
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

To: Bisbey, R.
Burner, W.
Clark, D.
Clingen, C.
Daley, R.
Feiertag, R.
Gintell, J.
Hunt, D.
Jordan, D.
Roach, R.

From: J. H. Saltzer

Date: February 25, 1974

Schell, R.
Schroeder, M.
Spitzer, R.
Thomas, E.
Van Vleck, T.
Vinograd, D.
Voydock, V.
Webber, s.
Whitmore, J.

Subject: Revision 6 of the list of Multics security holes.

Reply to: Proiect MAC

545 Technology Square

Cambridge, Mass. 02139

(617) 253-6016

Enclosed is the sixth revision of the list of known Multics
security holes. This list was compiled and checked by Doug Hunt, and
contains all security problems which have been reported to him (or me)
and verified as of February 25, 1974, and have not yet been fixed by
installation in the M.I.T. standard system (system 23.4) as of that
date.

As with previous editions of the list, no security holes yet
encountered represent fundamental design errors in Multics--they are
all relatively simple implementation goofs or localized design slip-ups
which are correctable without revision of any basic assumptions.

As Multics becomes a production system at several different
sites, it is more necessary to exercise some care in the distribution
of this document. If the information contained here is controlled, it
will remain possible to fix the holes described on a scheduled basis,
rather than as a crash project. For this reason, your copy has been
personally labeled, and I request that you please take some care to
protect it and that you not reproduce it. On the other hand, it is im
portant that legitimate users of this information not be denied access.
If there is a need for additional copies, please contact me so that I
may arrange the preparation of properly labeled copies for the addi
tional recipients. Thank you for your cooperation.

Page 1

Multics Security Holes List, Revision 6
February 22, 1974

Compiled by D. H. Hunt

This list of t1ultics security holes is revision 6, replacing
revision 5 of February 9, 1973. This list is constructed from
some of the entries in the previous list as well as from some
more recently reported security holes. The entries in the first
part of this list correspond with those In the previous list,
except in those instances where a hole has been properly plugged.
Those holes which have been fixed are ~escribed separately, in
RFC's 1~6 and 47.

The description of each security hole is divided into four parts.
First, the problem is categorized according to the consequences
of its occurrence: it may result in unauthorized disclosure or
modification of information, or denial of service (with the
extreme case being a system crash). The second and third parts
are lifted directly from the previous list. T~ey are a
description of the problem, followed by suggested fixes. The
fourth part is the current status of the problem. In the case of
fixed security holes, references are made to any design or
installation documents (RFC 1 s, t~TB's, or i·1CR 1 s) v>~hich are
applicable.

ITT overflow

Categories: This is a denial-of-service problem.

Description: Repeated calls to
pile up in the ITT, eventually
messages to be lost, and a
legitimate users.

hcs_$wakeup can cause messages to
filling It and causing system

system crash, denying service to

Remedy: A quick fix would be to place a li~lt on the number of
ITT entries which may be queued for a single process. A
longer-range fix would be to transmit user-originated messages
directly from one user to another, eliminating the need for the
ITT.

Status: There are two ring 0 procedures which check the number
of messages in the ITT in response to each call to hcs_$wakeup.
First, hardcore IPC ensures that the number of messages stored in
the ITT hy user-ring wakeups does not exceed a threshholrl value.
(The threshhold is the ITT size minus the number of APT entries,
allowing one device wakeup entry per process.) If the ITT is
filled to the threshhold, then a call to hcs_$wakeup will
generate an "ITT overflow" message, together vJith th~ rrocess
group id, on the operator's console. A second check is made in
the traffic controller-- if the ITT ever overflows, the traffic

Page 2

controller wi 11 loop, causing a system crash. To prevent the ITT
from beco~ing clogged with unremovable entries, the traffic
controller rejects wakeups sent to the idle process. System
crashes due to repeated hcs_$wakeup calls are prevented by the
threshhold check. In summary, several small fixes to cover the
most frequently occurring accidents have been made, but it is
still possible for a determined attacker to exploit
systematically the basic vulnerability.

Reused address or device mixup

Categories: An occurrence can result in the unauthorized
disclosure of information.

Description: Whenever a device address is accidentally reused or
modified, as may happen when the system crashes in the midst of
updating the value of a device address in a page map, the system
may end up with a segment containing a page belonging to another
segment. If there are two or more segments claiming the same
page, the salvager can detect the inconsistency and destroy the
page, since it does not know which se~ment ou~ht to contain the
page. In all other cases the problem is undetected.

Remedy: The storage representation of a page should be augmented
to contain not just the page contents, but also the unique
identifier of the segment to which the page is assigned. Then,
following a system crash, the salvager can cross check between
device addresses as recorded in the file maps an1 segment
identifiers as recorded with the page contents.

Status: The subset of the "reused address" problems which can he
detected by the salvager is now treated according to the
suggested fix: pages with reused addresses are zeroed. There
are classes of reused address problems which the salvager cannot
detect. If the rightful owner of a page deletes the segment
containing it, a duplicate ad~ress of that page can no longer be
detected by the salvager. In addition, swapped or permuted page
addresses are undetected by the salvager. Future system releases
will contain additional consistency and redundancy checks to
minimize the possibility of improperly assigned secondary storage
addresses.

Accounting system hierarchy scan

Categories: This may result in unauthorized disclosure of
information.

Description: The accounting system, in order to charge for
secondary storage use, r~ust read every system directory, since
page-second storage counts are stored in the directories. Thus
all system directories and files must be made accessible to the

Pa?,:e 3

operator of thP. accounting system.

Remedy: RP.vise directories to contain account numhers, and store
usage information in separate accounting files, which can he
accessihlP. to the 6perator of the accountln~ system.

Status: A modification to the accounting system, similar to the
suggested fix, is beinf, rlesl,p;ned. It should 1-Je noted that
although all segments are currently accessible to the account
manager's process, the process makes use of a special process
overseer 11hich restricts the activity of the manager to
appropriate accounting functions.

Absentee/Daemon overload

Categories: This is a denial-of-service prohlem.

Description: Any user may submit an arhitrary number of ahsentee
johs or 1/0 daemon requests, effectively denying ahsentee or 1/0
daemon service to authorized users.

Remedy: Place an administrative limi.t on the
outstanding ahsP.ntP.e jobs anrl 1/0 daemon requests that
user is allm'lerl.

Status: This problem sti 11 exists • ..

~1e ter i ng gates ex oos e every th i np;

number of
a single

Categories: This may result in unauthorized disclosure of
Information.

Description: The entry point ttsed for reading out system
performance meters allows readout of any ring zero program or
rlata hase including, for example, typev1riter input '::wffers, Hhich
may contain typed passwords.

Remedy: What is needed is a separate entry point which reads out
only legitimate system performance meters. General peek gate
then does not require such a long list of persons authorized to
use it.

Status: A fix for this difficulty, proposed in MTB's 11 and 30,
Is being implementP.d.

IPC event channel loop bug

Categories: This is a denial-of-sevice prohlem.

Page 4

Description: If an IPC message with an illegal event channel
name is sent to another process, the other process wi 11 loop on
an out of bounds error inside IPC. If sent to initializer, will
cripple system.

Remedy: Add bounds check to IPC message handling procedure.

Status: This hug is still there.
procedure, ipcprm_$retrieve_channel,
entry corresponding to a given event
uses part of the event channel name
v.,ri thout checking to see if the offset

High speed line carrier detect problem

A user-ring IPC utility
determines whether an ECT

channel name exists. It
as the offset into the ECT,
is too large.

Categories: This may result In unauthorized modification and
disclosure, as well as denial of service.

Description: When in output Mode, the system cannot detect that
the user has hung up his 1200 baud line, since there Is no
carrier detect feature on the 202C6 dataset. Another user can
then dial In and continue to use the line, with access to the
previous users' files.

Remedy: Obtain datasets providing a carrier detect feature, and
add software to log out user on carrier failure, just as for low
speed typewriter lines.

Status: The use of Vadic modems may solve this problem.

linker hug

Categories: This is a denial-of-service problem.

Description: Certain types of incorrect link definitions will
cause the linker to go into a loop Inside ring zero. This Is a
specific instance of a more general problem: the linker must
interpret a user-constructed data hase (a linka~e section of an
object segment) which may contain errors, malicious traps, or
even he dynamically changing. The linker Is thus expose~ to a
"battle of 'v<Jits" with a systematic attacker; it is diffucult to
convince oneself that there Is no way to exploit this
vu 1 nerab i 1 i ty.

Remedy: The suggested remedies are (1) fix the linker to accept
only valid definitions; (2) add a time out In ring zero to catch
all such problems; and (3) move the linker out of rin~ zero.

Status: All known hugs of the sort described have been fixed.
We cannot he sure that additional bugs of this sort will not be
discovered, so removing the linker from ring zero, as described

Pag;e 5

in RFC's 23 and 41 and in 1.1TB 35, will
such bugs.

Mailbox Is open hug

isolate the effects of

Categories: This may result In unauthorized disclosure or
modification of Information.

Description: The current mail command implementation requires
that permission to send mail to a user must be coupler! with
permission to read and delete any mai 1 in the user's mailbox.

Remedy: R~vtse the mail command to use message segments rather
than a directly writeable mai lhox.

Status: The revised mail command wi 11 use message segments. The
design is described in MTB 6.

process id argument validation

Categories: The most likely consequence of exploitation of this
security hole is denial of service, but unauthorized disclosure
or modification of information may occur.

Description: The low-order hits of a process identifier are
actually the offset of that process' entry In the Active Process
Table. Entry point hcs_$wakeup does not verify that the
process_ld given as an argument is a legitimate value for a table
offset. It r:loes look for the proc!"ss I rf at that location, hut
this check is not foolproof.

Remedy: The offset value obtained from the process Identifier
must he checked for legality.

Status: This situation still exists. This hug Is similar to the
I PC event channe 1 1 oo p hug.

Syserr masking too long

Categories: This may result in denial of service.

Description: When an error inside the system occurs, the syserr
routine masks the CPU against interrupts while printing a message
on the operator's console. If too many interrupts come In, 1m1
status queues will overflow, crashing the system. The user can
trigger an apparent system error by calling hcs_$wakeup too much;
he can then generate enough Interrupts to crash the system hy
sending a stream of characters with incorrect parity.

Page 6

Remedy: The syserr printing routine should ~e revised to permit
interrupts to be handled normally during message printing.

Status: The syserr routine has been modified to manage its
buffers under interrupt control, as documente·l in MTB 16 and MCR
80. Thus, in most circumstances, syserr will copy its message
into a wired buffer and return, with the postin~ interrupt
arriving later. However, if the wired buffer !s full, then
syserr may \Jait as before until it can do something \·lith the
message. This is another example of a fix which takes care of
the most common accidents lnJt sti 11 perr1i ts systematic
exploitation.

GIM data base bug

Categories: This may result in unauthorized disclosure or
modification of information.

Description: The GH~ creates a data f)ase hy a call to "makeseg"
r a t h e r than a p pen rl h r an c h • As a r e s u 1 t , i t w i 1 1 us e any s e ~men t
which is already around an1 which has the right name. The user
can then oven-Jr I te the G I ~1 rlata.

Remerly: Fix the Gl~ to call append hranch rather than makeseg.

Status: The GH1 still calls "makeseg," but after doing so, it
replaces the segment ~CL anrl ring brackets by ones of the form
"rw user_process_id 0,0,0 11 so that in case there had been a
segment of the same name, the user can no longer access it. This
current strategy has a deficiency which leads to sabotage. If a
malicious user creates a link from his process directory to some
appropri?te target segment, he can catJse the Glf'.-1 to replace the
ACL and ring brackets on that segment, denyin~ access to
authorized users. Any privileged proRram creating per-process
segments for a user in this manner could he exploited by a
malicious user.

CPU ho~ging bug 3

Categories: This is a dental-of-service problem.

Description: The entry point hcs_$list_connect of the Gioc
Interface ~~odule (Git•\) will, if callerl wit'-1 the proper argument,
set the "interaction svlitch" on, giving the user credit for an
Interaction the next time he calls block. Ry calling every few
seconds, one can stay forever in the highest scheduling queue,
and completely deny service to lower queue users.

Remedy: Review the PIM design (GI~ replacement) to make sure it
does not have the same hole.

Page 7

Status: The entry "list_connect" has been removed from hcs and
added to phcs_. This implies that the use of the GIM Is
temporarily restricted to require system programming privilege.

Call limiters on gates

Categories: This may result in unauthorize~ disclosure or
modification of Information.

Oescrlption: Although the 6180 hardware can interpret the call
limiter field In a segment descriptor, the storage system does
not recognize the call limiter field as an attri~ute of a ~ranch.
Consequently, it is not possible for a user to set the call
limiter on any gate.

Remedy: The storage
call limiter field
facilitate obtaining
segment, 1 anguage
modification as well.

system must ~e extended
as another attri,ute

the proper ca 11 1 i mi ter
translators and the

to recognize
of a branch.
value for a

binder 'lay

the
To

gate
need

Status: Call 1 imi ters are no\J bel ng set on hardcore gates,
including the procedure restart_fault. The call limiter field,
however, is being set in an ad hoc fashion for hardcore gates,
and this same procedure cannot ~1e used for user-defined gates.

Bad ring brackets on gate linkage segments

Categories: This may result in unauthorized disclosure or
modification of information.

Description: When linking to a new-style gate, the associated
linkage segment, gate. link, is assigned incorrect ring brackets.
For each gate segment referenced by a process, the linker will
create an associated linkage segment and assign to it the same
ring brackets which are on the gate segment. A malicious user
can exploit this situation by executing a "callsp" instruction
which references some offset in the segment gate.link, thereby
transferring control to the target ring, but to a segment which
is not intended to be executed.

Remedy: The call bracket for new-style gate linkage segments
should be set equal to the execute bracket. Furthermore, execute
permission should be removed since new-style gate linkage
segments contain no executable instructions.

Status: This security hole will be corrected as
project of moving the linker out of ring zero.
still exists.

part of the
At present, it

Page 8

Bulk card inout

Categories: This may result in unauthorized disclosure or
modification of information, as well as denial of service.

Description: Card decks input to Multics are assumed
unauthenticated as to the submitter; yet the submitter is allowed
to specify that a link be created in the file system hierarchy.
The contents of a card deck are brought into the Multics
hierarchy, at the submitter's request, by a SysDaemon process.
The Daemon process stores the information from the card deck In a
uniquely named segment in >daemon_dir_dlr>cards. It then creates
a link in a directory, through which the contents of the deck can
be referenced. Both the name of the link and the name of the
directory are specified by the submitter of the deck. A
penetrator can place the link in any directory accessible to the
SysDaemon process, making subversion of other processes possible.
One possibility Is to place a link called 11 start_up.ec 11 In the
home directory of a user not already having such a segment.

Remedy: A solution to this problem is not to create a link, but
rather to notify the user by some other means -- such as sen~lng
mail --of the name of the carrl-image segment.

Status: This rllfficulty still exists.

Validating pointers from outer rings

Categories: This problem may result In unauthorized disclosure
or ~odiflcation of information.

Description: The code generated for manipulating pointers by
both version 1 PL/1 and early revisions of version 2 PL/1 used
the instruction sequence 11 ldaq, staq," in some instances. If any
hardcore procedure has been compiled using one of these earlier
conpilers, then it may not he validating pointers correctly. A
pointer in an argument list from an outer ring, for example, is
copied by these instructions \.Jithout any interpretation of the
r I n g f t e 1 d • A f t e r a " 1 d a q , s t a q " co p y, t h e r t n g f i e 1 d of the
pointer may not represent the highest ring which could have
influenced the value of the pointer; defeating the hardware
validation mechanism. Thus the caller can associate a more
privileged ring number with the pointer. These comments apply to
any i nH a r d c a 11 s •

Remedy: t1ore recent versions of the campi ler use the correct
Instructions (11 epp--" anci "spri--") for copying pointers. These
instructions make use of the rlng validation hardware. The best
insurance against discovering additional validation bugs caused
by this problem is to verify that all ring zero an1 ring one PL/1
procedures have been co~piled by a recent version of the
comp i 1 er.

Page 9

Status: Presently, over 20% of the ring zero procedures are
still compiled in version one. This situation would he
acceptable only if an audit were performed, verifying that the
rema1n1ne "old-style" procedures never made use of pointers
passed in from the user ring.

EligibilitY hogging

Categories: This can result in denial of service.

Description: The tape Det1 uses the "v.,rait" traffic control
primitive for events which may he of long duration. As a result,
several conspiring users making a certain request of the tape DCM
can tie up the available eligibility slots. Suppose there are N
eligibility slots. User 1 calls the tape DCt1, requesting a
for~ard-space one file operation on a 2400-foot reel. (With
careful planning, this can take about four minutes.) Users 2
through N+1 call into the DCM requesting the same operation.
Processes 2 through N+1 will wait (call pxss$wait) until process
1 has completed its operation. In the meantime, all N available
eligibility slots are occupied, since a waiting process does not
lose ell~ibility.

Remedy: An assumption regarding the "wait" primitive is that it
be used In conjunction v.Jith "system events:" those guaranteed to
complete within a short length of time. For such events,
retaining eligibility is reasonable; for longer events, it is
not. A strategy of blocking in the user ring, such as used with
the teletype Dlf1, would be more appropriate.

Status: This problem still exists.

Communications line takeover

Categories: This nay result in unauthorize~ disclosure or
modification of information.

Description: Under certain circumstances, apparently on a
heavily loade~ system, a user may find his terminal attached to
someone else's process after rlialine the system. This problem
may he rlue to a synchroniz~tion difficulty. Real-time events
(e.g. interrupts from a given line) hanrllerl by t~e hardcore
teletype DIM, and scheduled events (e.g. maintaining the state of
a line in a table) handled by the answering service may not be
occurring in the expected se~uence.

Remedy: The basic design of the interface between the hardcore
teletype DIM and the answering service is thought to be sound.
There is apparently an implementation error which results in a
race condition, 11hich should be found and fixed.

Page 10

Status: Thts problem is still outstanding.

AST thrashing

Categories: This may result in denial of service.

Description: A malicious user can degrade system service by
forcin~ the system to activate and deactivate entries in the
Active Segment Table (AST) at a high rate. This AST "thrashing"
can he caused hy requiring a larg:e number of directories to be
active. A number of parallel chains of directories can be
created, rooted in the user's home directory. The lowest
directory in each chain can be linked together hy links. Then
performing a "status" witn the chase option enahled vlill require
that all directory chains be activated. With the current
directory depth limit of 16 and link-chasin~ limit of 10, a
single status request can activate about 130 directories. On the
nJT system, four cooperatin~ users could effectively tie up the
4-page AST pool, which currently has 528 entri~s. One user of
the MIT system, if willing to create more than 64 directories
larger than 16K (so that they require 64K pa~e tahles), can crash
the system with this technique since there are 64 of the 64K AST
entries at the present time.

Remedy: The system shoulrl have a graceful way of aborting such
resource-consuming requests. For example, if a suhstantial
number of AST entries were requested hy a single process invoking
a hardcore primitive, the primitive could abort the operation anrl
return an error code, or terminate the process.

Status: This situation still exists.

del dir tree race

Categories: This may result in denial of service.

Des c r i p t i on : The h c s _ en t r y po i n t , d e 1_ rf i r _ t r e e, can be us e d to
delete a subtree of the hierarchy by specifying the root node.
If several other users are cooperating and adding new hranches to
this subtree, they may he ahle to cause the deleting process to
remain in ring zero for an indefinitely long time. Note that
this sort of sabotage can he performerf only on a system with two
or more processors.

Remedy: A solution to this problem is to remove the del_dir_tree
entry from ring zero. The "walk subtree" part of the
del_dir_tree function can he done in the user ring.

Status: This situation still exists.

Page 11

Experiments on the KST

Categories: By performing experiments on the Known Segment Table
(KST), a user can discover the existence of directory trees to
which he does not have access.

Description: If a penetrator suspects that there is a directory
>A>B>C, for example, he can rliscover this by giving the command
"initiate >A>B>C>D." If the directory >A>B>C exists, then
entries for >A, >A>B, and >A>B>C will be constructed in the KST,
regardless of whether or not D exists. The penetrator can
initiate one of his own segments before the experiment and
another one after, hracketing the segment numbers assigned to the
directories. If there is .a gap between the seg~ent numhers
assigned to the user's bracketing segments, then some of the
directories in the pathname exist. Moreover, hy using the ''list
reference names" command, the user can display the reference
names of the intervening directories.

Remedy: One solution to this problem is to have a more effective
cleanup strategy in handling the KST. For example, the initiate
primitive could clean up after itself in the case that the user
does not have access to the entry specified in the pathname.
Another approach is to make use of per-ring segment nu~bers; for
instance all segments initiated in ring 1 (as well as all
superior directories) would have segment numbers from 1000 to
1777, anr:l so forth.

Status: This situation sti 11 exists.

Audit trail tampering

This section deals with a secondary issue; it is a matter of
concern only if an unauthorized user has been able to read or
modify information stored in a segr"ilent. The date-time used (DTU)
and date-time modified (DTM) attributes of a segment indicate
approximately the last time that a segment has heen used or
modified, respectively. These attributes are maintained
implicitly by the file system, so that accesses to segments
generate a "DTU" or "Dn1" audit trail. Although a penetrator,
with some effort, may be able to modify DTU or DTM by patching,
he can modify these attributes simply by calling the set_dates
entry in hcs_, providing he has "modify" access to the containing
directory. He can, for example, reset DTU and DTt1 to the values
they had prior to the unauthorizer:l access to the segment, thereby
covering his tracks.

The presence of this entry in hcs_, while not a security hole,
can aid a system penetration effort. Since the reason for the
set_dates entry in hcs_ is to allow certain backup programs to be
run in processes ~ith less than SysDaemon privilege, the
particular pro~rams can he modified, and then the set_dates entry

Page 12

can he removed from hcs_.

Traffic analysis experiments

This final section deals with a class of problems, rather than a
specific one. It is often possible for a penetrator to
obtain useful information by observing the level of activity of
another user's process. There are some sorts of activity which
others cannot observe, such as the rate of transmission to or
from the terminal attached to a process. Some other indicators
of activity are readily accessfhle, such as the information
displayed in the "v1ho table:" all "listerl" users have
corresponrling entries in the who tahle whenever they are logged
in. (A usPr can he "unlisterl", hut this is not the default
case.) Two cooperating users can send information based upon the
presence of who table entries.

Information can he obtained hy the receiving process whether or
not the sending process is cooperating. In a military system,
where the normal information paths between processes of different
levels are constrained, information may sti 11 be transmitted
using traffic analysis techniques. If the process which is the
subject of the experiment is not cooperating, but is merely being
observed, then the information obtained hy traffic analysis may
contain more noise. Nonetheless, it may he sufficient: if the
penetrator knows a way to crash the system, he may choose to do
so only when a certain user name appears in the who table.

A more informative sort of traffic analysis experiment is to
observe the number of records of storage used by another user, hy
exam1n1ng quota. Storage usage is reflected up to the lowest
containing directory with nonterminal quota; if the penetrator
has access to that containing directory, he can observe storage
usage. To obtain Information \'Jith the least noise, the
penetrator would perform the experiment at a time when the
observed user was the only one operatin~ within the terminal
quota subtree. Note that separate accounting segments, as
proposed for the accounting syste~ hierarchy scan problem, would
help in this case.

Other sorts of traffic analysis experiments include the
observation of segment nunber usage, paging rate, anrl response
time. In each of these three cases, an estimate of the level of
activity of another process is made by measuring the performance
of one's own process; consequently the noise in these
measurements increases with the number of active processes.

These are examples of a class of
considered if information paths
controlled. InforMation paths of
might be considered acceptable.

problems which need to be
between processes are to be
sufficiently low bandwidth

