
..

TO: MSPM Distribution

FROM: Karolyn Martin

DATE: October 18, 1968

SUBJECT: BX.8 and BY.2

Due to a recent redes-ign of the file system commands many
sections of BX.8 and BY.2 are being re-issued. The major
changes are in implementation in order to make the commands
smaller and faster.

The main usage changes are covered in the overview to
file system commands - BX.8.00. Points to look for are:

1 •

2.

3.

4.

s.

arrays as arguments are no lo.nger allowed.

the commands take a fixed number of arguments
and rely on the files procedure (BX.8.01) and
the iteration feature of the shell (BX.2.00)
to allow the user to act on a number of arguments,
one after the other.

the star and equal conventions are restricted and
simplified somewhat.

a new convention has been added in which directory
entries are designated by a trailing">".

users who have coded calls to procedures described
in the old BY.2.01 should be warned that they are
being replaced by those described in the new BY.2.01.

Sections BX.8 and BY.2 now consist of the following sections

MS PM Title Rep laces

BX.8.00 Overview of File System Commands BX.8.00, 8.00A

BX.8.01 List, files, status Commands BX.8.01, 8.01A

BX.8.02 Acl Modification Commands no change

BX.8.03 Listacl Command no change

BX.8.04 Link Command BX.8.04, 8.04A

BX.8.05 Unlink Command new

BX.8.06 Branch Command BX.8.05, 8.05A

,.. PAGE ii

MSPM Title Replaces

BX .8.07 Remove Command BX.8.07, 8.07A

BX.8.08 Rename Command BX.8.06, 8.0~

BX .8. 09 Add name Command BX .8.06, 8.06A

BX .8. 10 Del name Command BX .8.06, 8.06A

BX. 8.1 1 Copy Corrmand new

BX. 8.12 Movebranch Command BX. 8. 09, BX. 8.10

BX .8. 13 Chasepath Command new

BX .8. 14,
8.14A

Working Directory Table Corrmands
(section number change only)

BX. 8. 12, 8. 12A

BX.8.15 Map_dir (section numb~r change BX.8.11
only)

BY .2 .00 Overview of File System Library BY .2 .00
Procedures

BY .2. 01 Command and File System Interface BY .2. 01, 2 .D1A

BY .2 .02 File System Error Codes no change

BY .2. 03 File System Command Error new
Handling

BY .2 .04 Set~ath, entryarg BY.2.04

BY .2. OS ACL Interface no change

BY.2.06 Equals Convention Handler BY .2. 04
I

BY .2. 07 Get_count, set_count no change

BY.2.08 Star Convention Handler BY.2.08

BY.2.09 Get_area no change

BY.2.10 Entry_status no'change

BY .2. 1 1 Working_segs no change

,... BY .2. 12 Deltree (section number change BY.2.03
only)

BY .2. 13 Map level (section number change BY. 2. 06
only)

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.8.00 PAGE 1

Pub 1 ished: 10/17/68
(Supersedes: BX.8.00, 01/27/67(

BX.8.00, 01/14/66J

Identification

Overview of File System Commands
c. A. Cushing, c. Garman, E. Q. Bjorkman, R. J. Feiertag

Puroose

The file system commands and procedures are designed as
an interface between the Multics user and the Basic File
System (Section BG): they provide frequently-used sequences
of manipulations upon segments which reside in the file
system hierarchy, as well as service functions such as
the formatting and printing of segment status information.

Similarly, the file system procedures provide a more flexible
interface between a user's programs and the 11 primitives••
of the Basic File System, as well as error handling by
means of the standard error procedures (BY.11). For further
information see BY.2.00, Overview Qf ~System Library
Procedures.

Introduction

A file is a linear sequence of data elements; an element
may-be a machine word, an ASCII character, or a bit, or
multiples of each of these, dep¢nding upon the context
of a particular reference. In Multics, a file is ~enerally
found as a segment somewhere in the hierarchy of d1rectories
maintained, manipulated, and massaged by the Basic File
System. A segment may be known to a user or his procedures
by its se9ment name, which may include information on
its locat1on in~ directory hierarchy, or by its (hardware)
segment number, which provides a shorthand method for
accessing the data of the segment in core memory.

A Multics user may create, modify, or delete segments
only through the use of the Basic File System: directly,
by programmed calls to user-accessible entries in the
Basic File System and hardware segment addressing of data,
and indirectly, by using the file system commands and
subroutines. The first group is covered in MSPM section
BG, The Basic File System, while the latter group is the
subject of sections BX.8, File System Commands, and BY .2,
Fil~ System Procedures.

MULTICS SYSTEM-PROGRAMMERS" MANUAL SECTION BX.B.OO PAGE 2

Files. Branches and Entries

A directory is a special segment maintained by the Basic
File System~ which contains a list of entries. To the
user~ an entry appears to be a segment which is accessed
in terms of one or more symbolic egtry names. The names
are composed of strings of ASCII c aracters~ whose syntax
is discussed below. An entry name need be unique only
in the directory in which it occurs.

There are two types of entries each containing a "pointer":

If the entry is a branch~ the pointer defines the location
of the contents of the segment somewhere in the secondary
storage hierarchy; this segment may or may not be a directory. 1

If the entry is a~~ the pointer describes, symbolically~
another entry in the same or another directory, A link .~
may point to a link~ etc,~ to a reasonable depth of nesting,
but once a link points to a branch~ the segment pointed
to by that branch is accessible as if the original entry
had been the branch pointing to the !~egment,

Each branch contains a description of the way the segment
it points to may be used or referenced~ which is termed
its access control information; a link does not contain
this informat1on~ but instead derives its access privileges
from the branch to which it ultimately points,

File System Hierarchy

The Basic File System works with a basic tree hierarchy
of segments across which links may be added to facilitate
simple access to segments elsewhere in the hierarchy.
With one exception each segment (e.g.~ directory) finds
itself directly pointed to by a branch in exactly one
directory; the exception is the root directory at the
root of the tree~ whose location is known to the Basic
File System~ but which does not appear in any directory,

A segment pointed to by a branch in some directory is
immediately inferior to that directory and the directory
is immediately superior to the segment. The master directory
has ·level zero~ and segments immediately inferior to it
have leve 1 one. By ex tens ion~ inferior! ty (or superior! ty)
is defined for any number of levels of separation via
a chain of immediately inferior (superior) segments,

Links are considered superimposed upon~ but independent
of~ the tree hierarchy.

'

'"

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.B.OO PAGE 3

At any one time, a user is considered to be operating
in some one directory, called his working directory (wdir).
He may access a segment simply by specifying the entry
name in his working directory which effectively points
to that segment. An entry name is meaningful only with
respect to the directory in which it occurs, and may or
may not be unique outside that directory. In order to
refer to an entry which is not in the working directory,
it is necessary to have a symbolic name which unambiguously
defines an entry in the hierarchy as a whole. Such a
name is a E91h name. It consists of the chain of entries
(branches or links) required to reach the desired entry
from the root directory or from the working directory.
A number of abbreviations may be used for the special
directories at each Multics installation, e.g. the Multics
Command and Subroutine Library, the Local Command and
Subroutine Library, or the Process Directory (see BD.6
System Skeleton, and BD.4, the Search Module).

Names: Formation and Synta2S_

A file-system-name is a string of ASCII graphic characters
which plays a role corresponding to that of an identifier
in a programming language. Names are further classed
as en5ry names, path names, and access-control names (~
names •

Five punctuation characters (11 • 11 , 11 >11 , 11 <11 , 11 *'1 , and 11 =11)

are reserved and receive special interpretation when encountered
in names in the context of the Basic File System and the
file-system commands and subroutines. While the other
punctuation characters and the ASCII control characters
are not specifically excluded, most names will in fact
consist of only the upper- and lower-case alphabetic characters,
the digits, the underscore character 11 11 , and appropriate
usages of the five special characters named above.

A~ name is written symbolically as a chain of entry
names, each name separated by 11 >11 • If the first character
of the path name is 11 >'1 , the path name is an absolute
path name; that is, it is fixed with respect to the root
directory. If the first character is not 11 >11 , then the
path name is relative to the working directory or one
of the special system directories. For example, the path
name of the directory corresponding to the box marked
1 in Figure 1 is >Z>H. If >Z>H is now the working directory,
then a path name of the directory corresponding to the
box marked 2 is L. The symbol '<' is the shorthand notation

MULTICS SYSTEM~PROGRAMMERS' MANUAL SECTION BX.8.00 PAGE 4

for the path name of the directory which contains the
1 ink or branch that WclS used to access the current working
directory. Using this notation and considering the path
taken to directory 2 as >Z>H>L. a path name for directory
3 relative to directory 2 is <<A. Considering another
path to directory 2 as >Z>A>B>C. a path name for directory
3 relative to directory 2 is <<.

An entry name is composed of one or more graphic com~nents
(not containing the reserved characters). separated~ .

11 • 11 ; the components may be referred to (in order. left-to
right) as the primar~. secondarv. etc •• components of
an entry name. Certain commands attach particular significance
to various components of an entry name; thus the command

p11 my_seg

directs the PL/I compiler to attempt the compilation of
the (ASCII) file.

my_seg.pl1

(See also 88.5.01. Reserved Segment Name Suffixes.)

A successful compilation would produce the following new
segments in the user's working directory:

rny_seg
my _seg. 1i nk
my_seg.symbol

[note no secondary component]
[linkage segment]
[symbol table and binding information]

and if the 11 1 is t 11 option was 11 on"

my_seg. 1 ist [listing segment].

If an entry name is that of a directory branch it is followed
by a ">11 • Thus the comnand:

branch newdir>

wi 11 cause the directory branch 11 newdi r11 to be created
in the working di rectot"Y whereas:

branch newdir

would create a non-directory branch.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.8.00 PAGE 5

A shorthand notation is available with certain commands.
Special ~anings are given to the character strings "*".
"**''• ''=".and 11 ==". The special command "files" generates
a list of path names or entry names defined by the use
of"*" and 11 *~' in its argument. The list is generated
by matching the argument of the "files" command with all
entry names in the specified directory of the path name.
If no directory is specified then the working directory
is used.

If the entry name contains neither "*" nor "*-Jcl' as a component.
a character for character match is made against the entry
names in the directory and if a match is found that name
is returned as the value of fil,2s. with the specified
directory to form the complete path name. If "*" is found
as a component in the argument of 11 fi les11 it wi 11 match
any component appearing in the same position of an entry
name in the directory. A list of the entry names matched
wi 11 be returned. If "**'' appears as the last component
in the argument of u files" it wi 11 match any number of
components (including 0) appearing at the end of an entry
name in the directory. "*+.4' appearing in other than the
last component is treated as an ordinary component.

Examples:

my_seg will match only my_seg

.my_seg will match · old.my_seg. PL/1

but will not match

my_seg.** wi 11 match

but will not match

new.my_seg.epl

my_seg.epl. link

very.new.my_seg

my_seg

my_seg.epl

new.my_seg

my_seg.epl.link

my_seg

my_seg.symbol

epl.link

new.my_seg

my_di r>** wi 11 match a 11 entries in the directory "my_di r".

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.8.00 PAGE 6

The corrmand "files'' should not be used as a command itself
but only as an active command (see BX.1.00) in order to
specify a list of entries to be acted upon. For example

link ([files >your_dir>xyz.**])

wi 11 create links in the user's workin~ directory to all
the entries in the directory "your _dir' whose names have
f irs t component 11 xyz" •

Note: The command "list'' uses this star convention implicitly
and one should not issue the "files" conmand with the
" 1i s t" corrmand.

Some commands that require two arguments will give special
meanings-to the character strings"=" and"==" in the
second argument. A 11 ='' appearing as a component of the
entry name in the second argument is equivalent to the
corresponding component of the entry name in the first
araument. If there is no corresponding component the
"='~" component is ignored. A "==11 appearing as the last
component in the entry name of the second argument is
equivalent to that component and all components following
it in the entry name of the first argument. A"==" appearing
as other than the last component of the entry name of
the second argument will cause all components following
it to be ignored.

Examples:

rename my_seg.epl ~.pl/1

is equivalent to

rename my_seg.epl my_seg.pl/1

rename my_seg.epl.link

is equivalent to

your_seg.=

rename my_seg.epl. link your_seg.epl. link

rename my_seg your_seg.=

and rename my_seg your_seg.==

are both equivalent to

rename my_seg your_seg

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.B.OO

rename my_seg.epl. link

is equivalent to

rename my_seg.epl. link

As an overall example consider;

your_seg.==.symbol

your_seg.epl.link

addname ([files my_seg.*]) our_seg.=

This will add a name to all entries with two component

PAGE 7

names having first component 11 my_seg11 in the working directory.
The new names wi 11 have first component 11 our _seg" and
the second component will be the same as the second component
of the original name.

An access control name (or user name) is constructed similarly
to an entry name; however, ~lways contains a fixed
number of components (this number may vary from installation
to installation) separated again by 11 • 11 • The character
strings '*' and '**' are defined as for entry-name arguments;
since the number of components is fixed, however, missing
components on the ri~ht are assumed to be '*'· The sin~le
character user name *'denotes "all users of this Mult1cs
installation".

Access Control

In attempting to access a segment a user may or may not
be successful depending upon his implicit intentions and
his permissions with respect to the segment. The set
of permissions with which a ~iven user may access the
segment pointed to by a part1cular branch is called the
mode of the branch for that user. The permissions given
the user of a particular branch are specified by an access
control list for that branch. This list is a list of
users (i.e., of sets of users) along with the corresponding
mode associated with each user. The access control list
is ordered according to the weights of the user names.
The weight of a user name is equal to the sum of the weights
of its components where the weight of the ith component
(reading from ri~ht-1Q-left) is:2~~i. The-components
designated by '* have weight o. The ordering is from
the highest to the lowest weighted user name. User names

'
with the same weight have no ordering with respect to ·
one another. For example, the following user names '

MULTICS SYSTEM-PROGRAMMfRS' MANUAL SECTION BX.8.00

Smith. proj_A. "'~

*
Jones.*

..aa

*.proj_A.aa

would be ordered

Smith. proj_A. *

Jones.*

*.proj_A.aa

..aa

* [equivalent to *.*.*]

The list is scanned from the top to discover the mode
of a user. If all access control information required
for the use of every segment in a particular directory

PAGE 8

is the same for certain users, this access control information
may be put in the common access control list of the directory.
If a user's name or class 1s not on the access control
list of the branch pointing to the segment he wishes to
use, then the common access control list is searched for
this user's narne or class, to determine his mode of access
to the segment.

The mode consists of five attributes, named Trap, Read,
Execute, Write, and Append, (sometimes abbreviated TREWA)
each of which is either on or off. Collectively they
define the ap~arent mode of the segment. The trap attribute
is examined f1rst. ~as the power to override the other
four attributes called usafe attributes. The usage attributes
indicate permission to per orm the given activity only
if the attribute is on. ·

TRAP ATTRIBUTE. When a branch has the Trap attribute
on for a given user, a trap occurs whenever that user
references that branch. That is, the procedure whose
name is given as the tr1p procedure is called. A list
of parameters may be de ined with this procedure name
and are passed as arguments to the called procedure.

,

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.8.00 PAGE 9

The return from the trap procedure specifies the effective
values of the four usage attributes which may override
thE~ original values. A user can inhibit the trap mechanism,
in which case all references to a branch by the user with
the Trap attribute on will cause an error return to the
calling procedure. (For further information see BX.8.02,
Access Control Commands, BG.B, Directory Control, and
BG.9, Access Control.)

VSAGI ATTRIBUTES. Every operation on a given segment
p es one of four intents, namely, read, execute, write

or append. The interpretation of the intent depends upon
whether the accessed branch points to a directory or a
non-directory segment.

Attribute

Read

Directory

can 11 read11 a directory
to get information about
any or all of the entries,
including access control
lists

Non-directory branch

can read the segment

Write can delete or rename
specifically named entries
and change access control
lists of specifically named
entries.

can truncate or rewrite
existing contents of
the segment without
adding to its lengthr

Append can add entries without
changing existing entries

can add to segment
without changing origi
nal contents of file.

Execute can search for specifically
named entries in the direc
tory in order to use them
or to get information about
them, excluding access
control lists.

can execute the con
tents of the segment
as a procedure.

EXAMPLE: Consider the request to delete all entries whose
names contain the secondary component GA~ in a particular
directory. The user issuing this request must have the
write attribute on in the access control list of the branch
pointing to the directory in order to delete each of the
entries in the set described. The user must also be able
to Read the directory in order to find all the entries
with this secondary component, GA~.

•

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.B.OO PAGE 10

Organization .Q.f. the file System Commands

The file system commands are described in the section
which follOWJ the calling sequence for these commands
(with examples of the kind of arguments expected) is generally

11 command entry args11 • (See a 1 so BX. 1 • 00., .I.!Jg Command
Language., and BX.2.00., The Shell.)

command is simply the name of a command

entry is an entry-name argument as discussed earlier,
and defines the group of entries to be considered
by corrmandJ entry may be a name defining a group
of entries in the current working directory; or
entry may be a path name with an entry name appended
to it defining a set of entries in the directory
pointed to by the preceding path, e.g.

<A

A>*.eplbsa

>B>**

<<T>U>TEST. p11

[entry A in the directory immediately
superior to the working directory]

[all 2 component entries with
secondary component 11 eplbsa'' in
directory A which is immediately
inferior to the working directory]

[all entries in directory B which
is inferior to the root]

[This one is left as an exercise
to the reader]

are all correct entry arguments.

are arguments which vary from command to command.
One type which is common to many file system
command calling sequences is~.

is a series of entry names separated by ''>11 or "<''
which defines a directory different from the working
directory. (See the previous discussion of path
names in this section.)

Implementation

Many commands use certain routines in common. If the
reader wishes to fully understand the implementation of
the individual file system commands he should first be
familiar with the following routines:

•

I

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BX.B.OO PAGE 11

set path BY.2.04

entryarg BY .2. 04

command_error BY .2 .03

1i s tfi les BY .2.08

equalcomp BY.2.06

ufo BY .2. 01

Notea The present convention is that entry names be 32
characters long. The file system command subroutines
call for entry names to be 33 characters long. This extra
character is to allow for a 11 >11 following the name. However.
any value less than 33 may also be used in declaring entry
names to be given to the file system commands. ·

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BX.8.00 PAGE 12

R 0 0 T

D I R E C T 0 R Y

z

z

H
A

F

13

H0
I

~J----r------t~ J

1-L---J-" "' D
""

'\

---~_-__ A __ G) "'- '\

F
B

Figure 1

B

'\
\

-----;I

c

F~L D ---

•

