
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.11.01 PAGE 1

Published: 05126167
(Supersedes: BY.11.01. 10106166)

Identification

Seterr - a procedure to write a complete error description
at the end of a user's error segment.
D. Widrig. K. J. Martin

Purpose

Seterr gathers all relevant information concerning an
error into a standard format and leaves the information
in a prearranged place. It is expected that the programmer
will use this procedure whenever his procedures wish to
convey error information to other procedures.

Usage

The call to seterr requires five arguments. These arguments
are sufficient to convey certain minimal error items (see
BY.11.00) as well as almost unlimited possibility for
expansion into more elaborate error comments. The call
and seterr's declarations for the arguments are:

call seterr (error loc. error code. error info.
extra:bit_info; extra_char_infO)J

del error_loc label,

I* pointer to the location in the offended procedure
where the error was detected *I

error_code char (*) varying,

I* a short character code to identify the error among
the possible errors signalled by the offended procedure *I.

error_info char (*) varying.

I* a helpful description of the error, possibly
including references •. Example: ••Improper arguments.
See BX. 12 .02, MSPM11 *I

extra_bit_info bit (*) varying.

I* a bit string containing supplemental information.
For example ~ procedure might want to s~ore relevant
machine cond1tions on an error. *I ·

r
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.11.01 PAGE 2

extra_char_info char (*) varying;

I* a character string containing supplemental information.
For example, a "file not found" error might include
the name(s) as supplemental information *I

Implementation

Seterr builds a structure of error information and places
it at the end of the segment error out in the process
directory. The segment error_out Ts a structure as declared
below. The element err pt~error out.space is a threaded
list of error-description structures. The element
err ptr~error out.recent is a relative pointer to the
last error-description structure. Each structure contains
a relative pointer, error.last._.Ptr, to the previous structure.
Thus, the first error-descript1on structure accessed is
the one most recently placed in error out. The declarations
for the segment, error_out, are: -

del err ptr ptr ext static init (null); .
del 1 error_out ctl (err_ptr),

2 recent bit (18),
2 space a rea ((1 3 1 07)) ;

The error-description structure is declared as:

de 1 1 ~rror ct 1 (ept r) {
2 last_ptr bit (18J,
2 attempted_delete bit (1), I* delete requested! but

not done, see
BY. 1 1. 03 *I

2 time char (9), I* provided by seterr *I
2 date char (6), I* provided by seterr *I
2 call loc, I* provided by sete'rr *I

3 sTze fixed bin (17),
3 data char (eptr~error.call loc.size),

2 error_loc, I* fTrst argument of
ca 11 *I

'3 size fixed bin (17),
! 3 data char (eptr---a.error .error _loc.size),

2 error_code, I* second arg *I
3 size fixed bin (17),
3 data char (eptr~error.error_code.size),

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.11.01 PAGE 3

2 error info,
3 size fixed bin (17),

;-:~ third arg ·kf

3 data char (eptr~rror.error info.size),
2 extra bit info, -/*fourth arg */

3 size fixed bin (17),
3 data bit (eptr~error.extra bit info.size),

2 extra char info, - /*-fifth arg */
3 size fixed bin (17),
3 data char (eptr: ..,error.extra char info.size); - -

Seterr builds the error-description structure as follows:

1. Get the current calendar time using the PL/I
built-in functions "time" and ''date".

2. Call the procedure who called (BY.12.01) to
trace back in the stacK to determine the caller
of the offended procedure; that is, the procedure
that called the procedure that called seterr.
Who_called returns a pointer, call_loc, to the
location of the call to the offended procedure.

3. Convert call loc and error loc (an argument to
seterr) to symbolic form:-

dc1 (c_seg, e_seg) char (31) var, (c,e) char (38)
var~ (c_offset, e_offset) char (6);

c_seg = getname$segment (1, call_loc); .
c_offset = substr (bin_oct (ptr$rel (call_loc)),

7, 12);
e_seg = getname$segment (1, error_loc);
e_offset = substr (bin oct (ptr$rel (call loc)),

7 12); - -
c = c_seg II" t" II c_offset;
e = e_seg II"$" lle_offset;

The function ptr$rel is described in BY.14;
getname$segment is described in 80.3.02; bin oct
is described in BY.7.01. They are declared as

dc1
dc1

dc1

ptr$rel ext entry (ptr) bit (18);
getname$segment ext entry (fixed bin (17),
char (*) varying;
bin_oct ext entry (bit(36)) char (12);

ptr)

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECT I ON BY • 1 1 • 0 1 PAGE 4

4.

5.

6.

7.

s.

9.

Calculate the length of the various character string
elements (for use in the third level size elements).
These lengths must be calculated before-allocating
the error-description structure. The length
variables calculated are the extents of third
level data elements in a dummy structure which is
similar-TO the error-description structure but
contains no self-relative extents. This dummy
structure must be used for the actual allocation
of the error-description structure. The calculations
of lengths are:

c size = length (c);
e-size = length (e);
code_size = length (error _code); ~~~ second

argument ··kf
info size = length (error info); /*.third argument */
bit_size = length (extra_bit_info); /* fourth

argument -t(I
char_size = length (extra_char_info); /*fifth

argument */

Allocate the error-description structure in the
error_out segment using the dummy structure allocation.

Fill in the elements of the allocated structure
(using the dummy structure declaration for safety).
The elements are those obtained in steps 1 - 4.

Set err ptr~rror out.recent to point to this
allocatTon~ and set-eptr~error. last ptr to point
to the previous structure. -

Set ept~error.attempted delete equal to 11 011 b.
This bit is used to indicate that some procedure
tried to delete this error-description but was not
allowed to- see BY.11.03.

On successful storage of the items of the structure~
seterr returns. If seterr is notified of errors
in any of the procedures it calls or if the structure
cannot be allocated~ it comments to the user and
signals the condition shell anchor. Clearly_ seterr
cannot call itself to announce this error as an
infinite loop might result. Upon the Shell's
regaining control through the anchor entry point~
the Shell signals an error and returns~ presumably
to the Listener. At this point the user may
examine the situation on a more leisurely basis.

