
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.18.02 PAGE 1

Published: 11/08/67

Identification

Macro Command
K. J. Martin

Purpose

A macro is merely a segment prepared using the context
editor. In order for the macro to be handled properly
when invoked as a command, it must be recognized by the
Shell as a macro. The macro command makes the edited
segment recognizable to the Shell.

Discussion

When the Shell (BX.2.00) makes linkage to a command it
calls generate_ptr (BY.13.02) and checks the definition
class of the entry it intends to call. If that class
number is 64 the She 11 ca 11 s the macro_processor (BX. 18.01)
instead of calling the entry to which Tt made linkage.

The macro command creates a linkage section for the macro
and makes an external definition for macro name$macro name
(where macro name is the name of the edited macro segment)
with a class-number of 64.

Usage

macro macro_name

where macro_name is the name of a segment created using the
editor. The segment macro_name contains command lines
which include regular commands, macro control commands
(described in BX.18.03-BX.18.08) and user procedures.
It may also contain input lines designated to be read
by a command in the macro.

Macro_name is located in the file system hierarchy in
the same manner as the file system commands locate a segment
(see BX.8.00). If the pathname macro name starts with
">" it is assumed to be a pathname reTative to the root
directory. Otherwise, the pathname macro name is assumed
to be relative to the current working directory.

\

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.18.02 PAGE 2

Implementation

Macro creates a segment macro_name.link in the directory
containing the segment macro_name. · Macro_name. link is
created with the header information necessary for it to
pass as a linkage section and one external definition
for macro name$macro name with class number 64. If macro name.
link already exists Tn the directory# macro informs the -
user that it exists and will not be tampered with. It
then returns.

The declaration for the contents of macro_name. link is:

del 1 linkage#
2 header,

3 def_ptr ptr# ,.,'r points to 1 inkage.·
ext def.,'r/

3 nxt_blk_ptr ptr# f-ie nulT ·kf
3 pre blk~tr ptr# /* null I

"
3 static ocation bit (18)#/* zero ,'r/
3 block_Tength bit (18), /* length of the structure

in words ·kf
3 segment number bit (18), ,,., zero ,'1:/
3 segment -length bit (18) # ,,., length of the structure

in words */
2 ext_def,

3 nxt ext ptr bit (18)_ I* zero -;'rf
3 unused bit (18), /"~• zero "~•!
3 value bit (18)# ,.,';: zero "~•/
3 class bit (18) f-;'r 64 */
3 symbol char (N); /.,'r macro_name -;'tf

As indicated by the comments# many elements.are zero or
null. No forward and backward pointers are needed; no
static storage will be needed; there is no value for macro_
name$macro name; and the segment number of macro_name
when the macro is invoked is obviously not known at this
time. ·

For more information about linkage sections see BD.7.01.

After successfully creating macro_name. link, macro returns.

""' '

