
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.8.03 PAGE 1

Published: 08/30/~8

Identification

Syntactic Analyzer
James D • M i 1 1 s

(Note that the following are Abstracts, which should be
replaced by a full description at a later time.)

parse

Function of Entry:

Parse is the first phase of the campi ler. It does
syntactic analysis of all the source program.

Calling Sequence for Entry:

ca 1 1 parse (root) ;

Declaration of Arguments:

de 1 root ptr;

Description of Arguments:

root is a pointer which, when parse finishes, points
to a computation tree representing the entire
source program.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.8.03 PAGE 2

condition_process

Function of Entry:

This procedure processes the condition prefix lists which
may begin PL/1 source statements.

Calling Sequence for Entry:

call condition_process(i~ conditions~ check_ptr, cur_block);

Declaration of Arguments:

del i fixed bin(15)~
conditions bit(12)~
(check_ptr, cur_block) ptr;

Description of Arguments:

i is the index into token list. Token list is the array
- of pointers to token nodes for the current statement.

conditions is set by condition_process. Each bit represents
a condition name and is 0 if off and 1 if on.

check ptr points to a list of nodes representing the
identifiers specified in the 11 CHECK11 or 11 NOCHECK11 lists.

cur block points to a node representing the block
containing the statement being processed.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.8.03 PAGE 3

convert_if_operator

Function of Entry:

This procedure converts the bit string expression
obtained by parsing the expression in an if
statement into an expression containin~ various
kinds of jump operators. The purpose 1s to produce
more optimal code.

Calling Sequence for Entry:

p1 = convert_if_operator (q~ P~ 11);

Declaration of Arguments:

de 1 (q ~ p ~ 11) p t r ;

del convert_if_operator external entry (ptr~ ptr, ptr)
returns (ptr);

Description of Arguments:

g points to the computation tree which is input to
the procedure.

Q points to the if statement node which will contain
a pointer to the-computation tree produced by
convert_if_operator.

l1 is a pointer to a label node. The jump operator
inserted into the computation tree represents a
conditional transfer to that label.

The value of convert_if_operator points to the newly
created computation tree.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.8.03

free_ tree

Function of Entry:

Free_tree is a recursive procedure which frees all
nodes in a computation tree except token nodes.

Calling Sequence for Entry:

call free_tree(p);

Declaration of Arguments:

de 1 p po i n t e r ;

Description of Arguments:

PAGE 4

Q points to a computation tree containing these nodes:

operator
operand
reference
string reference
tokens

,...

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.8.03 PAGE 5

get_block_node

Function of Entry:

This procedure allocates and initializes a block node.

Calling Sequence for Entry:

p = get_block_node (block_type, father_block);

Declaration of Arguments:

de 1 block_ type
father_block

fixed bin(15).,
ptr;

del get_block_node external entry (fixed bin(15)., ptr)
returns (ptr);

Description of Arguments:

block type is an integer code indicating the type
of block being represented., e.g • ., internal
procedure., on unit., begin block., etc.

father block is a pointer to the block node containing
the new block node.

The value of get_block_node points to the generated
block node.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.8.03 PAGE f5

get_operator_node

Function of Entry:

This procedure allocates and initializes an operator node.

Calling Sequence for Entry:

p = get_operator_node (operator_type~ number of operands,
father_node);

Declaration of Arguments:

del (operator_type, number_of_operands) fixed bin(15),
father_node ptr;

del get_operator node external entry(fixed bin(15),
fixed bin(15)~ ptr) returns (ptr);

Description of Arguments:

operator type is an integer code indicating the type of
the operator.

number of operands is the number of operands for this
operator.

father node is a pointer to the node which contains
a pointer to the operator node being
generated.

The value of get_operator_node points to the generated
operator node.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.8.03

get_statement_node

Function of Entry:

Allocates a statement node and fills in the fields
of the node.

Calling Sequence for Entry:

PAGE 7

p = get_statement_node(statement_type 1 father_block,
label_ptr, conditions);

Declaration of Arguments:

del statement_type fixed bin(15) 1

father_block ptr 1

label_ptr ptr,
conditions bit(12),
get_statement_node external entry (fixed bin(15),

ptr, ptr, bit(12)) returns (ptr);

Description of Arguments:

statement type is an integer value identifying the

father block

label ptr

conditions

type of PL/1 statement being represented
by the node.

is a ptr to the block node containing
the statement.

is a ptr to a chain of label nodes.

is a bit string coded to indicate which
prefix conditions are enabled for
this statement.

The value returned is a pointer to the statement node
created.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.8.03 PAGE 8

record_context

Function of Entry:

This procedure traces down a chain of label or entry
nodes and records label or entry context for each node.

Calling Sequence for Entry:

ca 11 record centes t~ ~(1 abe! s } - entr1es
_(s tatement_ptj).
l nu 11 1

(label_ptr, father_block,

Declaration of Arguments:

del (label_ptr, father_blocks, statement_ptr) ptr;

Description of Arguments:

label ptr is a pointer to a chain of label nodes or
entry nodes.

father block is a pointer to the node representing the
block for which the context is to be
recorded.

statement ptr is a pointer to the node representing the
statement on which the label occurred. For
entries statement_ptr is null.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.8.03 PAGE 9

statement_ type

Function of Entry:

This procedure is
It determines the
being processed.
this procedure.

the key_stone to the parse.
kind of statement currently
All ambiguity is resolved by

Calling Sequence for Entry:

type= statement_type(index{ label_ptr~ conditions~
check_ptr~ cur_blockJ;

Declaration of Arguments:

del index fixed bin(15)~
(label_ptr~ check ptr~ cur_block ptr~
conditions bit(12);

del statement_type external entry(fixed bin(15)~
ptr~ ptr~ ptr) returns (fixed bin(15));

Description of Arguments:

index

label ptr

conditions

check ptr

cur block

is an index into the token list which
contains the statement to be identified.
It is set by the caller and reset by
statement_ type.

is a ptr to a list of nodes representing
the labels (or entry names) on the
statement. It is set by statement_type.

represents the condition prefix names on
the statement. It is set by statement_type
through a call to condition_process.

is a ptr to a list of nodes representing the
identifiers specified in a "CHECK" or

11 NOCHECK11 1 ist. It is set by statement_ type
through a call to condition-process.

is a ptr to the node representing the block
containing the statement being identified.
It is set by the caller.

