
MULTICS SYSTEM-PFWGRAM~1ERS 1 MANUAL SECTION BY .6.03 PAGE 1

Published: 09/30/66

Identification

Syntax Analyzer for the Debugging Language
parse
D 0 B 0 \'Jagne r

Purpose

The procedure described here is used in conjunction with the
procedures evaluate and set~alue (described in BY.6.04
and BY.6.05) to evaluate expressions for the debugging
programs. The debugging expression language is described
in BX.10o00- it is essentially the PL/I expression language~
with the addition of the operators 11 ?11 and 11 $11

1 and with
a data-type 11 address~ 1 added. Par~ wi 11 be used by the
debugging programs and will probably see some use elsewhere
as well. It takes a symbolic expression and produces ·
an operator-operand tree representing the expression.
Then evaluate~ a recursive routine~ can work its way
from the root down the tree to evaluate the expression.

usage·

The ca 11 is

call parse (expression~ tree_pointer~ eq_special 1 work_space);

The declarations associated with the arguments are:

del expression char(*) varying~

del

tree_pointer ptr~

eq_special bit(1) 1

work_space area((*));

po 1 e c t 1 (p),

2 na fixed~ ;~·· number

2 ln fixed~ r· " l.e_ngth

2 type bit(1),

2 name char (p _,pole. ln);

2 arguments (p _, pole.na)

of arguments

of name */

ptr;

" -··I

pars~ makes a tree each of whose nodes (hereafter called
"poles" to distinguish them from the myriad other 11 nodes"
mentioned in this manual) has the form of the structure

MULTICS SYSTEM-PRbGRAMMERS' MANUAL SECTION BY.6.03 PAGE 2

~#above. These poles are allocated into the area
work_space. Each po1e.name is normally an identifier
found in the expression: actually a variable or function
name# the name of one of the infix operators such as
11 +11 or 11 11 11 # one of several special function names such
as 11 [minus] 11 (substituted for the unary minus-signL
or perhaps a quoted string. The corresponding pole.type
is ''0 11 b for an 11 ordinary 11 variable or constant used in
the expression# e.g. one that occurs directly after an
operator or left parenthesis and not directly before
a left parenthesis. Pole.type is 11 1 11 b for a function-name#
dimensioned variable# or operator# and in this case the
array pole.arguments contains pointers to poles for the
arguments. ·

If the argument eq_special is 11 1 11 b, then an 11 =11 operator
at the outer level of parenthesis nesting will have the
special operator 11 := 11 substituted for it, with the proper
priority (see table below). This 11 messing about 11 with
operators is necessary because it was felt to be desirable
to make the set request to Qrobe look like a PL/I assignment
statement, but the normal comparison 11 =11 has the wrong
priority for the assignment 11 =11 • See the example be 1 ow ·
for a detailed discussion of this problem.

Examples

For the expression

a*b- (C+S i n(a+b))

parse produce~ a tree which can be diagrammed as follows:

-
*/ \:t-1\ _ /"-...sin

a b c 1

+\ I b

To illustrate the problem of t~e 11 =11 operator mentioned above,
consider the PL/1 expressi6n

a = b&c

Seeing this expression out of context it is impossible
to tell what it means. If it is a subexpression of an
assignment statement# it means, 11 The logical conjunction
of the truth value of the statement a = b and the value
of the bit-string ~. 11 If on the other hand the above

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.6.03 PAGE 3

expression is the entirety of an assignment statement#
it means# "Set the value of the bit-string .9. to the conjunction
of the values of Q. and ,&.. 11

This nasty assymmetry was solved in MAD by using 11 .E. 11

as-the comparison-equal operator# and in Algol by using
11 :=" as the assignment-equal operator. The PL/I language
requires its compiler to be more clever and assign two
different priorities to the one "=" operator depending
upon context.

If parse is called to analyze the above expression with
eq_special = "O"b# then the result is

while if eq_special = 11 111 b# then result is

Con.¥ent ions

Operators recognized in expressions# in order of precedence# are:

?

....

$

.., +

* I

+ -

= =

&

I
II
:=

(unary)

> < <= >=

MULTICS SYSTEM-P~OGRAMMERS 1 MANUAL SECTION BY.6.03 PAGE 4

If an expression involves operations of the same priority 1

the binary operators "? 11 and "." take precedence on the
right. Others 1 specifically " " 1 take precedence on
the left.

(It wi 11 be remembered from BX.1 0.00 that the question
mark is an operator used in the debugging language to
indicate a restriction of table searching to symbols
in a certain block, and that the dollar-sign is used
as an operator which produces an address. The period
and right-arrow are apparently not considered to be operators
in PL/I, but this is by far the easiest way to handle
them internally. These and the rest of the operators
mentioned above have precisely the same effect as in PL/I.)

To distinguish them from their binary counterparts, the
following unary operators are replaced by special function-names:

[minus]

+ [plus J
Quotations are as in PL/I: double-quotes are used, and
a doubled double-quote inside a quoted string stands
for a single double-quote. An identifier may directly
follow the terminating double-quote character indicating
that some special interpretation is to be placed on the
quoted string. In PL/I only 11 b11 is used in this context:
others may be defined in the debugging expression language.

Where a quotation occurs in an expression, the corresponding
pole in the t·ree reQresent i ng the express ion is as fo 11 01,vs:
the dummy name· [11 11] (given here without quotation marks
to avoid further confusion) is given with two arguments,
the first an 11 ordinary 11 pole with pole.name equal to
the quoted string, and the optional second argument the
identifier (if any) following the quotation. For example
the expression

II 11abc 11 b

(which of course is not a correct expression but looks fine
to parse) would be converted to a tree of the form

/IL,
[II II J " [II II J

I /\
xyz abc b

If a list of sub-expressions in parentheses separated by
commas occurs in the expression, as in

a + (b,c,d+e)

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.6.03 PAGE 5

(this may not be allowed in the expression language but
is easily handled by parse: presumably£ would have to
be an array for it to make sense), the dummy name [()]
is used as a function name indicating a list. The tree
produced by parse for the above expression would have
the form,

Parse uses the special function-name [juxt] to indicate
that two subexpressions are juxtaposed without any operator
in between. This is needed to allow handling of the
strange syntax of the following PL/I expression:

(18) 11 0''b

which is shorthand for 11 000,000,000,000,000,000"b. This
expression would be parsed as:

[juxt J
1 8 ~ '\[II II J

01 \b
(Initial versions of ~aluat~ may not recognize such
curiosities as this one, but the debugging language,
as an interaction language, desperately needs this kind
of shorthand.)

