
TO:
FROM:
DATE:
SUBJ:

MS PM Distribution
Karolyn Martin
August 2 1 , 1 9 67
BY. 12.01

The write-up of who called has been altered so that when
the user wants return information from a stack frame which
also indicates a ring crossing, he is given that information.
Previously who called not only would not cross rings in
search of the desired return information, but also would
not divulge the return information at a ring crossing.

Changes are:

1) Appropriate explanations added in the first paragraph
of implementation,

2) steps 3 and 4 are interchanged to allow the information
to be returned.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.12.01 PAGE 1

Published: 08/21/67
(Supersedes: BY.12.01. 08/07/67)

Identification

who called
R. J. Sobecki

Purpose

The procedure who called provides a convenient way for
the user to obtain a pointer into the procedure which
was in control a number of Stack frames back from the
current one. The actual value of the pointer is the location
in that procedure to which control will eventually return.

Usage

ptr1 = who_called (n)J

Appropriate declarations for the above are:

del (ptr1. who called ext entry (fixed bin (17))) ptr.
n fixed bTn (17);

The procedure who_called is used to trace back n Stack
frames from its own to determine which procedure was the
caller at that Stack frame level. Who called operates
in the ring from which it is called as-do the error handling
procedures which call who_called (BY.11). It is possible
that who_called will encounter a ring-crossing Stack frame
in searching back through the Stack corresponding to who_called's
ring number. If this happens who called returns a null
pointer value in .P!r.1. If who_caTled exhausts the Stack
a null pointer value-is also returned in .Plrl. Thus.
a null pointer value may be construed to mean that there
is no Stack frame n levels back which the caller is allowed
to know about. If-who_called is called with n<O. the
absolute value of n is used. Note that if procedure alpha
calls who_called with n = o. 21r1 is a pointer into alpha.
If n = 1. 21!1 is a pointer into the caller of alpha.

Implementation

Who_called first checks UJ If n<O. the absolute value
of U is used. Who_called then proceeds to step down U
Stack frames using the back pointer stored by the Multics
save mechanism (see 80.7.02). The return information
in the nth Stack frame back from the current one (who called's)
is stored into E1!1. f1r1 then has an offset which is

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.12.01 PAGE 2

the point of return to the calling procedure (s~~e BD.7 .02).
As each successive back pointer is examined in each Stack
frame cycled through! the back pointer's op code field
(bits 19-27 of the f rst word) is tested: If the op code
field is equal to 11 000000001"b, this Stack frame is a
dummy and indicates that a ring crossin~ took place at
this point in the Stack. In this case 1f the nth stack
frame has not yet been reached who_called returns with
a null pointer as the return value of Q!rl. Note that
if the dummy frame is the nth, its return information
will be returned. Who_calTed merely refuses to search
through the next appropriate stack. Also, as each Stack
frame is cycled through, its back pointer is examined
for a null pointer. If the back pointer is null the base
of the Stack has been reached and who called returns with
a null pointer as the value of 21r1. -See figure 1 for
the layout of a Stack frame.

Who called is coded in EPLBSA because of its need to investigate
the-Stack. The following notes document the coding.

name

segdef

who_called

who_called

1) * Place the absolute value of the argument n in x2
* (index 2).

2)

3)

* x2 controls the loop which steps back [n] Stack frames.

*

* *

who_calleda save
lxl2
tpl
erx2
adlx2

Obtain who_called's Stack

next: stpsp
eapbp

Go to windup if [n] Stack
through.

sblx2
tmi

ap t 2, .,.,
next
-1 du ,
1 ,du

frame pointer

base
base, "lr

in bp~bb.

frames have been stepped

1 ,du
windup

-
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.12.01 PAGE 3

4) *
*
*
*

Transfer to nulrtn (return null pointer) if this
Stack frame is a place holder for a rin~ crossing~
(i.e., bits 19-27 of first word of prev1ous Stack
frame pointer= 000000001).

start: ldaq
cmk
tze

rngmsk
bp 1' 16
nulrtn

5) ***** Temporary code to determine if previous Stack frame
****''r pointer = "O"b, which currently means that the base
***** of the Stack has been reached.

6)

ldaq bp '1' 16
tze nu 1 rtn

* Nulptr is a Multics null pointer constant. If the
* previous Stack frame pointer (bp t 16) is a null
* pointer the base of the Stack has been reached.

ldaq
cmpaq
tze

nulptr
bp "t 16
nulrtn

7) * Set bp~b to point to the previous Stack frame.
* Transfer to the start of the loop which examines each
* Stack frame.

eapbp
tra

bp 1' 16,*
start

8) * The nulrtn identifier causes a null pointer to be
* returned as the second argument. Code at windup
* identifier causes the contents of bp--.bb (usually a
* pointer to the Stack frame [n] levels previous to
* who_called's Stack frame) to be stored in the return
* argument position of who_called.

* Constants follow:

tempd base
even

nulrtn: eapbp nulptr,*
tra return

windup: eapbp bp-f'20,*
return: stpbp ap 1' 4, *

return

* Null pointer constant used in steps 6 and s.
nulptr: oct 777777000043

oct 000001000000

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY. 12.01

* The double word constant rngmsk is used as follows:

* A register = first word (A register has bits 19-27 =
* 000000001).
* 8

PAGE 4

* 0 register = second word which causes comparison only
* between bits 19-27 of A register and bp ~ 16 in step 3.

rngmsk: oct
oct
end

000000001000
777777000777

MULTICS SYSTEM-PROGRAMMERS' MANUAL

Figure 1:

who_called's sp~b

who_called's Stack fr

s~sb setting is used
pointer to base of curr
Stack frame.

a me

to
ent

SECTION BY.12.01 PAGE 5

Stack

previous

Stack

frame

T~ base

8

regs
15
16

pointer to base of
previous Stack
frame

18
pointer to base of
next Stack frame

20
return information

'--
next

get Stack
frame

