
TO:
FROM:
DATE:
SUBJ:

MS PM Distribution
K. J. Martin
11/08/67
BX. 18.00

BX.18.00 is essentially a re-issue of BX.1.01. No important
changes have occurred beyond minor updating to conform
with other parts of Multics. The section change was made
in order to group the large number of new macro subsections
under a single heading.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.18.00 PAGE 1

Published:· 11/08/67
(Supersedes: BX.1 .o1_ 01/09/67)

Identification

Macro Facility for Command Language
G. Schroeder_ D. B. Wagner_ K. J. Martin

Reference

The user must be familic;tr with BX.1.00 Multics Command Language.

Introduction

When using an on-line system, one usually finds that there
are certain sequences of commands that one issues over
and over with only minor changes in arguments. The ability
to define such command sequences as macros_ then to .invoke
such a macro by typing the macro name and a list of arguments
to be substituted into the command sequence_ provides
two major conveniences:

1) economy of typing

2) economy of thought; i.e., a complicated sequence of
commands need be thought out only once; once defined~
the sequence can be considered as a whole.

Perhaps the more obvious feature which must be included
in a macro facility for a command language is the ability
to declare certain arguments within the body of the macro
to be bound variables and to substitute for these bound
variables at the time the macro is invoked. Macros of
commands should be definable such that the user can substitute
the arguments to commands within the macro and for names
of commands within the macro.

Another obviously useful feature is the ability to execute
commands conditionally within a macro. One can easily
envision a macro such that the failure of one command
within it would cause the user to wish not to execute
the rest of the sequence. It should be possible to express
such a condition and have the macro behave properly when
invoked.

The Control Commands

The above features are provided through the "control statements11

of the macro package. These ''control statements11 are
actually commands. Obviously the number and complexity

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.18.00 PAGE 2

of control statements can- and will- grow. but the following
is a summary of a basic set:

macro_arg(a b c •••)

(BX.18.03) specifies names of the bound variables in the·
text following. Macro_arg causes all occurrences of the
strings s. b~ £etc •• which stand alone to be replaced
by the corresponding arguments given in the macro call.
A string is said to stand alone when it is delimited by
ASCII characters that are not alphabetic or numeric or
the underscore (_).

create_subst(a b c •••)

(BX.18.03) causes special symbols to be created and.substituted
for 2. h, £,etc., in the text following. Created symbols
are produced by concatenating the string "crs_'' with a
strin~ obtained using the ••unique identifier generator"
described in BY.15.01. They are always distinct from
each other and have a very good chance of being distinct
from other file names, variables, etc. which are used
in the macro.

Use of created symbols makes it possible to freely use
temporary variables and segments with names which are
irrelevant outside a given macro, ,without worrying about
naming conflicts.

The sequence

iterate~ list 'command sequence'

(BX.18.04) causes the text included in command sequence
to be repeated several times over, once for each element
of ~. On each repetition the corresponding element
of I!i1-is substituted for every occurrence of the string
~ standing alone as an element of a command. Iterate's
can of course be nested to any depth.

The command

conditional ~ 'command sequence'

(BX.18.05) causes the specified command sequence to be
a part of the macro expansion only if the string x is
not a string of zeros (~ is normally the value of-an immediate ·
value command such as value. see below).

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX~18.00

Two commands which will be useful in conjunction with
the conditional command are setvalue and value, which
maintain a data-base of variable-names and associated
values.

setvalue ~ string

PAGE. 3

(BX.18.06) establishes~ as the name of a variable with value
given by string. Then the immediate value command

~alue 'expression'J

(BX.18.06) evaluates the arithmetic expression given,
which may include variables established using the setvalue.
command, and returns a character-string representation
of the value. In particular the command

conditional {yalue 'a < b + c'} 'line'

(BX.18.05) causes the line to be included in the macro
expansion if and only if the values of the variables ~~
Q, £ satisfy the expression a<b+c. Rules for evaluat1ng
expressions such as a<b+C will be established later.

It might sometimes be desirable to switch back and forth
between sources of input- sometimes the macro file should
be the source, then sometimes another stream (probably
the one connected with the typewriter). This can be done
by an additional control command:

include stream_name

(BX.18.07). This command causes the macro to read stream_name
for successive lines instead of taking items from a data
base of commands to be executed. Another occurrence of
the i-nclude control command causes the first stream to
be pushed down in a stack of input sources.

The control command

end_include

(BX.18.07) causes the macro to again take items from its
previous source.

An end-of-stream return on a call to read stream name also
causes the macro to revert to taking items from Tts previous
source.

MULTICS SYSTEM-PROGRAMMERS"' MANUAL ·SECTION BX. 18.00

Using the Macro Facility

A user who wishes to make a sequence of commands uses
the context editor (BX.9.01) to create a segment. This
segment contains the commands which make up the macro,
including regular commands, macro control commands, and
user procedures.

A macro is defined by issuing the command

macro macro_name

PAGE 4

(described in BX.18.02) where macro name is the name of the
segment which contai~s a series of commands.

Macro writes a linkage section for the segment being defined
as a macro. This linkage section defines the symbol which
is the name of the macro with a special class number. .
The macro segment itself is not altered.

The macro is invoked by typing

macro_name(arg1 arg2 •••)

where macro_name is the name of a file containing a macro
which the user has previously defined with the mscro command.

When the Shell attempts to build linkage to this macro
the linker returns the class number of the symbol. The
Shell thereby knows that a macro is being invoked. The
Shell then calls the macro processor with command name
(macro_name) and the array of arguments (arg1 arg2 •••).
As usual, the Shell executes any interjected commands
itself and does not pass them to the macro processor;
in fact the Shell does a full syntax analysis and interpretation
of the command line and passes the arguments to the macro
processor. ·

Overview of Implementation

The macro processor sets up two data bases:

1) commands to be executed
2) a key to string substitutions to be made

These two data bases are shared with a procedure ca 11 ed
the request handler (see BY.4.01), which actually performs
string substitutions on demand and which also does various
manipulations of these two data bases at the behest of
the control commands.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.18.00 PAGE 5

The macro processor also performs a variety of initialization
tasks such as attaching the stream user_input to the request
handler (BY.4.01) so that a call to read will invoke the
Request Handler, and turning off the housekeeping option
to prevent the listener (soon to be called) from returning.
The macro processor then calls the listener (BX.2.02)
which reads from the stream user input and calls the Shell
with the string returned by the request handler. The
command which the Shell then calls may be an ordinary
command, or it may be a macro control command, or it may
be another macro invocation. The Shell and the listener
never know the difference; the macro control command simply
calls the request handler (at the appropriate entry) to
adjust its data bases. When the request handler returns,
the macro control command returns to the Shell which returns
to the listener. The listener again calls read (invoking
the request handler) to get the next command, etc., until
there are no more commands in the macro to be executed.
A command inserted in the request queue by the macro processor
then turns on the housekeeping option which causes the
listener to return.

Figure 1 shows how the Shell, the macro processor, the
listener, and the request handler interact. The first ·
data base (0 in the figure) contains a stack of ''bunches11

of commands. Each bunch in this stack is a list of commands
- probably the text of one macro.

The second data base (Sub in the figure) contains a key
to the string substitutions to be done in the macro.
This is also a stack which is pushed down on each occurrence·
of a new macro. The macro_arg control command maintains
this data base from the macro_arg statements and the list
of arguments given when the macro was invoked. The create_subst
control command also contributes to maintaining this data
base.

There are certain commands such as the debugging commands
and the context editor which are highly interactive.
When executing, these commands accept requests from the
user which are essentially subcommands to the command
in control. The ability to include requests to a command
within a macro appears to be a desirable feature. Although
on the one hand, it is desirable to be able 1Q include
the requests to an interactive procedure in a macro, it
is undesirable to be required to include the requests
to an interactive procedure in a macro.

In the normal, undiverted flow of a macro all input comes
from the macro segment. Some special information must
appear within the macro to change input sources -such
as the include control command. The user may use interjected

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.18.00 PAGE 6

commands to accomplish this. For example# a command line
within a macro might be:

edit alpha [include stream1]; end_include

The Shell interprets and calls the interjected command
(here, the include control command) before calling edit.
Thus, when edit is invoked and requests input, the request
handler reads from streaml. When edit is completed (and
returns to the Shell) the next command executed is the
end_include control command.

'

(

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.18.00 PAGE 7

..... - - Control Shell
Connnand

, .
~·

"' Macro Request
Processor - Handler

"""

,~ l
Listener

_...
Read -

I

Figure 1.

