
,..

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.01 PAGE 1

Published: 08/16/68

Identification

Implementation
B. P. Goldberg, I. B. Goldberg

Chapter 1.

I NTROOUCTI ON

A. PSEUDO-COMPUTER

Pops are machine instructions for a pseudo-computer simulated

on the GE-645. This pseudo-computer was designed specifically

for writing compilers and assemblers. Each pop corresponds to

a GE-645 machine language subroutine. In order to execute a

pops language program, an interpreter interprets each pop

and calls the proper subroutine.

This process involves the following segments:

Procedure segment (pure)-- Contains the compiler or
assembler logic written in
pops language

Interpreter segment (pure) -- Contains the interpreter

Data segment (impure) -- Contains the memory and registers
of the pseudo-computer

Input segment (pure) -- Contains the source procedure to
compile or assemble

List segment (impure) -- Contains object listing

Error segment (impure) -- Contains error messages

Text segment (impure)

Linkage segment (impure)

Symbol segment (impure)

For object procedure

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.01 PAGE 2

Each segment contains up to 262144 36-bit words. The parenthetical

remarks "pure" and "impure" apply only when the pops interpreter

is simulating the pops procedure.

Figure 1 illustrates the relationship between the interpreter.

procedure. and data segments:

Interpreter segment

Procedure segment

Data segment associated
with assembly or
compilation

Figure 1. Relationships Between Segments in
Pseudo-Computer

r MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.01 PAGE 3

B. POPS LANGUAGE

1. Pop Format

A pop is a 36-bit word consisting of two 18-bit halves~ the

operand and the pop number.

In the FL/I syntax used in this manual~ the pop name is

a function~ and its operand is the first argument.

Arguments are enclosed by parentheses and separated by

commas. (See Paragraph B.2 for an example of the use of

two arguments.) Comments are enclosed in quotes.

CAUTION:· A semicolon, quote, or tilde in a comment must

be preceded by a tilde (octal 176). For simplicity~

this manual does no~ use these three characters

in corrrnents.

EXAMPLE:

POP: zer(varsiz)

Assume that VARSIZ is at location 3237 in the data segment.

Operand Pop Number
(VARSIZ) bZER)
I 003237 I oo 2741

(These are octal numbers)

0 18 35

Each pop number represents a pop name. The 250 pop names

are listed in Figure 2. The pop number of each pop is

determined by an octal addition of the appropriate row and

column number; e.g.~ ZER = 270+4.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.01 PAGE 4

fliLI or POP rUNIII! ••· r • 215 ·- r • 512.

+ 0 1 2 3 ,.
' • ' 000 8011' USII'1 US!ll2 Ul!ll US !lilA VS!I~ lDB ll'Df'

010 ADD If ADI U>Si liD UlDI AI DIP All ltUf
020 1'0 cc&r· ::!AW C!.OlD: 1:!11' CMTG C:I!S COl
030 C:ONA COIDl :ONIA CJY CPfJ CPtG er1a CPYI
040 CPYXP DO 0.1 D3 D3 D4 B5 De a
050 rJLOUt ottrl DNX rJIU DOPIL DVD lAW .,.
060 !18 INS I SMEI !:101 I RIP !liiCC llll.C liS
070 !liSP !:XE: !XI'l' 111' IX!% IXTif rAe'l' PIX

100 F%1 rixD· !'IXS PL!D rx.rs rxr>o rxes GOI
110 GO!IP INC INS %1!1 fNS2 ZEID Ill% fiS!J
120 JMP JP!PJ lNX Jll LIN!Clf tOlD MZ.f ftt!l

. 130 Mtrst MODI !'lOONS: M~DJ) !1000 ftOV MOVr Pl~Vf

. 140 ftiK JG'l' NGTS N~l' IXCH 1Ulc:fl •x•t 1rsrc
150 lUST :s ONE ~PN 01 ORK!lf O!S OJliP PlDD
160 PlDDP PAIC PAKl PI:! ra:TP I'D IS ;DYD Pover
170 PLG PLXS PLXM PLXP PftLT PMt'l'C Pft!.'I'P JOI

""' 200 PO!IP POl! POPlfjP PlD PI! ••Is .•. , PIJ!C
210 CPYGI PRU PIW PIWX fSlV fSUB PSUBP trer
220 PTC:TP prr PTPP PlfCf ICH ICHA ICKJ ICIC!l
230 REt u:nov !tNUM c, •• COlli ISJCY ISKfl ISV
240 ISVM !S'f RSYl llYN Jill JAJCAJ I WilD sas
250 SBSP SCA !CAP ' seN !CHl 5CICY ICKYl ·=·' 260 S!Q S!Qf S!V S!VS I fAt IGT SG!r SLT

270 Sl.TP Sl'l! SM!1 su:2 Ill SM!I SIU::tt IMI;

300 SNAP SNA'C !NZ SIZS 1011'1 saeH SIC:tiP t!IIJ
310 SIC:HI SRCIIICe ssr<:r SIICrl ssr SSJA I 'I' IV 11'01

320 STOlt SUI SWAP llfi; 1SICM 'rYMr ft"T U!.Oll)
330 UliG UNX ~0 W1 112 W3 "" W5
340 WBIN WRIC1, ifiKI x:H ICLI XLJS XlfDW XMIP
350 XliV XKPP lCKPV xwrr llf!V Z!G r~trr XMVi
360 rtT !X%!P A5 ,,. 13),2 11 10
370 STU srut

+ 0 1 2 l " s • '
F lgure 2

Table of Pop Numbers

r MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.01 PAGE 5

The operand is interpreted in one of the following ways:

1 • As the offset of another pop (relative to location
in the procedure segment)

2. As the offset of a data word (relative to location
in the data segment)

3. As a 1i tera 1 number

4. As another pop number (See Chapter 2, Paragraph G).

The operand may also be ignored. See the example of NXCH

below for format.

0

0

The pop number determines how the operand is to be interpreted.

This is illustrated in the following chart:

Interpretation
Pop Number Pop Name of Operand Example

274 ZER Address in data zer(varsiz)
segment

120 JMP Address in pro- jmp(init)
cedure segment

144 NXCH Ignored nxch()

022 CEAW Litera 1 number ceaw(4096)

Notez nxch() is equivalent to nxch(O)

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.01 PAGE 6

2. True/False Indicator

The pseudo-computer has a true/false indicator. There is an

option to execute a pop only if the indicator is set true or

only if the indicator is set false. In source language~ the

T/F tag specifies this option. T and F have values that are

added to the pop number. These values are derived as follows:

F = 6 + the number of pops

T = 2 * F

Since there are currently 250 pops~ the current values of T

and F are:

F = 256 decimal = 400 octal

T = 512 decimal = 1000 octal

The T/F tag must always be preceded by a comma. This is

true even if the operand field is null~ e.g.# nxch(#t).

Notez nxch(#t) is equivalent to nxch(O#t)

EXAMPLES:

Pop: zer(sign)

Pop number: 274

C. PROCEDURE SEGMENT

1. Reserved Locations

Pop: zer(sign~t)

Pop number: 1274

Pop: zer(sign~f)

Pop numbers 674

Locations 0 to 10 (decimal) in the procedure segment are

reserved for the following purposes:

Dec. location

0 Contains the pop jmp(fstpop)~ where FSTPOP

is the offset of the first pop to be executed

•

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.01

Dec. location

PAGE 7

1

2

3

4

5

6

7

8

9

10

Contains the pop executed on 11 advance to

next symbo 111 (See SSYA and RSYA pops)

Contains the pop executed on end-of-fl le

(See NXCH pop)

Upper half contains offset of USER1

routine 1 lower half contains 0 (See Chapter

2, Paragraph X.)

Upper half contains offset of USER2 routine,

lower half contains 0

Upper ha,lf contains offset of USER3 routine,

lower half contains 0

Upper half contains offset of USER4 routine,

lower half contains 0

Upper half contains offset of USERS routine,

lower half contains 0

Contains pop executed on function buffer

overflow (See Appendix B)

Currently not used, but reserved for possible

future use

Contains pop executed on concatenation

overflow (See Appendix B)

Each offset above is relative to location 0 in the procedure

segment.

MULTI CS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ. 7. 01 PAGE 8

2. Order of Execution

The interpreter first executes the pop at location FSTPOP.

It then executes pops in sequence, unless a pop causes change

of control (e.g., JMP) or reads a character from the input

stream (e.g., NXCH). (See Chapter 2, Paragraphs E and J

for details)

0. POP COUNTER

The pop counter is an 18-bit counter which points to the

pop currently being executed. Therefore, it is the

instruction counter of the pops machine. This counter

is initially set to FSTPOP. It is normally incremented

by 1 after the sequential execution of a pop.

If a pop causes change of control, then the interpreter

sets the pop counter equal to the operand of the executed

pop.

Any pop that reads a character or string from the current

input stream causes the pop counter to be set as fo llaNS r

1 • If end-of-line or end-of-stream has not been . reached,

then the pop counter is incremented by 2

2. Otherwise, the pop counter is incremented by 1 •

The pop counter is simulated by the GE-~•5 index register 1 •

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BZ.7.01 PAGE 9

E. DATA SEGMENT

The data segment has the following format:

000000 Static

Rolls Dynamic

Work Stack Stacks

Dunmy Stack

777777
0 35

1. Static Storage

The items in static storage are of fixed size and are in fixed

locations.

The format of required storage is the same for each pops

procedure. (See the FL/1 assembly listing for a list of the

items in required storage.) The optional storage differs for

each procedure, i.e., optional storage for FL/1 has a different

format from that for FORTRAN. The·optional storage contains

constants, variables, and fixed-size tables that are used

by the procedure.

The interpreter refers to locations in required storage directly;

it refers to a location in optional storage either by a pointer

in required storage or by using the operand of a pop (the latter

method is used most frequently).

MULTICS SYSTEM-PROGRAMMERS"' MANUAL SECTION BZ.7.01

Three locations are fixed in every data segment:

000000 -- The first location

PAGE 10

(See FL/1 assembly listing) --The start of optional storage

777777 -- The last location ,

The user specifies the following starting locations in

one-word registers in the data segments

Starting location of rolls --Specified in C(LAST) 0-17

Starting locations of work, dummy, and exit -- Specified

indirectly in C(WRKSIZ) 0-17, C(DMYSIZ) 0-17, and

C(XITSIZ) 0-17 (See Paragraph E.3.)

Each of these registers should contain zero in the lower

half.

Most registers and tables storing half-word infonr::.::t~ion u~;;:

the upper half. (Exceptions are noted in this manual,

whenever they occur.) For safety, the lower half of each

of these words should contain zero, even though the

interpreter may sometime ignore its contents.

2. Rolls

A roll is like a table in functionJ however, its size and

location in core storage are dynamically variable during

pops interpretation. Rolls are in the data segment, and

there are a maximum of 64 rollsJ the first is roll 0,

the second, roll 1, etc. The notation Roll N is used,

where N is 0,1,2, ••• 63. Rolls are stored in sequential

order by roll number, and words on rolls are stored in

sequential locations.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.01 PAGE 11

The interpreter allocates an initial amount of space for each

roll. If, during interpretation, available space in a particular

roll is exceeded, the interpreter may allocate more space for

that roll. Because storage remains sequential, this reallocation

may cause other rolls to be moved. In this case, each word in

the affected rolls is moved by a fixed amount 1 however, the

order of the rolls does not change, nor does the relative position

of data within a roll.

EXAMPLE:

Before

woro 1

word 2
word 3
word 1
word 2
word 3
word 4
Available

Space

Roll 5.

Roll

Roll

After

Available
Space

Roll 5

Roll 0. is never moved, however, it may be expanded. All other

rolls may be moved and expanded.

There are four significant locations on each roll:

The anchor of a roll is the current location of the first

word allocated for the roll.

The floor of a roll is one mpre than the current location
I

of the last word allocated for the roll.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.01 PAGE 12

The top of a toll is the current location of the first

unreserved word on the roll. (See RSV and REL pops.)

The bottom of a roll is one more than the current

location of the last word used on that roll.

Each of these locations is relative to location 0 in the

data segment. If there are no reserved words on a roll, then

the top and the anchor are the same location. If no unreserved

words are used, then the top and the bottom are the same location.

If the roll contains no words at all, then the anchor, top, and

bottom are the same· location. The four locations are shown belews

Anchor

Top

Bottom

~Floor

The floor of each roll, except the last allocated roll, is

the anchor of the next roll. Thus, the floor of the last

allocated roll is the first location available for roll

expansion. The user may make even more space available

by removing rolls not in current use. (See OPN and REMOV

pops.)

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.01 PAGE 13

A roll expands downward from the anchor towards the floor. When

the bottom reaches the floor, the interpreter must allocate more

space to expand the roll. The interpreter appends a group of n

consecutive words to a roll, as follows:

1. The interpreter bumps the bottom by n; i.e., moves the

bottom down n words towards the floor.

2. If the bottom has reached (or passed) the floor, the

interpreter allocates more words and adjusts anchor,

top, bottom, and floor, if necessary.

3. The interpreter moves words 1 to n into the n locations

above the new bottom.

Four tables in the data segment, each containing 64 entries,

give the current anchor, top, bottom, and floor for each roll z

C(ANCHOR+N) 0-17 =anchor for roll N

C(TOP+N) 0-17 =top for roll N

C(BOTTOM+N) 0-17 =bottom for roll N

C(ANCHOR+N+1) 0-17 =floor for roll N

The lower half of each of these entries contains 0. This

portion is initially cleared by the interpreter.

The anchor and floor tables are interwoven, as shown below:

Anchor
Rol i 0 Floor
Ro 11 1 Roll 0
Roll z Ro 11 1 . Roll 2 . .

• .
Ro 11 N Ro 11 N-1_

Roll N

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.01 PAGE 14

Figure 3 shows the relationships between entries in the ANCHOR.

TOP, and BOTTOM tables and the roll locations they describe.

a. Roll Pointers

A roll pointer is a word that contains an offset·P in bits

0-17 and a roll number N in bits 30-35. It points to the

location that is P words after the top of roll N.

EXAMPLE:

Roll
I 3
0

Pointer Top

lxl61~+1
18 30 3 +2

3

Roll 6

u 35

If Y is a location containing a roll pointer, then RP(Y) is

defined as the location to which the roll pointer points~

i.e., RP(Y) = P+C(TOP+N) 0-17.

Roll pointers are useful, since the distance from the top of

a roll is constant, even though the roll may have been moved.

While the contents of any location may be used as a roll

pointer, each roll has a particular ~oll pointer assigned

to it in the ROLPTR table, located ih the data segment.

For example, ROLPTR+5 is the roll pointer assigned to roll

5. Many pops use the ROLPTR table to record the current

position on a roll.

MULTICS SYSTEM-PROGRAMMERS" MANUAL SECTION BZ.7 .01 PAGE 15

Anchor+O

Anchor+5
Anchor+6

Anchor+63

Bottom+O

Bottom+5

Bottom+63
<-:o=---...~.::,~s~-3=5...J.

Roll 5
ALPHA Anchor

BETA Too

Reserved

Currently
in use

GAMMA ~~B~o~t~t~o~m~-4

DELTA Floor Anchor for

0 35 ro 11 6

Figure 3: Illustration of Rolls and their Corresponding
Tables

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.01 PAGE 16

b. Guess Table

The GUESS table in the data segment specifies the initial

allocation of space for rolls and the extra amount of storage to

allocate in case this initial storage is exceeded. There are 64

entries in the GUESS table. The following chart illustrates how

the interpreter uses the GUESS table to allocate space for roll

N: (I and J are unsigned integers.)

Number of words to allocate

C (GUESS+N) On initiation of On first ref.
0-17

I

I

-I

-I

18-35 pops procedure to roll On subsequent allocations

J J 0 I

-J J/100 0 (I*J)/10000

J 1 J I

-J 1 J/100 (I*J)/10000

The numbers in the last two columns represent minimum

guesses. If more words are needed than are specified

in these columns, the interpreter will allocate the

required number of words.

The upper half of OPNERS, a one-word register in the data segment,

specifies the number of rolls to be opened. The interpreter

allocates space only to these rolls. If OPNERS specifies N

rolls, then the interpreter allocates space to rolls 0 through

N-1 (inclusive).

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.01

c. Composition of Rolls

1) General

PAGE 17

A roll may consist of single words, groups, or plexes (See

Paragraph H.4 for a discussion of plexes.)

2) Groups

A group consists of 0, 1, or a consecutive series of words;

e.g., a 10-word group consists of 10 consecutive words on a

roll.

There are two types of groups: fixed-size groups and

variable-size groups. A roll containing fixed-size groups

may not contain variable-sized groups, and vice-versa.

The GRPSIZ table in the data segment indicates the type of

groups on each roll. This table contains 64 entries, one

for each roll:

GRPSIZ+N ~~~G--~li~q~n=o~r=ed~
0 18 35

If G~O, roll N consists of G-word fixed-size groups. These

groups are stored contiguously.

EXAMPLE:

Group ,

Group 2

Group 3

35

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.01 PAGE 18

If G = 0, then roll N consists of variable-size groups. Each

variable-size group is preceded by a variable-size word (VSW)

with the following format:

I v I o I
0 18 35

where V = the number of words in the groupJ i.e., the number of

words following the VSW. Variable-size groups are also stored

contiguously.

EXAMPLE:

Group 1

Group 2

Group 3

Certain pops use the upper half of VARSIZ, a one•word register

in the data segment, to determine the number of words in a

variable-size group (excluding the VSW).

d. Special Rolls

Roll 0 must be used for the symbol table. The first eight

words on roll 0 have the following format:

7 0 vsw
0 0
0 0 7 ""'Nord group
0 0
0 0
0 n
n 0
0 0 1,..)

0 18 35

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.01 PAGE 19

There are two reasons for this:

1. To avoid having a word in roll 0 at an offset of 0

from the top

2. To provide an additional area for starting a type-2 thread

for a search (See Chapter 2, Paragraph R.)

The symbol table starts at location 8 in roll o.

The user must reserve the following rolls for their special

purposes, only if he uses the pops that refer to these

ro 11 s :

Roll #

1

2

3

4

N-2*
where
N = C(OPNERS) 0-17

Purpose

Error roll

Save roll

Fact ro 11

Swip ro 11

Binary roll

N-1 and N-2 Spill rolls
where
N = C(OPNERS) 0-17

Used By

EROR, ERRCC, ERRLC,
ERRP, PRNT I PRNTC

PRES, PSAV, POES

FACT, TYMF, TYMT

SWIP

WBIN, RWND

RWND, DNX, DNG, D LOAD

M Re 1 bit ro 1 1 WB I N
where
M = C(BINREL+1) 0-17

(See Paragraph Y .2 in MSPM BZ.7 .02.)

The uses of these rolls are covered in the descriptions of the

pops.

*The interpreter actually uses C(BINREL) 0-17 or the operand

of the WBIN pop to determine the number of the binary roll.

N-2 is the binary roll in a two-pass assembler or compiler.

MULTICS SYSTEM-PROGRAMMERS' ~NUAL SECTION BZ. 7.01 PAGE 20

3. Buffers

Three buffers appear below the last roll in the following orders

WRKBUF -- work buffer or work

DMYBUF

XITBUF

dunmy buffer or dummy

exit buffer or exit

These buffers are fixed-size stacks. Their sizes are specified

in the lower halves of three one-word registers in the data

segment: WRKSIZ 6 DMYSIZ 6 and XITSIZ.

The buffers may be pictured as follows:

Work To I~

Work Botto '"
Work Floor
Dummy Top

&

'" Dummy Botto

Dummy Floor
&

Exit Top
Exit Bottom

Exit Floor

words cur-
rently in

work

J Size specified in WRKSIZ

words cur-
rently in

dummy Size specified in DMYSIZ

./

words cur-
rently in

exit

J
lslze specified In XITSIZ

Three 18-bit counters point to the current positions in the

three buffers: WRKCTR 6 DMYCTR 6 and XITCTR. These counters are

simulated by GE-645 index registers 36 s. and 4. respectively.

WRKCTR and DMYCTR point one word above the bottom of work and

dummy. respectively. XITCTR points two words above the bottom

of exit.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.01 PAGE 21

a. Work Buffer

The work buffer is a push-down accumulator, used for storing

data.

New words may be loaded into work one word at a time. In

this case, the interpreter bumps the bottom of work by 1

word, adds 1 to C(WRKCTR) and moves the appropriate data

into word 1.

EXAMPLE:

load(Y) loads C(Y) into word 1

A word may be loaded into current work. In this case, the

interpreter does not adjust the bottom of work.

EXAMPLE:

cload(Y) loads C(Y) into current work

Any number of words (including D) may be removed from work.

This is called pruning work. In this case, the interpreter

subtracts the appropriate number of words from WRKCTR and

adjusts the bottom of work accordingly.

EXAMPLE:

prw(Y) prunes C(Y) 0-17 words from work

Initia11y, there is one word in the work stack. This word

should never be pruned. However, the user may load data into.

this word. The term work size denotes the number of words

appended to work; e.g., if work contains two words, the work

size is one. N-1 words may be appended to work, where

N = C(WRKSIZ) 18-35.

MULTICS SYSTEM-PROGRA~ERS .-. MANUAL SECTION BZ. 7. 01 PAGE 22

WO is the symbolic location for current work. The five

locations preceding WO (if present) are referred to respectively

as W1. W2, W3, W4, and W5a

5
Lf

3

w
w
w
w
w
w

2
1
0

Work bottom

Last 6 locations in Work

These locations are adjusted appropriately, whenever the bottom

of work changes.

EXAMPLE:
0 i i r g na

W3
W2
W1
wo

Work botto n

b. Dummy Buffer

1 C fi uration Af on lg1

W4
W3
W2
W1
wo

Work botto 111

ter n. di oa n_!l New Word

The dummy buffer provides a method of indirect addressing. It

is used to store addresses rather than data. The difference may

be illustrated as follows:

stor(w1) stores current work into previous work

stor(d1) stores current work into the location specified in
the upper half of the previous dummy

New words may be loaded into dummy one word at a time. In this

case, the interpreter bumps the bottom of dummy by 1 word, adds

1 to C(DMYCTR) and moves the appropriate data into word 1.

A word may not be loaded into current dummy.

r MULTICS SYSTEM-PROGRAMMERS# MANUAL SECTION BZ.7.01 PAGE 23

The dummy may be pruned by any number of words (including 0).

In this case, the interpreter subtracts the appropriate number

of words from DMYCTR and adjusts the bottom of dummy accordingly.

EXAMPLE:

prd(Y) prunes C(Y) 0-17 words from dummy

Initially, there is one word in the dummy stack. This word

should never be pruned. The user should not load data into

this word. The term dummy size denotes the number of words

appended to dummy; e.g., if dummy contains two words, the

dummy size is one. N-1 words may be appended to dummy, where

N = C(DMYSIZ) 18-35.

DO is the symbolic location for current dummy. The five

locations preceding DO (if present) are referred to respectively

as D1, D2, D3, 04, and OS.

C. Exit Buffer

The interpreter adjusts the exit buffer, upon entering and

leaving a subroutine. This buffer contains two-word entries.

The JSB pop is used to transfer to a subroutine. Before

entering the subroutine, the interpreter adjusts the exit

buffer as followsa

1 •

2.

It adds 2 to XITCTR

It bumps the bottom of the exit buffer by 2, and puts

the following information in words 1 and 2:

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.01

word 1

word 2

current
work

0 indicates false sta
0 18

PAGE 24

Word 2 is the current true/false indicator for the

pseudo-computer. If C(word 2) = o. the current status is

false; if C(word 2) ~ o. the current status for the

pseudo-computer is true. This word is set by pops in the

procedure segment; e.g •• the search pops (See Chapter 2.

Paragraph R).

Upon leaving a subroutine. the interpreter prunes two words

from the exit buffer.

The user cannot load words into the exit buffer. However. he

may prune the buffer by any number of word pairs (including 0).

EXAMPLE:

pre(Y) prunes exit by C(Y) 0-17 pairs of words

Initially. there are two words in the exit stack. The interpreter

sets C(word 2) = 0; C(word 1) is indeterminate. These words

should never be pruned. The term exit size denotes the number

of words appended to exitJ e.g •• if exit contains four words.

the exit size is two. N-2 words may be appended to exit. where

N = C(XITSIZ) 18-35.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.01 PAGE 25

F. PRODUCTION AND DEBUG VERSIONS OF THE INTERPRETER SEGMENT

There are two versions of the interpreter segment: production

and debug. These can both run with any data or procedure

segments. The debug version is 50% slower than the production

version. However~ it provides important statistics.

The following tables (located in the data segment) are set

during the debug version and are dumped upon termination

of a procedure (they are ignored during the production version):

USCNT -- 264 word table. The first F-6 locations correspond

to each of the F-6 pops~ where F is the value of the false

tag. Each of these locations records the number of times

the corresponding pop was executed.. The functions of the

other locations are illustrated on the following chart:

USC NT +0

USCNT +(F -6)

USC NT +F

Pop Counts

r---~--~~~~~~~~----

USC NT+ (F + 1) ~-n:::.:.:;.:..o;:.:.:.;.=.:.:.:.....:::.=.:r=:;.:.L-...;:..:..=;:;::..-----I
USCNT+(F+2) ~~:.;,;,;.;;.:.:.:.....:;;,;,.:...=....::.....:~=-------I

USCNT+264

RSIZE --Table containing one word for each roll. The upper

half of each entry is set to the maximum count of each roll

(maximum number of wor.ds from top to bottom). The lower

halves are ignored.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.01 PAGE 26

MTEST is a one-word register in the data segment. If MTEST is

set to 0~ the debug version records statistics about each roll

movement and dumps this information upon termination of a

procedure:

Number of roll moved

Number of words appended to roll

Number of words originally required by roll

Method of obtaining words

Elapsed time to perform move (in seconds)

For each ro 11
movement

The debug version also dumps the following general statistics:

Total number of pops executed

Elapsed time in seconds

Number of roll moves

Elapsed time in doing roll moves (in seconds)

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.01 PAGE 27

G. DATA REPRESENTATION

1. Number Representation

The pops interpreter uses standard GE-645 two's complement

arithmetic for addresses, fixed-point numbers, and floating-point

numbers; e.g., address -1 is equivalent to octal 777777.

(See GE-635 Reference Manual for complete description).

Chapter 2, Paragraph 0, covers the representation of fixed-point

and floating-point numbers in the pseudo-computer.

2. Text Representation

a. Character Set

Most text for the pseudo-computer is written in the ASCII

character set (See Chapter 2, Paragraph Y.1 for an exception.)

Figure 4 shows the 128 ASCII characters and their corresponding

octal codes, 000-177. The interpreter also uses two special

characters internally.

octal 200 - Skip character

octal 201 - End-of-file character

Each of these 130 characters is represented in a 9-bit field;

e.g., A (octal 101) is represented as 001000001. Therefore,

a word in the pseudo-computer may contain up to four characters.

b. TRANS Table

The TRANS table in the data segment contains one word for each

of the 130 characters mentioned above. Bits 9-17 of each word

contain a copy of the ASCII or special character. This field

coincides with the offset of the word from the first word in

the TRANS table; i.e., C(TRANS+N) 9-17 = N. The remaining bits

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.01 PAGE 28

are called keys and may be used to store any information

pertaining to the characters. Each bit may correspond to a

special property of one or more characters; e.g •• alphabetic

or numeric. The TRANS table is illustrated below:

TRANS+OOO K 000 K
+001 e 001 e

: y y
• s s

+177
+200h=7~~~~~-t

+201~~~~====~

The user provides information for TRANS through TRANS+177 8.

The interpreter sets TRANS+200 8 and TRANS+201 8.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.01

ASCII Character Set on Multics

0 1 2 3 4 5

000

010 BS HT NL VT NP

020 HLF HLR

030

040 Space 1 II IF 1 %

050 () * + -~

060. 0 1 2 3 4 5

070 8 9 . ; < = .
100 @ A B c D E

110 H I J K L M

120 p 0 R s T u
130 X y z [\ J
140 ' a b c d e

150 h i J k 1 m

160 p q r s t u

170 X v z [l J

Multics Definition$:

NL New Line (carriage return and line feed)
HLF Half-Line Forward Feed
1-!LR Half-Line Reverse Feed
RRS Red Ribbon Shift
BRS Black Ribbon Shift
NP New Page (carriage return and form feed)

Figure 4

6

RRS

&

.
6

>
F

N

v
....

f

n

v

rv

PAGE 28a

7

BEL

BRS

,

I

7

?

G

0

w

-
g

0

w

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.01 PAGE 29

H. STRINGS

The interpreter may combine ASCII characters into three types of

strings:

Type 1

Type 2

Type 3

Counted

Non-counted

Special

1. Type-1 Strings

The first character in a type-1 string indicates the number

of characters (0-511) that follow in the string. If the

last word in a type-1 string is not full, the remainder

of the word is filled with ASCII blanks, these blanks

are not part of the string.

EXAMPLE:

Type-1 String "a1 11

Joo2 ~1411 o61!o4o 1
8 7 35

Octo ASCII ASCII ASCII
2 a 1 blank

Future examples use the following abbreviation:

l2lalli.SI
0 9 18 273'5

The null type-1 string is shown below:

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.01 PAGE 30

2. Type-2 Strings

A type-2 string has no initial counter character; instead, the

last character in the string is the end-of-file character, 201.

If the last word is not full, the remainder of the word is

filled with ASCII blanks; these blanks are not part of the

string. A type-2 string may contain 0-512 characters,

excluding the end-of-file character.

EXAMPLE:

Type-2 String 11 a1 11

I a j1 j2o1J ~ j
0 9 18 27 35

The null type-2 string is shown below:

1201 I ~ I ~ I ~ I
0 9 18 27 35

3. Type-3 Strings

A type-3 string represents a complete FORTRAN source statement.

It contains one variable-size group for each line in the

statement. The first two words of each group are control

words. The remaining words represent the line (4 columns

per word). If the last word in a group is not full, the

remainder of the word is filled with skip characters (octal

200). The maximum number of characters in a group is 163.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.01 PAGE 31

Each group in the type-3 string has the following format:

II of WQrds in
group 1n octal II of , j lqroups(G 0

0 alter number
C(col.1)J C(co1.2) etc. I

•
• .

0 9 18 27 35

Each line of a FORTRAN source statement ends with a new-line

character~. In forming a type-3 string from console input_

the interpreter interprets the new-line character as follows:

1. The sequence%~ means ignore both characters_ and consider

the next line as continuation.

2. ~ preceded by a character other than% means ignore ~,

and terminate the type-3 string.

The% and~ characters are not included as part of the string.

Comments may not appear in type-3 strings. Thus_ the user must

obey the following rules:

1. A comment may not appear in the middle of a FORTRAN statement:

a comment may not follow o/~ in a FORTRAN statement.

2. A comment.may occupy only one line

3. A comment may begin only with a star; the procedure segment

is responsible for recognizing the star.

Figure 5 shows a FORTRAN statement and its repre~entation as a

type-3 string.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.01

FORTRAN Statement

12345 a=b%
+C%
+d

Alter Number
30
31
32

Representation as type-3 string

Figure 5. Typical Type-3 String

PAGE 32

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.01 PAGE 33

4. P lexes

The interpreter may convert a type-1 string to a plex,. by

appending a words

I K lspeciaj I (Bits 18-35 have special meaning to
0 18 5 the interpreter.)

where K is the number of words in the string. K is derived

as follows:

Let C = the first character in the type-1 string

K = C/4 + 1 (ignoring any remainder)

5. SYMBUF'

SYMBUF is a region in the data segment used for forming type-1

or type-2 strings. The maximum capacity of SYMBUF is 511

characters for a type-1 string and 512 characters for a type-2

string. The interpreter will abort the pops procedure if either

limit is exceeded. The best size for SYMBUF' is 129 words,. since

this is one more word than necessary for the largest string.

SYMBUF is preceded by two words,. SYMCNT,. and SYMCNT+1. These

words have the following format,

EXAMPLE a

C(SYMCNT) 0-17 -- Number of words in symbol

C(SYMCNT) 18-35 -- Data used by the interpreter

C(SYMCNT+1) --For type-1 string,. plex word

For type-2 string,. upper half contains
count of number of characters in the
string (excluding the end-of-file
character),. lower half is ignored

A plex in SYMBUF

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.01 PAGE 34

I. NOTATION USED IN THIS MANUAL

1. Coding Examples

FL/1 syntax is used in all coding examples.

2. Capitalization

The following names are capitalized:

1. Names of pops, variables, and registers, outs~de

of coding examples

2. Generic names in coding examples

Otherwise, all names are written in lower case.

Examples:

NXCH pop

MRKER register

add{Y), where Y signifies 11 any operand''

add{alpha), where ALPHA is the name of a particular operand ,

3. Number Representation

Numbers are represented in octal, unless otherwise indicated.

All number fields are right-justified; e.g., 6 and 000006

are equivalent in an 18-bit field. Since FL/1 syntax accepts

decimal mode as the normal default mode, small numbers (0-7)

are used in the examples whenever possible. Symbolic addresses

are used in some examples in place of large octal addresses,

for simplicity.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.01 PAGE 35

4. Terms

work size - Number of words appended to work stack.

Initially, work contains one word; this word is

not included in the work size.

dummy size - Number of words appended to dummy stack.

Initially, dummy contains one word; this word

is not included in the dummy size.

exit size - Number of words appended to exit stack.

Initially, the exit stack contains two words;

these words are not included in the exit size.

prune -To remove zero or more words from a stack or roll

word k -The kth word in a group of contiguous words; i.e., 1

in a group of contiguous words, the first word

is word 1 (unless otherwise indicated)

bumping bottom- Moving bottom of a roll or stack down by

a specified number of words, to allocate more

words for current use.

key - Bit describing some property of a character or string.

counting a string - Computing the number of words and

the number of characters in a string.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.01 PAGE 36

file- One or more consecutive words in the data segment.

used by a pop for information. The operand

of a pop using a file is the location of the

first word of the file.

loctr- FL/1 term for the current location (like* in

ma.ny other assemb 1 y languages)

alter number -Number associated with each line of a

source procedure, starting with 1 for the

first line.

go to next pop - Interpret next pop

5. Symbols

Y - Operand of the current pop

Z - Operand of the next pop

C(Y) -Contents of bits 0-35 of operand Y

DP(Y)- C(Y.Y+1) in double precision, where Y must be

an even address

MULTICS SYSTEM-PROGRAMMERS' Ml\NUAL SECTION BZ. 7. 01 PAGE 37

C(Y) k - Contents of bit k of operand v~ where k = 0~1~2~···~
or 35

C(Y) 0-17 - Contents of upper half of operand Y

C(Y) 18-35 - Contents of lower half of operand Y

N - A number. Unless otherwise specified~ N is a ro 11
number.

M- Roll number. Used when description refers to two rolls

x in diagram - Ignore (unless otherwise specified)

RP(Y) - Y is a location containing a roll pointer:

I p I X rNI ~ where p is an offset from the top
o 1 8 3o 35 of ro 11 N

RP(Y) = location to which roll pointer points,
i.e.~ P + C(TOP+N) 0-17

VSW - Variable size word

• logical. -A logical operation, e.g.~ .and. =AND

t - True tag

f - False tag

16 - Blank

~- New line character

WO - Current work

W1~ W2~ W3~ W4~ and WS -The five locations preceding WO:
Last 6 locations in Work

w 5
4 w

w
w
w
w

3
2
1
0

Work bot<bom
DO - Current dummy

D1~ D2~ 03~ 04~ and 05 -The five locations preceding current
dunmy

AO~ A1 ~ A2~ A3~ A4~ AS - See Chapter 2~ Paragraph G

