MULTIC SYSTEM-PR/OGRAMMERS” MANUAL SECTION BZ.6.04 PAGE 1
Published: 07/12/68

Identificatinn

BCPL-MULTICS compiler - code generation
R. H., Canaday

Purpose

This documen” discusses the code produced by the BCPL-MULTICS
compiler, Most of this document consists of descriptions

of various detai’ed aspects of the code. The reader is
presumed to e familiar with Ref(1) and with MSPM sections
BZ.6.00 through 3Z.6.03,

This document is not intended for the casual reader,

It will be helpful to refer frequently to an EPLBSA listing
produced by the BCPL compiler (such as is provided in

the appendix) while reading the following discussions,

Summary

This document is subdivided as follows:

1) Initialization

Unlike EPL, BCPL programs cannot always be initialized
on first reference, For example, a BCPL procedure
cannot communicate through the global vector with
procedures in other segments unless those segments have
been initialized.

2) Stack mahggement

Since BCPL does not use a standard MULTICS call-save-
return for intercommunication, a separate BCPL stack

is set up and maintained, The programmer has a great
deal of (optional) control over the stack and global

vector,

3) call-Save=Return

Intercommunication between BCPL procedures is described,

4) Communication with EPL Procedures

Run-time routines have been provided which make
possible recursive calls from EPL to BCPL procedures
and vice-versa,

MULTICS SYSTEM-PR/OGRAMMERS * MANUAL SECTION BZ.6,04 PAGE 2

5) How to read EPLBSA produced by the BCPL compiler.

The: 1isting rom a compilation is not easy to correlate
wiih the souice code which produced it. However, the
de’ails given in this section should make the task
sorewhat easier,

Initialization

A BCPL procedure segment name is the same as the name
of the CTSS »nr MULTICS source file which produced it.
Unlike (PL, the segment name has nothing to do with the
name of any procedure within the segment,

A BCPL procedure segm:nt should be initialized before
it is executad, The initialization of a segment named
XXX ? can be done either by calling (from EPL) the
initialization en%ry point “XXX$XXX* [e.g., “call XXX*]
or by calling (from EPL) a procedure within the segment
[e.g., "call XXX$/"R0O2 (argl,arg2,...)].

Example:

A program consists of three BCPL procedure segments named
“ASEG?, “BSE5?, and “CSEG?, The entry point is the procedure
*PRO3? in “B5EG’. There are no arguments, The EPL driver
would be as follows:

STLRT . PROC ();
CALL ASEG;
CALL CSEG;
CALL BSEG$PRO3;
END;

In BCPL there are two forms of static storage which must

be initialized: *global’ and “local’, Local static storage
is kept in the linkage segment and is truly static - like
EPL static it is initialized only once in a given process,
Repeated calls to initialize it will have no effect.

A switch word, "INITSW", in each linkage segment is set to zero
to indicate that initialization has been done, Global
static, on the other hand, is kept in the “global vector”
(see the next section, Global and §t§ck Management, for
details on the allocation of the global vector)., Global
static can be reinitialized repeatedly, Calling a BCPL
procedure (“call BSEG{PRO3?) will initialize global static
only if it has never been initialized for the segment

BSEG (i.,e,, if INITSW # 0), but calling the initialization
entry point (“cal’ BSEG’) will always reinitialize global
static for BSEG, This is used to prevent interference
between logically separate BCPL programs running in the
same process,

MULTICS SYSTEM-PROGRAMMERS* MANUAL SECTION BZ.6.04 PAGE 3

Segment “BCPLGL” contains the routines which initialize
static storage ard which accept EPL calls to BCPL procedures
and do argument conversion, The entry points are:

“BCPLGLYGINIT” called automatically by BCPL procedures
to initjialize global static and, if necessary, local
static.

*BCPLGLYGSETU” called automatically by BCPL procedures
to do stack setup and argument conversion,

There are also other entry points which are described
in later sections of this document,

Glchal and Stack Management

Since BCPL dces not conform to MULTICS standards in its
stack management, it cannot use “SP“to point to its current
stack frame, “SF’ always points to a valid MULTICS stack
frame, While BCPL procedures are in execution, “SP? points
to a stack frame immediately inferior to (called by) that
of the caller of BCPL, which contains only the header
information and two words of diagnostic information:

SP|32 contains an ITS pair which identifies the BCPL procedure
segment which was called from EPL, and SP|34 contains

an ITS pair which points to the giobal vector and the

stack frame cof the first BCPL procedure that was called,

The BCPL. global vector and stack are contained in a segment
which may be supplied by the caller or routines superior

to it, or which will be created during BCPL initialization

if not supplied. BCPL uses "unique_chars" and "smm$set_name_
status" to create a segment of 250K words. The global
vector, which has a standard length of 2048 words, always
starts at word 0 of the segment, The stack area begins
immediately after the last word of the global vector,

During execution of a BCPL procedure the address register
pairs are used as follows:

AP - points to current BCPL stack frame
(AB points to global vector)

BP - gereral usage

SP - MULTICS stack frame

LP - linkage segment

The registers are always paired, AB can be used for the
global vector because the global vector always begins
at word 0 of the segment containing the BCPL stack frames,

MULTICS SYSTEM-PROGRAMMERS” MANUAL SECTION BZ.6.04 PAGE 4

BCPL stack segmenf?. management centers around a pointer

called the "Current Start of Stack'" pointer, abbreviated

"CSS", This pointer is kept in static storage and is

accessed and changed through four routines., Routine BCPLGL$SETAP
can be called from EPL. to set CSS to any address, including

null, Routine BCFLGLYLOOKAP returns in its argument the

current valuz of (SS, Both entries have one argument,

of type “PTR”,

The third routine, §gﬁL§L§G§EI¥, is not callable from

EPL, It is invoked auvtomatically whenever an EPL procedure
calls a BCPL procedure:, Its function is to do EPL-BCPL
argument conversicn and to load the address pair AB-AP
with the value of CSS,

The fourth routine is the BCPL-callable procedure “Call’,
accessed through ¢lobal vector location 14, Its effect

on CSS is to save the old value of CSS and reload CSS

with a pointer to the first free word after the current

BCPL stack frame, “C&ll1” then calls the desired EPL procedure,
On return the current value of CSS is discarded and the

saved value is restored,

The commonest use of these routines is to make sure that
two independent BCPL programs (sets of procedures) running
in the same process dc not conflict in their use of the
global vector, The simplest way to guarantee that a BCPL
program will be executed with a clean global-and-stack
segment is to issue the call

CALL BCPLGL$SETAP (NULL)

before initializing any BCPL procedure segment in the
program, Note that gny “CALL BCPLGL$SETAP” issued after
the initialization of a BCPL procedure segment will invalidate
that initialization, The only exception to this is that
if a BCPL procedure calls an EPL procedure, nothing done
by that procedure or any inferior procedure can affect
that value of CSS which will be restored when the EPL
procedure returns to the BCPL procedure, In fact, a good
way of insuring that the global vector will be unchanged
by (and invisible to) inferior procedures is to issue

the call

CALL BCPLGL$SETAP (NULL);
in any EPL procedure called from a BCPL procedure,

In the case of a BCPL-to-EPL-to-BCPL calling chain in

which the inferior BCPL procedure should reference the)
same global vector as the superior one, the superior routine
can protect itself from changes made by the inferior routine
by issuing tre BCPL calls:

MULTICS SYSTEM-PROGRAMMERS® MANUAL ~ SECTION BZ.6.04 PAGE 5
Save ()

before calling the EPL routine, and
Restore ()

on return, The effect of “Save ()° and “Restore ()°
is to save and restore the global vector in a pushdown
stack (which is kept in the MULTICS stack), The call
“Save ()7 does not change the contents of the global
vector. “Save ()’ and “Restore ()“ can be used not
only to bracket & call to an EPL procedure, but in fact
at any point in & BCPL procedure,

The routines “BCFLGL$SETSP(PTR)” “BCPLGL$LOOKAP(PTR)?,

*Save ()7, and “Restore ()° give the programmer complete
control over glokal static storage., However, he has very
little contrul over local static storage., Thus in the
MULTICS environment it may be useful to use portions of

the global vector for static storage. However, be warned
that these routines for controlling global static may

be dependent on the MULTICS environment, Thus coding
dependent on them may not be machine independent.*

Call-Save-Return

The BCPL stack frame header consists of 8 words, containing
the following information:

'

WORD CONTENTS STOR Y
0-1 RETURN ITS SAVE
2-3 LF FOR CURRENT PROCEDURE SAVE

L UNUSED

5 UPPER LEFT-HAND-SIDE FLAG CALL

5 LOWER ARGUMENT COUNT CALL
6-7 AP FOR SUPERIOR PROCEDURE SAVE

The code procduced by the compiler for call-save-return

in procedure "PRCCED" is as follows., In this case the

?ew stack frame will start at the nth word of the previous
rame,

CALL

LDA m,DL # arguments
STA AF|n+5

EAX2 n v
LDA CALLADDRESS A BCPL ADDRESS
EABBB 0,AU

TSBBP BE|0,AP

* The CTSS (&nd GECOS) environments act as if a
.“BCPLGL$SETAP(NULL)” call were issued at every return to
command leval (between activities),

MULTICS SYSTEM=-PF.OGR/AMMERS® MANUAL SECTION BZ.6.04 PAGE 6

SAVE in the linkage segment
CALLADDRESS: EAPLP NULL
EAX7 STAT=%*, IC Set LP
~TRA <PROCED> | SV The procedure

Save Sequence

in the procedure segment (“PROCED*)

SV: NUJLL

STPAP LP|6,2 old AP

STPBP LP|O . return point

EAPAP LP|O,2 v new AP

STPLP AP|2 new LP

SZN LPIINITSW zero if static has

been initialized

TZE c,7 enter procedure body
INIT: NULL initialization procedure
RETURN

EAPAP AP|6,* old AP

EAPLP AP|2,* old LP

TRA AP|O,* return

Communication with EFPL Procedures

- As has previously been stated, communication between BCPL
procedures is by means of a special calling sequence rather
than the standard MULTICS call, Some of the significant
diﬁ?erences between a BCPL call and a standard MULTICS

call are:

13 BCPL arguments do not have dope

2 BCPL arguments are by value,

3) The BCPL stack frame header is 8 words long rather
than 32,

4) Registers are not saved and restored across a call,
except for AB-AP, LB-LP, and SB-SP,

5) SE=SP is not used, The stack pointer is AB-AP,

6) The address of the callee is stored in a variable,

The link-by-name features of MULTICS are not used, Obviously,
despite these differences, a mechanism must exist to permit
calls from EPL procedures to BCPL procedures and vice-versa,

In order to enable EPL procedures to call BCPL procedures
the BCPL compiler generates two entry points for each
BCPL procedure., One of these is used in BCPL-to-BCPL calls

MULTICS SYSTEM=-PF.OGRAMMERS® MANUAL SECTION BZ.6.04 PAGE 7

to the procecdure, The other entry point, labeled with

the name of the procedure, is callable from EPL, This entry
point invokes the routine “BCPLGL$GSETU® which transforms

the call into BCPL format and generates a BCPL ar?ument

1ist from the EPL argument list, Dope and specifiers

are not interpreted, The addresses in the EPL arglist

are translated into BCPL addresses and placed in the BCPL
arglist, Dope and specifiers can be interpreted by the

callee as desired, Two functions exist to aid in interpreting
arguments, These are “MtoBaddr(X)‘ which accepts the

(BCPL) address of an ITS pair and returns the value of

the ITS pair as a BCPL address, and ‘MtoBstrin?(X,V)'

which accepts the (BCPL) address “X* of a MULTICS string
specifier and places a corresponding BCPL string in vector V<,

Calling from a BCPL procedure to an EPL procedure is done
using the two library routines “Getadr® and “Call”® (cf

MSFM BZ.6,02}), A1l of the arguments of “Call’ are addresses,
The first argument is the address to be called, The remaining
addresses will be converted to ITS pairs and stored in

an EPL-format argument list, If any arguments require

dope and specifiers, they must be generated by the caller
before calling “Call’, Two library functions, “ITS® and
*BtoMstring”®, are provided for this purpose, Function

*17S’ creates an ITS pair from a BCPL address, Function
“BtoMstring”® creates a fixed length MULTICS character

string from a BCPL string, MSPM BZ.6,02 contains more

detail on “ITS” and “BtoMstring”.

The only complicated part of the method for calling between
EPL and BCPL procedures is the stack management, which

was described in detail above, In general it is possible
to call freely between EPL procedures and BCPL procedures
if one remembers that in the absence of calls to
“BCPLGLY$SETAP?, there will not be any conflicts in stack
usage, It is also worth noting that the EPL call

CALL BCPLGL$SETAP (NULL);

is always a safe way of guaranteeing that BCPL programs
which precede and follow the call will be independent.

0 “PLBSA oduced by t CPL compiler

The BCPL compiler produces some comments to help correlate
the EPLBSA code with the source program: the source-program
name of each variable is given at the point it is declared;
the source name of each function and variable labels the
corresponding entry point; and each call to a function

or routine is labelled, at its occurrence in the code,

with the source name of the callee,.

MULTICS SYSTEM-PROGRAAMERS* MANUAL SECTION BZ.6.,04 PAGE 8

Register usage by the code generators is as follows:

g used for addresses or computations

AQ used for floating point, multiply, and divide

X3-xh always used as a pair - x4 = uppper half word,
X3 = lower ' ,

X5=x6 a pair like x3-xu

x2 contains the stack increment (frame size)
during a call

x0 us2zd with BB for indirection

x1,x7 unused

Multiple location counters are used, as follows:

MA INC procedire segment main counter

LASTC procecdure segment builtin subroutines

STATC linkagz segment static storage to be
initialized

LSTATC linkage segment static storage not needing
initialization

IGL@BC procedure segment data to be put in the
global vector

The next part of this discussion consists of examples
of BCPL statements and the code generated by them, together
with a brief description where necessary.

Example A declarations

let a,b,c = 0,0,5 STZ AP|6+10 "Declare a
STZ AP|6+11 "Declare b
LDA 5,DL
STA AP|6+12 "Declare c

let v = vec 100 EAPBP AP|6+1L

EAX3 AP|6+14
SBRBB AP|[6+13
SXL3 AP|6+13 "Declare v

MULTICS SYSTEM-PROGRAMMERS® MANUAL SECTION BZ.6.,04 PAGE 9

This is an example of a very common operation, namely
address generation, The variable “v* is at location 19
of the stack frame, The vector begins at location 20,
*1¢% is written “6+13“ because of a historical carry-over
from GMLP,

Example B assignments
a :=v[20] LDA AP|6+13 v
- EABBB 0,AU
LDA BB|20,AL
STA AP|6+10 a

This is an example of using an address. Addresses may
be used from registers A or Q, or from register pairs
x3=xL4 or x5=-x6,

v[20] := b[a] LDQ AP|6+13 v
LDA AP|6+11 b
ADA AP|6+10 a
EABBB 0,AU
LDA BB|O,AL
EABBB 0,QU
STA BB|0,QL

Example C address arithmetic

v[0] := v[20] * a[b+c]
LDA AP|6+10 a
ADA AP|6+11 b
ADA AP|6+12 C
EAX4 O,AU
EAX3 0,AL
LDQ AP|6+13 v
EABBB 0,QU
LDQ BBJ|20,0L v[20]
EABBB O, L
MPY BB|O,3 alb+c]
EABBB AP|6+13 v
STA BB|O,8

Example D
a string (does not need initialization)

USE LSTATC

L5: NULL
ocT 005141142143
oCcT 144145000000

MULTICS SYSTZIM-PR/OGRAMMERS® MANUAL - SECTION BZ.6.04 PAGE

L6:
L7

an addrzss (:his will be transformed into a BCPL
adiress which will be stored in place of the EAPBP)

Us’ STATC

NU%L.L .

EATBP LPIL8 1label in linkage seg.
NU..L .
EAPBP AP|L9 label in procedure seg,

an addrzss to go in global vector location 20

USE. IGL@BC
EAPBP : AB|L10 Tlabel in procedure seg.
ZEH.O 0,20

10

A

|
i

JCPL invoked through Mrgedt
rontrol Card = 014 bcpl test99

- e~ LA U e e N -

0

12
13
14
15

// This is a demonatration of BEPL code qeneration,
// The program dced not do anything and canmot be executed,

glebal $(Demonstration}100; Functiont101 §)
let Demonstratlon (A1:22) = valef &1
let a,p,c = 0
let v = vge 1oo
a = v[20]
v[20] 1= ¥la)
v[0) t= v[20) * a[b+ec]
€ 3= "This is a stping”
a 1= Funeg¢ion(a, A1)
Labelt
lLabel i= label + A2
resultis A1 / 1abel $§)

XIAN3ddV

TVNNYW . SYIWWYHOO0Hd ~WILSAS SOTLINWN

bl 39vd H©0°9°Z8 NOILI3S

12564 03 07+09=68 QUTPUT FROM EPLBSA ASSEMBLY

LEPLBSA, PACKAGE 5 VERSION, 15 MAY 68,
.EPLBSA, BEGIN COMPILATION,

«EPLBSA, ASSEMBLY OF FILE S$TEST998, SEGMENT NAME IS TEST99

600000 ’
NAME TEST99

1
000000 2
800000 3 FILE TEST99
s 000000 000032 m LINK SAVER,CTEST99>"SV
5 VSE LASTC
000114 6 LASTS NULL
7 USE LSTATC
0A 000016 000121 0000 00 8 INITSW: ARG INIT
9 USE STATC
10 EIGHT
AR 000013 000000 000000 19 BSS STAT,H "TEMP STORAGE
12 USE IGLOBC
000110 13 IGLOB} HULL
14 USE MAINC
000000 15 STARTS FULL
16 JOIN /LINK/STATC,LSTATC/TEXT/I6LOBC,LASTC
000000 000000 17 ENTRY TEST99
600000 18 TEST993 NULL
AR 000000 6 00022 3529 20 19 SAVE
AA 000001 2 00020 6521 00
AR 000002 2 00040 3524 00
AA 000003 2 77762 2524 00
AR 000004 2 77740 33294 00
AN 000005 6 00032 2509 00
OA 000006 000121 7970 00 20 TSX7 INIT
AL 000007 6 00020 1731 20 21 RETURN
AR 000010 6 00010 0734 00
AL 000011 6 00024 6104 00
OA 600012 000910 7106 00 22 TRA L2

TYNNWW ., SUIWATHOOYd =WILSAS SOILINW

ZL 39vd H0°9°Z8 NOILD3S

OA

OR

LA

OA
A

AA
AA
AR
AA
AA
AA
AA
AA
AA
AA
AR
AA
AA
Al
AR
AR
AA
AA
AA
AA
AA
AA
AA
AA

000013
000014

0000144
000014
000014
000014

anaealn
56G6Gs5s

000014

800017
000017
000020
000021

000015
000018
800046
800017
000020
000021
000022
000023
000024
000025
000026
000027
000030
000031
000032

000033

000034
000035
000036
000037
0000k0
000041
000042
000043
000Uy

000110 7106 00

000014

000127 7070 00

777764 3700 04
000015 62790 00
¢ 00032 7104 20

00012 4301 00
00013 4501 00
00014 4501 00
00016 3539 00
00016 6234 00
00015 5434 00
00015 4434 00
00015 2354 00
000000 3130 09
3 00024 2354 05
0 00012 755¢ 00
0 00015 2364 00
0 00013 2351 00
6 00012 0754 00
000000 3130 01
3 00000 2354 05
000000 3139 02
3 00024 7554 06
0 00015 2359 00
000000 6240 09
000000 6230 05
0 00012 2369 00
0 00013 0769 00
0 00014 0764 00

DOODODDOOOD

TRA
"

* MAX STACK USED =
SEGRE?
ENTRY
DEMANSTRATION?
T5x7
UsSE
LUt NULL
EAPLP
EAX?
IEA
USE
LUAS NULL
512
ST
STZ
EAPBB
EAX3
SBERBB
SXYL3
LDA
EABBB
LDA
STA
10Q
LDA
ADA
EABBB
LDA
EABBB
S5TA
LBA
EAXH
EAX3
LDQ
ARQ
ADQ

13

0
TEST99,DEMONSTRATION
DEMONSTRATION
LU B.8
BXSETV
LSTATC

STAT=%=8,IC
LUA
LESSAVER,®

MAINC

AP®6+44 "DECLARE)
AP®645 "BECLARE B
AP*6+6 ®PECLARE C
AP®6+8 :
AP*6+8

AP*6+47

AP¥6+7 "PBECLARE V
AP*64+7

0,AV

BBY20,AL

AP*6+U

AP*647

AP*6+5

AP®6+4

04AU

BB*0,AL

0,QU

BB*20,9L

AP*6+7

0,AU

0,AL

AP*6+4

AP*6eS

AP*646

TVNINYW , SUBWWVHIO(A =K3LSAS SOILTNW

¢4 39vd H©0°9°Z8 NOILI3S

AR
AA
AA

AA
AA

AA
AA
AA
kr
§A
AA
AA
RA
AA
RAA
AA
AM

AA
AA
AA
AR
AA
AA
AA

Ua
AA
LA

000045

000046
000047
000050
000051
000052
000053
000054
000055
000058
000057
000060
000061
000062
000063
000064
000065
000066
000067
000070
000071
000072
000073
000074
000075
000076
000076
000077
000100

000000
3 00000
000000
3 00024
0 00015
000000
00045
00000
00022
G062z
00014
00014
00042
00474
00010
00175
000002
0 00171
000164
1 00145
000000
00000
00000
00000
00012

OO F WO

D aWw

00014
00011
00014

[s I~

3139
2361
3139
402
2201
3130

Tmaa
I &¥ i

7564
35314

€224

5439
b434
23514
7554
23519
755 4
2350
7554
6220
23514
3139
3579
2721
2351
7554

2351
07514
7551

§2
63
64
66
67

£

5

69
70
71
72
73
74
78
76
77
78
79
80
81
82
83
84

86
87
88
B9
90

L7

EABBB
1pQ
EABBB
MPY
LDX0
EABBB

1yio
STQ
EAPBB
TAX3
SBRBEB
SXL3
LDA
STA
LDA
STA
LDA
STA
EAX2
LDA
EABBB
STCD
TSBBP
LDA
STA
NULL
LDA
ADA
STA

o
-
o

AP*A+7
BB*0,0
LP*L6
LP™L6
AP*6+6
AP*6+6
AP*6+4
AP*6+118
AP*6+2
AP*6+119
2,01
AP*6+115
6+110
AB*401
0sAU
ARP*Q
BB*0,AL
AB®0
AP®6+4

LP*L5
AP"6+3
LP®*LS

FORM ADDRESS

"eALL FUNCTION

¥

¥ NOTE: CALL,SAVE, AND RETURN AS SHOww HERE

BECAUSE OF A HARDWARE Buée TN THE
"TsBBP" 1wsTARUCTZON |,

Uus kE

J

HEQTZ:D”

J

TVINVW . SYIWWYHOOUL -WILSAS € ITLINN |

hl 39vd ©0°9°Z89 NOILD3S

. e

)

12564 03

Ap
4a

AA
0OA

AR
AR
AR
AR

AR

AA
AA
Al

4a
AA
AA
AR

AR

AA
AR
AA
4a
AA

07=09=68

000101
000102
000103
000104

900022
000022
000023
650024
000025
000026

000014
000014

000105
000105
000106
000107
000110
600110
000110
000110

000110
000110
000111
000112
000113

000015

000114
000114
000115
000116
000117
000120
000121

)

OUTPUT FROM EPLBSA ASSEMALY

0 00010 2361 00
4 00014 5064 00

1

[« e el

o
0

0
4

00000 7564 00
000108 7100 00

020124 150151
163040 151163
OhO1U41 QHO163
16L162 181156
147000 000000

00076 3524 00

00006 3501 20
00002 3704 20
00000 6101 00

00017 35214 00
000000 000144
000000 000000
000000 000000

000000 3520 00

00006 2501 12
00000 3501 12
00002 6501 00
00016 2344 00
000000 6000 17

91
92
93
94
93
96
97
28
99
100
101
102
103

104

105
106
107
108
109
110
111
112
113
114
118
116
117
148
119
120
121
122
123
124
125
126
127

128

129

L6

L514

L8

L3;
L]

LnQ
DIV
s$TqQ
TRA
USE
NULYL
0eT
o€cT
ocT
0eT
oCcT
USE
NULYL
EAPBP
USE
NULL
EAPAP
EAPLP
RTCD
NULL

" MAX STACK USED =

L2

LR

INITS

USE
NULL
EAPBP
ZERO
ZERO
ZERO
USE
EAPBP 0
USE
NULL
STPAP
EAPAP
STPLP
SZN
TZE
NULL

AP*6+2
LP*LS
AB*Q
L8
LSTAIC

020124150151
163040151163
001490401963

164462451156

147000000000
STATC

AB*L7
MAINC

AP®6,%
AP*2,*
ARP*0

128
IGLOBC

LP*LY
0,100

STATC
LASTC

AP*6,2
AP*0,2
AP*2
LP*INITSW
0,7

TVNNYW , SHIWWVEO0YUd =WILSAS SOTLINW

Gl 39vd H©0°9°Z8 NOILI3S

A 000121 & 00016 2354 00 130
4A 000122 U 00016 4504 00 131
AA 000923 6 00000 6509 00 132
0A 000124 000110 6260 00 133
2h 000125 0000148 6250 00 134
4A 500126 4 00050 2721 20 138

ER]

000127 %S

AR 000127 6 00022 3529 20 137
AL 000130 2 00020 6521 00
AL 000431 2 00040 35294 G0
AN 000132 2 77762 2521 00
AL 000433 2 77740 3324 00
A% 00GI36 & 00032 250§ 5O
0K 600135 000144 3520 00 138
AL 600136 6 00000 6504 00 139
4h 000137 & 00052 7404 20 140

161

NO LITERALS
ENTRY POINTS AND SEGDEF NAMES

SA 000140 000006 000000
22 000141 000044 000001
AA 000142 015 104 145 155 442
AA 000143 4157 4156 163 464
AA 000144 162 149 464 151
AA 000145 457 156 000 000
SA 000146 000012 000000
2h 000147 000036 000001
AA 000150 006 464 145 4163 143
AA 0004151 - 164 071 071 000
SA 000452 000020 000000
6A 000183 000000 000002
AA 000134 O14 163 171 155 104
AA 000155 142 459 454 137
AL 000156 464 141 142 415U
AL 000157 145 000 000 000
SA 000160 000025 000000
6A 000161 000030 000002
AR 000162 010 462 145 154 145
AA 000163 137 46U 145 170
AL 000164 164 000 000 000
5A 000165 000032 000000

J

LDA
12
STPLP
EAXGE
IAXS
TSBBP

Wy
ER R

SAVE

s
e

&
A

1 %
L4
-

EAPBRR.
STPL?

IRA
EXND

DEMONSTRATION

TEST99

SYMBOL\TABLE

REL\TEXT

LP*"INITSW
LP*INITSW

$P%0

IGLOB

STAT+U
<BCPLGL>"“[GINIT)

Sy
SP*0
<BCPLGL>"[GSETVU]

RETURN BY TRA

™

.‘91 39%d 10°9°Z8 NOILD3IS TWNNWW - SYIWWVHO0Ud ~WILSAS SIILINW

BB"0,7

>~

)

AL 000467 010 162 145 154
AL 000170 137 154 151 156
AL 000471 153 000 0600 000
5A 000472 000037 000000
AL 000174 012 162 145 154
AM 000175 137 163 171 155
AL 000176 142 157 154 000
AR 000177 000000 000000

EXTERNAL NAMES
AL 000200 005 147 163 445
AM 55525% 384 5865 600 000
AL 000202 005 447 159 156
AA 000203 4151 164 000 000
AN 000204 006 142 143 160
AL 000205 154 147 154 000

NO TRAP POINTER WORDS

TYPE=PAIR BLOCKS

AR 000206 000004

000000
55 000207 000044 000040

0
00

146

147

148

149
150

REL\LINK

REL\SYMNBOL

GSETV

GINIT
BCPLGL

TVNANYW ., SYIWWTHOCOUd =W3ILSAS SIILINW

LL 39vd h0°9°Z8 NOILD3S

