because processes belonging to 
other users wish to send inter-process events (see BQ.6) 
to the operator in charge of an unsolicited-request function. 
The other users expect to be able to find out the process 
id of the appropriate operator's working process. Section 
BT.2. on the media management module illustrates how the 
module associated with the media operator function expects 
to work. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.15.01 PAGE 2 

When an operator becomes responsible for media handling 
(or any other unsolicited request function), the op_here 
command (BX.15.02) informs media management (and any other 
modules corresponding to functions assigned to him) of 
his presence and the process id of his working process. 
If at some later time that operator quits his computation,. 
he will receive a new working process. The media management 
module and other modules must be informed of the process 
id of the new working process. It is preferable not to 
depend on the operator to issue the op_here command either 
initially or following each quitJ a single slip-up could 
cause unsolicited requests to be lost. 

The solution proposed here is to employ login and quit 
responders cognizant of the operator's responsibilities. 
The login responder would invoke the op_report procedure 
(BX.15.02) immediately following an operator's login. 
The quit responder would automatically invoke op_here 
on ~he operator's behalf following each quit. A few changes 
to the listener are sufficient. Details are given in 
implementation. 

The second problem arises because unsolicited-request functions 
need, ideally, some operator constantly waiting for them 
to demand his attention. The operator in charge of an 
unsolicited-request fun~ti9n cannot be placed in such 
a position forever since he may be in charge of other 
functions. On the other hand, expecting the operator 
to faithfully check on each of his responsibilities with 
no prompting is simply courting trouble. 

Consider a middle solution in which foll~wing each command 
sequence invoked by the operator, a special procedure, 
op_checker described in BX.15.03, is invoked to service 
unsolicited-request functions. The operator's login responder 
(also a slight revision of the Listener - BX.2.02) cooperates 
in this scheme. After reading a command sequence and 
before calling the Shell with that command sequence, it . 
appends the strings 11 J op_checker11 • This causes the She 11 
to call op_checker after all other commands in the sequence. 
Op_checker determines if there are any unsolicited-request 
functions to be serviced by this operator (by checking 
the op function data base described in BX.15.03). If 
there are none,. op_checker returns and the operator is 
back at command level. 



MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.15.01 PAGE 3 

If, on the other hand, the operator is responsible for 
any unsolicited-request functions, op_checker calls in 
turn the service procedure associated with each. A service 
procedure typically takes care of all unsolicited requests 
which may be pending, then returns to op_checker. After 
explicitly checking each function, op_funct ion waits on 
the event channel associated with each. Whenever an event 
is received on one of the event channels, op checker calls 
the appropriate procedure to service the function. 

The operator who is responsible for any unsolicited-request 
functions can get-out of op_checker only by quitting. 
Hopefully this will increase the amount of time that the 
operator is servicing these functions, but also allow 
him to service other functions. 

Note that the operator may explicitly invoke op checker 
as well as any of the service procedures for unsolicited­
request functions. The media command (BX.15.09) is such 
a service procedure. 

ImPlementation of op listener 

The reader is referred to BX.2.02 where detailed implementa­
tion of the listener procedure is given. The two steps 
given below are additions to be made to the implementation 
of the listener to produce the procedure op_listener. 

The login responder portion of op_listener requires the 
addition of a step between steps 4 and 5 and a second 
step between steps 7 and 8 of the listener portion of 
the listener procedure 

4A) Call op ~~[ft, causing the operator to effectively 
report tor duty to System Control. 

7A) Concatenate the character string '' J op_checker" 
to the completed command sequence. From this point 
the command sequence appears to have been typed 
with op_checker as the last command in the sequence. 

The quit responder portion of op_listener requires the addition 
of a step between steps 7 and 8 of the quit handler portion 
of the listener procedure: 

7A) Call op_here~ in order to inform interested 
modules that the operator's process id has 
changed. 


