
-- ...

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.2.09 PAGE 1

Published: 1 1/17/67

Identification

Obtain pointer to initialized "scratch" area
get_area
Charles Garman

Purpose

Get_area creates a new segment for a PL/I area of arb~trary
size~ and returns a pointer to it. The pointer, in conjunction
with a dummy based area, may then be used in PL/I allocate ·
statements; or it may be passed as an argument where an
area is required in the calling sequence (e.g., in calls
to the list_dir and status primitives of Directory Control.)

A second entry point permits the U$er to re-initialize
an area previously obtained, instead of creating a new
segment.

Usage and Implementation

del p ptr ~

n fixed bin (17);

call get_area (n~ p);

call get_area~re_use (n, p);

Before calling get_area~ the user assigns a value ton;
upon return from get_area~ 2 contains a pointer to the
base of the area.

For the call to get_area~re_use, £should be the value
previously returned by get_area proper; n~ as before,
is the size of the area~ and should have the same value
assigned by the user as in the call to get_area.

When get_area is called (at either entry)~ it performs
the following steps:

1. Calculates the minimum number of 1024-word blocks
which contains n words. If n is lar~er than
262144 (218)~ the calculation is as 1f n were
262144, but no. further notice is taken of this .
anomaly.

MUL'TICS SYSTEM-PROGRAMMERS' ~NUAL SECTION BY.2.09 PAGE 2

2. If get_area proper was called (as opposed to
get_are~re_use), a call is made to the Segment Management
Module primitive s~set_name_status (80.3.02) •• The·
arguments are such that it creates a new branch 1n the
hierarchy (in the process directory) whose maximum length
is that calculated in (1) above, the new segment is
initiated and a pointer to it is obtained. The value
of this pointer is then assigned to 2·

3. The number of blocks calculated in (1) above is multiplied
by 1024. This value is used as the "extent" of a based
adjustable area, which is passed in a call to the EPL
run-time procedure areamk •

4. After the return from arearnk_, the area has been (re-)
initialized, and get_area returns to its caller.

Errors

Errors are possible only in step (2) above, if the segment
could not b? added to the process directory, or some other.
error was detected by SMM. In this case, the error message
is recorded in the stanqard form provided by BY.11, and
the condition get_area_err is signalled. If control returns
after the signal, a value of null is assigned to 2 ... and
get_area returns to its caller. · ·

Notes

The name of the segment is a 20-character name, the concatenation
of a 15-character unique string and the constant string
'' .a rea" •

When areamk_ is called to initialize the area, only a
few words are modified to indicate the existence of the
area; the rest of the segment is left untouched. lhus,
if get_area~re_use is called, garbage previously stored
in the segment is not removed; this should not affect
any future operations with respect to allocating and freeing
of variables in the area.

The segment will normally remain in the hierarchy until
the process is terminated; if it must be deleted earlier,
the user must call smniJget_seg_status to find the pathname
and entry name for the segment, and then call either delete_entry
(BY.2.01); or an equivalent (and cleaner, from the SMM's
point of view) sequence, smm~set_del_sw followed by
s!TJYTtf terminate.

..

MULT!CS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.2.09

If a larger value of n was supplied in the call to
get_area~re_use .than in the original call to get_area,
it will not be noted; instead, at some future time in
the life of the process a bounds violation will occur
when one of the library procedures attempts to allocate
a new item in the se~ment at a point beyond the stated
maximum length as or1ginally computed. Caveat Emptor!

Example

PAGE 3

The followin9 program does not do anything in particular;
however, it 11lustrates the use of get_area.

use_a rea: proc;

del (aptr, branchp, xp) ptr,

b_area area ((32)) based (aptr),

ret_ type fixed bin(2)

some_string char (19) based (xp),

wdir ext entry returns (char (511) varying);

call get_area (16384/* a nice nu~ber */, aptr);

allocate some_string in (aptr-4b_area) set. (p);

p~some_string ='-'something or other";

call hcs_~status((wdir), p-tsome_string,

1, ret_type, ~ptr~b_area, branchp);

end use_area;

The "32" in the declaration for b_area is strictly nominal,
since the space available for allocations depends only
on the declaration in effect at the time the areamk
procedure is called (calculated in step (1) above).-

