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1 Abstract

Imageregistrationalgorithmsbasedon gradientmethodsprovide quantitatve motion measurementsom sequencesf video
images. Although suchmeasurementsan be degradedby imagenoise,larger degradationgypically resultfrom systematic
biasin the algorithmsthatis presengevenif theimagesarenoise-free.To improve the accurag of motion measurementsye
have developeda new classof multi-imagealgorithmsbasedon multi-dimensionabigital filters. The new algorithmsprovide
betterestimate®f spatialandtemporalgradientsandalsocompensatér motionblur causedy the non-zeroacquisitiontime
of theimager We have optimizedfilters for measuringarbitrarymotions,andwe illustrateresultswhenthosefilters areused
to estimateconstantelocity movements.We alsoshaw resultsfor filters thatare optimizedfor harmonicanalysisof periodic
motions. Using thesealgorithms,systematiciasin the amplitudeof sinusoidalmotionis lessthan0.001pixelsfor motions

smallerthanonepixel in amplitude.Thisrepresenta hundred-folddecreasén biascomparedo existing methods.

Keywords: opticalflow, registration,subpixel, gradient tracking,spatio-tempordiilters

2 Intr oduction

Recentadvancesin CCD imaging technologyhave made
high quality videoimagerswidely available. In combination
with a computey video imagersallow not only qualitatve
obsenationsof motion but also quantitatve measurements.
Our goalis to take advantageof this combinationto enable
high resolutionmotion analysisof biological and artificial
micromachineshatareotherwisedifficult targetsof study[1;
2;3;4;5;6].

Our approactis to estimatemotionsfrom sequencesf
imagesobtainedusing stroboscopidllumination [3]. While
motions can be estimatedby processingsequence®f im-
agespairwise, processinglarger groupsof imagescan be
adwantageouskFor example,combiningmultiple imagesinto
higherlevel constructionssuchas“mosaics; canleadto an
efficient and completerepresentationthat canbe useful for
videocompressiornyideoindexing, searchandmanipulation
[7]. Furthermore,processingsequencesaturally leadsto
iterative schemeshatcandramaticallyimprove accurag and
reducecomputationatosts[8]. Onemechanisnthatleadsto
increasedaccurag is that increasingthe numberof frames
in the estimationproceduretendsto increasethe number
of constraints[9; 10]. Our goal is to take advantageof
multiple imagesto develop algorithmsto estimatemotions
with subpixel accurag.

Our algorithmsare basedon spatio-temporagradients
[11; 12; 13; 14]. Unlike edgedetectionmethods[15] or
point-correspondenaaethodq16; 17], algorithmsbasedon
spatio-temporalgradientscan be usedto register arbitrary
images: no prior knowledge of the target is necessary
Furthermorethesealgorithmstake advantageof information
from all partsof theimage(ratherthanjust at edgesor other
features)which is particularlyimportantfor the registration
of noisyimages.

Many groups have examined multi-image spatio-
temporalfilters for motion estimation. Several groupses-
timate velocity using tuned Gaborfilters [18; 19; 20; 21].
Other groupsexaminedmulti-image gradientmethods[22;
23;24]. Theseauthorggenerallyaddresshecomplicationsof
detectingarbitrarymotionfields,occlusionandrobustnesso
smalllocal gradienty“the apertureproblem”).

We have focusedon a differentissue:how eachstepin
a motion detectionalgorithmaffects the ultimate resolution
of the resulting estimates. Specifically we focus on deter
mining the relationshipbetweengradienterrorsand motion
estimatiorerrors.

Many physical factors contribute to errorsin motion
estimatesbasedon video images,including shot noise due
to the quantumnatureof light, Johnsonnoisein electrical
amplifiers, fixed-pattermoisedueto pixel-to-pixel changes
in imager sensitvity, and mechanicalstability of the mea-



surementapparatuq3; 25]. Algorithmic factorsare also
important. In fact, errorsdueto intrinsic biasin algorithms
basedon first differenceapproximationso gradientd11] are
typically largerthanthosedueto physicalfactorsfor modern
scientific-gradecamera$26].

We view motionestimatiorasa signalprocessingprob-
lem. To remove the algorithmic limitations, we developed
a new class of multi-image algorithms basedon multi-
dimensionaldigital filters. Becausefilter errors decrease
roughly exponentially with filter support[27], a small in-
creasen filter supportcanleadto significantlymoreaccurate
gradientestimatesandthereforemotionestimates.

The filters can be optimizedfor specificapplications.
We demonstratggeneralmotion detectionalgorithms. Al-
S0, becausethe measuremenof sinusoidalmotionsis so
importantin measuringthe modesof mechanicalsystems,
we createalgorithms specializedfor harmonicanalysisof
periodicmotions.Simulationsof the nev methodsshav that
the systematidiasin the amplitudeof sinusoidalmotion is
lessthan0.001 pixels for motionssmallerthanone pixel in
amplitude. This represents hundred-folddecreaseén bias
comparedto first-differencemethods. In fact, systematic
errorsdueto biasin the new algorithmsare reducedto the
point that they are tiny comparedto randomerrorsdue to
noise,evenfor imagesfrom low-noise,scientificgrade CCD
imagers.

3 Motion Estimation Algorithms

Translationsof a scenecausebrightnesschangesthat are
related by the “constant brightnessassumption”[11; 12]
which canbeexpresseas

Ez(:v;yat)ux(t) + Ey($7y7t)u’y(t) + Et(:v;y:t) = 0
(1)

whereE,(x,y,t), Ey(z,y,t) andE,(z,y,t) represengra-
dients of the image brightnessE(z,y,t) in the z, y, and
t directionsandu,(t) andu,(t) representhe velocitiesof
the sceneat time ¢ in the z andy directions,respectiely.
Let G[i, j, k] represensamplesof E(x,y,t) thatwould be
obtainedwith a video camerawith z = ‘A andy = jA,
where A is the pixel spacingof the camera,andt = kT,
whereT is thetemporalsamplingperiod. Equationl canbe
approximateds

Goli, j, Klua[K] + Gy li, 4, kloy[k] + Gu[i, 5, k] =0 (2)

where G[i,j, k], Gyli,j, k], and Gi[i,j,k] are func-
tions of G[i, j, k] that representiscreteapproximationsto
E.(z,y,t), Ey(z,y,t), and E;(z,y,t), andv,[k] andv,[k]
representiscreteapproximationso u,(t) andu,(t). If at
sometime the imagegradientsn Equation2 are known for
0 <i< I, and0 < j < J, thenthe equationrepresents

setof I x J equationdinking thetwo unknown velocities:v,
andv,. We solve this overconstrainedetof equationsusing
themethodof leastsquaresyielding
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wherethe sumsareover ¢ andj, v, and®, areestimatesof
thevelocitiesv, andv,, andall valuesareattime k.

3.1 Gradient Estimation

We estimate the gradients G,[i,j,k], Gyli,j,k], and
Gi[i, j, k] by corvolution of the discreteimages@(i, , k]
with linearfilters. For example,corvolution with

ha[i] = d[i + 1] — 4[] 4

whered[0] = 1 andd[i] = 0 for i # 0, providesa first dif-
ferenceapproximationto the gradientof a one-dimensional
function. This first differencdfilter bestapproximatespatial
gradientsbetweenpixels. To obtaina gradientestimateat a
pixel, onecanaveragetwo first differenceestimatedo obtain

hali] = (8[i + 1] — 8[i — 1)) /2. )

To satisfy Equation 2, all three gradientsmust be
estimatedat onelocationin spaceandtime. (Examplesof
problemswith gradientghatarenot co-locatedcanbe found
elsavhere[27; 28; 24].) If the filter in Equation5 is used
to estimateall three gradients,then the gradientsare co-
locatedat a pixel. However if the first differencefilter is
used,the gradientsdo not satisfy the co-locationcondition.
To co-locategradientsin multiple dimensionswe introduce
interpolationfilters. For example

hsli] = (8[i + 1] + 6[4]) /2 (6)

providesafirst orderapproximatiorof thevalueof afunction
atpointsbetweerpixels. In generalwe let

Gw[iaj’ k] = (gw[z] hy[]] h't[k]) * G[iaja k]

Gy[i7j7 k] = (hz[l] gy[j] ht[k]) * G[i7j7 k]

Gili, j, k] = (hali] hylj] ge[k]) = G, J, k]
whereg,[i], g,[j], and g;[k] represengradientapproxima-

tions, h,[i], hy[j], and hi[k] represeninterpolators,and s
representsonvolution.

3.2 Spatial Filters

Imagesfrom a video microscopeare low-passfunctions of
spatialfrequeny becausef the finite apertureof the optical
train [29]. By controlling the numerical apertureof the
objective and total magnificationof the optical train, one
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Figure 1. Spatiallow-pasdilter. The curve shavs the magnitudeof
thefrequeng respons®f a symmetric4-point,low-pasdilter used
to attenuaténigh frequeng imagenoise.

canlimit the maximumspatialfrequeng projectedonto the
camera,and therebyavoid “aliasing” [30]. An additional
sourceof low-passfiltering resultsbecausesachpixel in a
CCD camerecollectslight from a portion of the imagewith

an areaon the order of the squareof the interpixel distance
(i.e., “fill factors”aretypically closeto 1). This non-zero
samplingareatendsto decreasdigh spatialfrequencie$30].

Effects of this low-passfiltering could be compensatedby

using inversefilters. However, such compensatioris not
necessaryor accuratemotion estimation.Becausdhe same
linear filtering is appliedto eachimagein a sequencethe
spatiaffiltering is equivalentto changinghespatiafrequeng

contentof thetargetwithout changingts motion.

Unlike the image of the target, imaging noise due to
the quantumnature of light and due to Johnsonnoise in
the amplifierstendsto be broadband. For the majority of
our microscopamages signalenepgy decreasewith spatial
frequengy and is smallerthan the noise enegy for spatial
frequenciesabove 2, wherer is the Nyquistfrequeng. The
differencen spatialfrequeng contentbetweerthesignaland
noise encourageswo actions. First, we usea spatiallow-
passfilter (Figure1) to attenuaténigh frequeng noise(asin
a Weinerfilter). Secondwe ignore high frequenciesvhen
designingthe gradientestimationfilters. This allows usto
createmoreaccuratdiltersin the spectrunof interest.

3.3 Temporal Filters

Imagesare obtainedby integratingthe light that falls on an
imager during a non-zeroacquisitiontime. The non-zero
acquisitiontime smoothestemporalchangesn brightness,
blursmoving objects,andleadsto errorsin motion estimates
[3]. Sucherrorscanbereducedy incorporatingknowledge
of the acquisitionprocessinto the motion estimationalgo-
rithm. For example,if the imagercollectslight uniformly
during the image acquisitiontime, then temporal changes
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Figure 2. Temporalcompensatioffilter. The curve shavs theideal
magnitudeof afilter thatwould compensatéor non-zercacquisition
time for animager The acquisitiontime is takento be equalto the
temporalsamplingperiod.

in brightnesswill simply be low-passfiltered; the cutoff
frequeng of thefilter decreaseastheimageacquisitiontime
increasesSupposdhat motionsof a targetcausechangesn
brightnesswith temporalradianfrequeny w. If the image
acquisitiontime is equalto the samplingperiod (so that the
imager collects light striking its surface during the entire
samplingperiod)thenthe non-zeroacquisitiontime reduces
the apparenmagnitudeof the brightnesschangegluring the
cycle by afactorof w [30]. Suchchangesn brightness
canbecompensatetly inversefiltering with

H(ejw) - si:f/Q

whichis shovn in Figure2.

3.4 Filter Design

The Parks-McClellanalgorithm [31; 30] createdfilters that
minimize a weightederror in the frequeny domainwith a
weightingfunctionthatdeterminesherelative importanceof
an error at a particularfrequeng. For spatialfilters, we set
theweightingfunctionto bew1! for frequenciedbelow 2 and
0 for frequenciesabore. An ideal interpolatingfilter hasa
magnitudeof 1 atall frequenciess; anidealdifferentiatothas
a magnitudeequalto w [30]. Filters were calculatedusing
the Matlab 5.1 “remez” function [32] and are listed in the
appendix.Examplesareshavn in Figure3.

Figure 3 illustratesthe fundamentaltradeof between
odd and even filters. Derivative filters of odd length best
approximatethe derivatives at points co-locatedwith pixel
centers. However, due to their symmetry the magnitudes
of suchfilters are0 at w = «. Derivative filters of even
length best approximatethe derivatives at points midway
betweemnpixel centers.The magnitudeof suchfilters better
approximateideal derivative filters at high frequencieghan



do thosewith odd length. However, symmetryrequiresthat
the magnitudesof interpolationfilters of even lengthare 0
atw = w. Corversely the bestodd interpolationfilter is
simply h[n] = d&[n], which is exactly the ideal interpolation
filter. Thus,evenlengthfilters betterapproximatederivative
filters thanoddlengthfilters of comparabldength. However,
odd length filters (which are always of length 1) better
approximateinterpolationfilters than do even lengthfilters,
which arealwayslonger

It is possibleto changethe filter accurag tradeof by
consideringthe pre-filter. The pre-filter can be implement-
ed by corvolving it with both the spatial derivative and
spatialinterpolationfilters. In the frequeng domain, this
is equialent to multiplying the spectrumsof the gradient
and interpolationfilters by the spectrumof the pre-filter.
The resulting spectrumsneed not resemblethose of ideal
interpolationor differentiationfilters. Only the ratio of the
spectrumsnustremainneartheidealratio, 5

One can createmuch more accuratefilters by design-
ing interpolation and gradientfilters togethey rather than
separately A small error in the gradientfilter spectrum
can be correctedby a correspondingdentical error in the
interpolationfilter spectrum. We design spatial filters by
minimizing a weightederror of the ratio of the spectrumsf
theinterpolationandgradientfilters. We usea squarecerror
with a weightingfunctionthatis the sameasthat usedwith
the Park-McClellanalgorithmexceptatlow frequenciesThe
new weighting function was setto 16/ for all frequencies
lessthan/16. This changeproducedsignificantlyimproved
the performanceof the resulting filters. We initialize our
minimizationusingthePark-McClellanfilters corvolvedwith
the pre-filter  We then searchfor a local minimum in the
weightederror of the ratio using the simplex method[33].
The error in ratio of a few example filters are shavn in
Figure4; thefilters aregivenin the appendix.The shapeof
the spectrumsof the individual filters are unremarkableand
arenotshown.

The samemethodof designdoesnot work for temporal
filters. Changingthe pre-filterin spacechangegheimageof
the target without changingits apparentmotion. Changing
the pre-filter in time changesthe apparentmotion of the
target.

3.5 Small Motions

Motions of a target causechangesn pixel brightnesseshat
dependon boththetemporalpropertiesof the motionandthe
spatialpropertiesof the scene. For example,large changes
in pixel brightnessanresultfrom eitherlarge displacements
of a low contrasttarget or from small displacement®f a
high contrasttarget. Temporalchangesn pixel brightness
are particularly simple for motionsthat are small compared
to the distance®verwhichthe spatialgradientsn brightness
changesignificantly For such motions, temporalchanges
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Figure 3. Derivative andinterpolationfilters. The gray lines shav
the magnitudesof the frequeng response®f an ideal derivative
(top) and interpolation(bottom) filter. The dashedines shawv the
magnitudesof frequenyg responsef the 6- and 7-point filters
designedwith the Parks-McClellanalgorithm. The dotted lines
shav the magnituderesponseof the first order filters given by
Equationst and6.
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Figure 4. The errorin ratio of spectrumsof filters designedby
consideringonly the ratio of the spectrums.The black lines shav
filters that were createdby minimizing the weighted,squarederror
of the ratio of the spectrums. The gray lines shaw filters created
usingthe Parks-McClellanalgorithm. The 2-pointfilters (Equations
4 and6) areshawn for reference.



in pixel brightnessare proportionalto temporalchangesn
target displacemeni(proportionality constantis the spatial
gradientin target brightness). In contrast,large motions
generatebrightnesschangesat frequencieshat are related
to the spatial frequeng contentof the target. Considera
target that consistsof a single spatial frequengy and that
is moving with constantvelocity v. Brightnesschangesas
sin(w(z — vt) + ¢)). Thus,a spatialfrequeny w leadsto a
temporalfrequeny wov.

TemporalfiltersaredesignedisingtheParks-McClellan
algorithm, with a weighting function of % from0...2 and
0 elsavhere. By excluding high temporalfrequencieswe
are able to make significantly more accuratefilters in the
remaindeiof the spectrumWe choosethew ! weightingso
thatfor smallmotion, andthereforesmall temporalfrequen-
cies, the filters are particularly accurate. The gradientand
interpolationfilters are madeto include the pre-filter The
resultingfilters areshowvn in Figure5. Notice thatthe length
8 derivativefilter is asignificantlybetterapproximatiorto the
idealthanis thelength7 derivativefilter.

3.6 Periodic Motions

For periodic motion, changesin brightnessare periodic,
consistingof alinearcombinatiorof afundamentalrequengy
andits harmonics. The temporalfilters needto be accurate
in only a small bandwidtharoundthosefrequencies. For
the caseof eight imagesper cycle, those frequenciesare
AR ?17”, m wherer is the Nyquistfrequeng. We definethe
region of non-zeroweightingfunctionaroundeachfrequeng
w to be0.999w to 1.001w, exceptfor « for which theregion
is 0.9997 to 7. We usean w~! weighting as before. For
temporalinterpolatorsthe weightingfunctionis zeroin the
region including spatial frequeny =« becausethe response
of a symmetriceven supportfilter must be zero at spatial
frequeny 7, asdiscussedn Section3.4. The gradientand
interpolationfilters are madeto include the pre-filter An
example8-pointfilter is shavn in Figureb.

Sincethe motionsareassumedo be periodic,we allow
the temporalfilters to wrap, using the first picture as if it
followed the last and the last picture as if it precededhe
first. Eight velocitiesareestimatedat timesmidway between
samplingtimes. The amplitudeand phaseof the first three
anda half velocity harmonicsare estimatedusinga discrete
Fourier transformof the eight velocities. To determinethe
displacementamplitude and phase,we divide the velocity
amplitudeby thedriving frequeng andshift the phaseby 90
degrees.

3.7 Volumesof Support

We testmulti-imagegradient-basedlgorithmswith gradient
filter designsof four differentvolumesof support:3 x 3 x 8,
5x5x8, 7Tx7x8, and9 x9 x 8 wherezx x y x t represents
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Figure 5. Temporalfilters. The gray curves shav the magnitudes
of “ideal” temporalderivative (top) andinterpolation(bottom)filters
thatrepresenthe productsof theidealfilters shavn in Figure3 with
thetemporalcompensatiofiilter shavn in Figure2. The continuous
blackcurvesshav themagnitude®f 8-pointdiscretdfiltersdesigned
to optimize responsedor the fundamentalfrequeng and higher
harmonicghatresultduring periodicmotionatw = 7. Thedashed
anddottedblackcunesshav themagnitude®f 8- and7-pointfilters
designedor arbitrarymotions.

the numberof pixelsin the z, y, andt¢ directionsthat are
usedto calculateeachof the gradientsin Equation3. The

9 x 9 x 8 algorithm usesspatialfilters that are corvolutions
of 6-point Parks-McClellanfilters with the spatialpre-filter.

The remainingalgorithmsuse spatialfilters designedusing
theratio minimization. All of thesealgorithmsusethe same
8-point temporalfilter designedusing the Parks-McClellan
algorithm.In onecasewe vary thetemporalsupportandtest
algorithmswith support? x 7x 8,7 x 7x7,7x7x5,7x 7 x4,

and7 x 7 x 2. We comparethe resultsfor the multi-image
gradient-basedlgorithmsto resultsfrom the pairwiselinear
bias compensatedLBC) imageregistrationalgorithmfor a
sinusoidakstimatol[26; 3] andto resultsfor afirst difference
algorithm in which g,[i], gy[j], and g,[k] are given by

Equationd andh,[i], hy[j], andh,[k] aregivenby Equationt

[11;12].



4 Methods

Motion estimationalgorithmsare testedby applying them
to estimate motions of computergeneratedimages and
computergeneratedhifts of measuredmages. Computer
generatedhoiseprocesseareappliedto theimagesto simu-
late effectsof imagingnoise.

4.1

We analyzemotion estimatedor threedifferenttestimages
(Figure 6). Thefirst is a dark spoton a bright background.
Thisimageis definedmathematicallyby

_ 14cos2nr/6
Glig) = { M0~

Images

for |r| < 3,
otherwise

My )
where r is the distancefrom pixel ¢,j to the center of
the spot and M, controls the backgroundintensity The
smallfeaturesizeprovideslittle signalenegy andthe bright
backgroundproducedarge amountsof shotnoise(described
belon). Thus, this image teststhe algorithmsunder low
signal-to-noiseconditions. Furthermore,the mathematical
representatiorallows its centerto be placed at arbitrary
locationsin the image— on or betweenpixel centers. To
avoid artifactsthatcouldresultif thespotwerealwaysaligned
with the pixel grid, the centerof the spotis choserrandomly
(x andy coordinatesuniformly distributed+1 pixel around
the centerof the image)for eachtest. The secondimage
is a light micrographof silicon micromachinedesignedby
Exponentrailure AnalysisAssociatesThis imagerepresents
ourinterestsn metrologyof microelectromechanicalystems
(MEMS). Thethird imageis asyntheticaperturaadar(SAR)
imageof the Galapagosslands. Thisimagehassignificant
enegy in high spatialfrequencieandteststhe robustnesof
thealgorithmsto high spatialfrequencies.

4.2 Translations

Translationsof the simulatedspot are accomplisheddy re-
calculatingimagesusing Equation7. Translationsof the
fatigue test device and SAR imagesare accomplishedby
takingthe discreteFouriertransformof the 512 by 512 pixel
imagesmultiplying by space-shiftingilters (e72=«=tiAywy)
and then inversetransforming. To avoid artifactsnearthe
boundarieof the image,gradientsare evaluatedin only the
center32 by 32 pixel region (sothatonly the center40 by 40
pixelsareusedfor eventhelongestof thefilters tested).The
analysisregionsareshavn in Figure6

To simulatefinite image acquisitiontime, we average
100 imagesevenly spacedin time during the acquisition
period. For the fatiguetest structureand SAR images,we

limage(P-43899)courtesyof the Jet PropulsionLaboratory Pasadena,
CA.

Simulated Image of
a Spot

Optical Microscope Image of
The Fatigue Device
Wl

SAR Image of
The Galapagos

Figure 6. Testimages.Thetop panelshavs a simulatedimageof

aspot(Equation7). The middle panelshavs an opticalmicrograph
of a fatigueteststructure. The bottom panelshavs an SAR image
of the Galapagosslands.Theinsetin eachpanelshavs amagnified
view of theanalysisregion.

transformtheimagesmultiply by theaverageof 100different
space-shiftindilters, andtheninversetransform.

For eachconstantvelocity test,motionis parallelto the
z-axisonly. For eachsinusoidatest,displacements the z-
directionaregivenby A, sin(% ¢ — 1.3) anddisplacements
they-directionaregivenby A, sin(§t — 1.4), whereA, and
A, arethedisplacemenamplitudes.

4.3 Simulated Noise

We simulatethe effects of imaging noise, including fixed-
patternnoise, shot noise and quantizationerrors. Motion
is simulatedby creatinga sequencef eight high-precision
imagesrepresentinghe averagenumber of electronscol-
lected at eachpixel. Fixed-patternnoiseis simulatedby



multiplying theseémagedy aspatialarrayof pseudo-random
gain factorstaken from a Gaussiardistribution (mean= 1,
standarddeviation = 0.00315)simulatingfixed patternnoise
with enegy thatis —50 dB below the averagesignalenegy.
The samespatialarrayis usedfor eachof the eightimages
within one motion sequence.Shotnoiseis simulatedusing
a pseudo-randonfPoissonnumbergeneratorto corvert the
averagenumberof electronsto an integer representinghe
numberof electronsin onerandomlychoseninstance. The
numberof electronsis then divided by 32 (the numberof
electronsneededto incrementthe A/D output of a camera
by one)andtruncatedto modelquantizatiorerrors).

All noise simulationsare repeatedusing 10 different
sequence®f imagesfor eachof 10 different fixed-noise
patternsDifferentshotnoisepatternsareusedfor eachimage
in eachof the 100 sequencesThe averagebrightnessn the
analysisregion of eachof theinitial imagesis normalizedso
thattheshotnoiseis —50 dB smallerthanthe signalenegy.

5 Results

To investigateerrors in motion estimatesbasedon video
images, we simulate the performanceof four classesof
algorithms: first differenceq11; 12], LBC [26; 3], multi-
image gradient-basednethodsspecializedfor periodic mo-
tion, andmulti-imagegradient-baserhethodgyeneralizedor
arbitrarymotion. Simulationdn theabsencef imagingnoise
reveal systematicbiasesthat limit the ultimate resolution
of the motion estimationalgorithm. Studieswith imaging
noiseillustratetherelative performancef eachalgorithmfor
particularimagingconditionsaswell asconditionswhenbias,
noise,or bothareimportant.

5.1 Biasin Estimatesof SinusoidalMotions

Four multi-imagealgorithmsweredesignedo estimatesinu-
soidalmotionsof atarget(Section3.6). Filtersfor threeof the
algorithms(3x3x8, 5x5x8, and7 x 7 x 8) weredesignedy
minimizing errorsin theratio of thegradientandinterpolation
filters (Section3.4). For comparisonfilters for theremaining
algorithm(9x9x8) weredesignedisingthe Parks-McClellan
algorithm. Differencesamong thesealgorithms, the first
differencealgorithm, and LBC were assessedising noise-
free imagesof the spot (Equation?7) undegoing sinusoidal
motion. Resultsareshavn in Figure?.

For eachalgorithm, errorsin estimatingthe magnitude
of the motion tend to increasewith the amplitude of the
motion. However, trendsfor small andlarge motionsdiffer.
For smalldisplacemeramplitudeglessthanl pixel), thebias
is (1) a nearlylinear function of displacemenamplitudefor
eachalgorithm,(2) morethanan orderof magnitudesmaller
for multi-imagealgorithmsthanit is for the first-difference
or LBC methodsand(3) morethantwo ordersof magnitude

smallerfor the5 x 5x 8 and7 x 7 x 8 algorithmsthanit is for
thefirst-differenceor LBC methods.For large displacement
amplitudes(greaterthan 3 pixels), the magnitudebias is
similar for the first-differenceand multi-imagemethodsand
is significantlysmallerfor LBC.

Biasesfor the 5 x 5 x 8 and 7 x 7 x 8 algorithmsare
very similar. We find that the the performanceof the two
algorithmsis significantly different only when processing
imagesof high spatial-ery contentsuch as the Galapagos
Islands. For the SAR imageof the Galapagodslands(not
shawn), the 7 x 7 x 8 algorithmperforms10 timesbetterthan
the5x5x8 algorithmfor smallmotions.The9x9x8 algorithm,
which usesspatialfilters createdwith the Parks-McClellan
algorithm rather than the ratio-minimization, performs as
well asthe3x3x8 algorithmandsignificantlyworsethanthe
5x5x 8 and7 x 7 x 8 algorithms.Becausef their relatively
poor performanceusing small filter supports,multi-image
gradient-basedalgorithmswhose spatial filters are created
with the Parks-McClellanalgorithm are not exploredin the
remaindeiof this paper

Sinusoidalmotions of the spotimage sequencevere
also estimatedusing multi-imagealgorithmswith filters de-
signedfor arbitrary motions (Section3.5). The resulting
biaseqnot shavn) weregenerallylargerthanthosefor algo-
rithmsthatwerespecializedor periodicmotions: amplitude
biaseswere typically 10% greaterand phasebiaseswere
approximately3 timeslarger.

Noise-free images of the fatigue device undegoing
sinusoidaldisplacementsvere simulatedto asses®rrorsin
motion estimatesusing the multi-image algorithm with a
7x7x8 volumeof support(Figure8). Errorsin estimatinghe
amplitudeof the z-componenbf displacemen(A,) depend
on both A, and 4,. Amplitude errorsare lessthan 0.001

pixels for motions with total magnitudes, /A2 + A2 less

than 1.2 pixels. For larger motions, the amplitude errors
gradually increase,becomingas large as 0.05 pixels for

A, = A, = 2 pixels. For agivenvalueof A,, errorstend
to increasewith A,. Thereis exceptionsto this trend; for

example,errorsareunusuallysmallfor A, = 1 pixel when
A, = 0. Theatypically small erroris the boundarywhere
theamplitudeestimateswitch from beingtoo largeto being
too small. Errorsin estimatingthe phaseof the z-component
of displacementalso dependon both A, and A4,. Phase
errorsareparticularlysmallfor A, ~ 0.4 pixel, markingthe

locationwherethe error switchesfrom negative to positive.

Phaseerrorsare smallerthan 102 radiansfor all 4, < 2

and A, < 2 pixelsdroppingto well belov 10~* radiansfor

small motions. Similar trendsare obsened for analysesof

thespotandSAR imagesequencegot shown).
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Figure 7. Amplitude dependencef bias in estimatesof sinu-
soidal motion. Sinusoidaldisplacement®f the spot (Equation?)
were analyzedfor for 17 displacementamplitudes(Section4.2,
1073 < A, < 10, A, = 0). For eachamplitude,8 imageswere
generatedisinga samplingperiodequalto one-eighttof the period
of thesinusoidandanimageacquisitionperiodequalto thesampling
period. Symbolsin the top panelrepresenthe differencebetween
the estimatecamplitudeof the displacemenandthe amplitudeused
to generatghe images. Symbolsin the bottompanelrepresenthe
differencebetweerthe estimatedohaseof the motionandthe phase
usedto generatehe images. Labelsidentify the algorithms: first
differences|.BC, andperiodicspecific,multi-imagemethodswith
4 volumesof support(3 x3x 8, 5x5x 8, 7x7x8, and9 x 9 x 8).
Forreferencestraightlineswith unit slopeareshavn in thetop plot.
Phasebiasessmallerthan10~% areplottedas10~ for clarity.

5.2 Biasin Estimatesof Uniform Motion

Eightmulti-imagealgorithmsweredesignedo estimatearbi-
trary motionsof atarget(Section3.5). Four of thealgorithms
have the sametemporalfilters and different spatial support
(3x3x8,4x4x8, 5x5x8, and7x7x8); theremainindfilters
have the samespatialfilters and differenttemporalsupport
(TxTx2,7x7x4,7x7x5,and7x7x7). Differenceamong
thesealgorithms, the first differencealgorithm, and LBC
wereassessedsingnoise-fredmagesf thespot,fatiguetest
device, and Galapagodsland undegoing uinform (constant
velocity) motion. Resultsareshavn in Figure9.

Many of the trendsfor algorithmsusing 8-point tem-
poralfilters (Figure 9, left panels)are similar to thoseseen
in Figure7. For example,errorstendto increasewith the
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Figure 8. Amplitude dependenc®f sinusoidalmotion estimates
usingtheperiodicspecific7x7x8 multi-imagealgorithm. Sinusoidal
displacementof the fatigue device were analyzedfor for 1682
pairs of displacemenamplitudesA, and A, (Section4.2). For
eachamplitude,8 imageswere generatedising a samplingperiod
equal to one-eighthof the period of the sinusoidand an image
acquisitionperiodequalto the samplingperiod. The uppersurface
map illustratesthe differencebetweenthe estimatedamplitude of
displacemenin thex directionand A, asafunctionof both A, and
Ay. Thelower surfacemapillustratesthe differencebetweenthe
estimatedphaseof displacemenin the z directionandthe z phase
usedto generatethe images. The contoursshaw lines of constant
bias(integralpowersof 10). For clarity, the surfacemapsareshaded
(right scale)to indicatebias.

velocity of the motion. Also, trendsfor small andlarge ve-
locitiesdiffer. For smallvelocities(lessthan0.5 pixel/frame),
thebiasis a nearlylinearfunctionof displacemenamplitude
for eachalgorithmandroughlyanorderof magnitudesmaller
for multi-imagealgorithmsthanit is for thefirst-differenceor
LBC methodsThebiaseof the5x5x8 and7x7x8 algorithms
areatleasttwo ordersof magnitudesmallerthanthe biasof

LBC or the first differencealgorithm. For the fatiguetest
structureandthe Galapagosbiasis smallerfor multi-image
methodswith larger volumesof support. However, for the
spotimage the 3x3x8 algorithmoutperformsboththe 5x5x8

and7 x 7 x 8 algorithms. The performanceof the 4 x 4 x 8



algorithm(notshawn) fallsbetweerthe5x5x8 andthe3x3x8
algorithms.

For thelargestvelocities(> 1 pixel/frame),the biasfor
LBC is muchsmallerthanthatfor the multi-imagemethods
or for thefirst differencealgorithm.

For thespotandthe Galapagosthebiasfor the7x7x8,
Tx7x4, and7x7x2 algorithms areidenticalfor asymptotically
small motions. Thesealgorithmshave the samesupportin
spacebut differentsupportin time. For larger motions, the
biasesin the algorithmsdiffer by up to a factorof 10. Note
thatthefirst differencealgorithm(2 x 2 x 2) andthe 7 x 7 x 2
algorithmdiffer only in their spatialfilters. The biasesf the
multi-imagealgorithmswith oddsupportin time, the7x7x7
and7 x 7 x 5 algorithms,is mary ordersof magnituddarger
thanthe biasesof the algorithmswith even supportin time
(consistentvith Figure5).

5.3 Effectsof Noise

To characterizeffectsof imagingnoise, jmagesof sinusoidal
motions were calculatedand then degradedby simulated
fixed-patternnoise (with enegy 50 dB below that of the
signal), shot noise (with enegy 50 dB belov that of the
signal),andquantizatiorerrors(12-bit resolution).Biasesin

motionestimatesisingtheperiodic-specifidx7x8 algorithm
and using LBC are showvn in Figures 10 and 11. The
bias functions for the multi-image algorithm shareseveral

featuresacrossimages. First, the bias in the estimateof

the z componenbf amplitude A, dependson both 4, and
Ay. Generally the biasesare smallerwhen A, and 4, are
smallthanwhen 4, or A, is large. Second piasesfor large
amplitudes(near 4, = A, = 2) are similar for eachof

the imagesequencesHowever, biasesfor small amplitudes
differ significantly— beingsmallfor the SAR image,larger
for the fatiguedevice, andlarger still for the spot. Notably,

the standarddeviation of the motion estimategnot shown)

increaseé thesameordet

For the spot,the amplitudebias changedittle with the
amplitude of the displacement. The bias is on the order
of 0.01 pixelsfor the multi-image algorithm and nearly an
orderof magnitudelarger for LBC. Standarddeviationsfor
both algorithms(not shavn) are approximately0.01 pixels,
independentf the amplitudeof the displacement.

For the SAR andfatigueteststructuresthe amplitude
errorsof the multi-imagealgorithmin the presencef noise
arequalitatively similarto theamplitudeerrorsin theabsence
of noiseshawn in Figure8. For motionssmallerthanroughly
1.2 pixels,amplitudeerrorsaresmallerthan0.001pixels.

Bias functions for LBC dependstrongly on 4, and
only weakly on A, [26]. Thus, errorsin estimatingthe
x componentof motion are only weakly affected by the
amplitudeof motion in the y direction. The biasis nearly
constantfor A4, > 0.1 pixels and decreasesapidly as A,
dropsbelow 0.1 pixels. Exceptat the highestamplitudesthe

biasfor LBC is significantly greaterthanthat for the multi-
imagemethod.

Figure 12 shows standarddeviations for the multi-
imagealgorithmfor thefatigueteststructuremagesequence.
Notice thatthe standarddeviation varieslittle with either 4,
or A,, remainingnear0.001 pixels. Standarddeviations of
LBC weresimilar. For theimageof the the Galapagognot
shawn), standarddeviationsfor both algorithmswere 0.006
pixelsanduniform.

Phaseerrorsfor the multi-imagealgorithmfor the spot
sequencare on the order of 10~ radiansfor all valuesof
A, andA,. By contrastphaseerrorsof LBC becomealmost
aslargeas10~2 radians.For boththe multi-imagealgorithm
and LBC, phaseerrorsfor the SAR image and fatiguetest
structureimageare quantitatvely similar. The multi-image
algorithm phaseerrors range from 10~* radiansto 10~2
radians.LBC phaseerrorsremainmostly betweenl0—2 and
10~2 radians. Figure 12 shavs the multi-image algorithm
standardieviation of phaseor thefatiguetestdevice image-
sequenceThestandardleviationsrangefrom about3 x 102
to 102 radians. The standarddeviations of phasefor the
SAR image-sequencare quantitatvely similar to thosefor
the fatigue test image-sequence. Standarddeviations for
phaseestimate®f the motion of the spotrangefrom afactor
of threeto afactorof five higherfor bothalgorithmsretaining
thesameform seenin Figurel2.

6 Discussion

The accurag of motion measurementfrom video images
is limited not only by physical factors such as noise but
also by algorithmic factors, including systematicbias that
is presenteven in the absenceof noise. Our goal was to
createan algorithm whoseinherenterrorsare smallerthan
the errorsandvariationscausedy noise. We accomplished
that goal. Considerthe estimationof sinusoidalmotions
of a high contrasttarget (the fatigue test structure). Even
the small amountsof imaging noise expectedfor a high
quality, 12-bit, scientificimaging systemcausevariationsin
amplitudeestimatesn the orderof 0.001pixels(Figure12).
By contrast,algorithmic errorsfor this image sequencere
significantlylessthan0.001pixel for motionssmallerthana
pixel (Figure8). Thusthebiasin thealgorithmcanbeignored
for motionssmallerthana pixel.

The spot image sequencevas chosento representa
difficult motion target. The small size of the spot means
that fewer than 30 pixels contribute useful information for
the motion estimate eventhoughall 1024 pixelsin the spot
imagesequenceontributeto thenoise.lmagingnoisetypical
for a high quality cameracausevariations in amplitude
estimatef the spoton the orderof 0.01 pixel (not shawvn).
Errors in the absenceof noise for all of the multi-image
algorithmsaresmallerthan0.01 pixel for motionamplitudes
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Figure 9. Amplitude dependencef biasin estimatef constantvelocity. Constantvelocity motionsof the spot (upperpanels) fatigue

testdevice (middle panels) andGalapagossland(lower panels\wereanalyzedor 17 differentvelocities. For eachvelocity, 8 imageswere

generatedeachdisplacedrom the previous by a constantamountin the z direction (abscissapndO in the y direction. Symbolsrepresent
thedifferencebetweerthe estimatedlisplacemenperframeandthedisplacementisedto generateheimages.Theplotsontheleft compare
LBC, thefirst differencealgorithm,andmulti-imagealgorithmswith varioussupportdn space The panelson theright comparemulti-image

algorithmswith varioussupportsn time. Thefirst differenceand7 x 7 x 8 algorithmsareshavn on boththeleft andright plotsfor clarity.

less than 3 pixels (Figure 7). Furthermore,the bias in
estimatesisingthe multi-imagealgorithmsaremorethanan
orderof magnitudesmallerthanthosefor previousalgorithms
(first differencesand LBC) for motion amplitudessmaller
than1 pixel.

As would be expected,in the presenceof noise, per
formanceof the multi-image motion estimationalgorithms
wasdifferentfor differentimages.Amplitude biaseseached
0.05 pixels for large motions (near2 pixels) for all of the
images(Figure10). For the multi-imagealgorithm,biaswas
smallestfor the SAR imageand largestfor the spotimage.

Thisresultis consistentvith thefactthatthe signalenepgy is
greatesfor the SAR imageandleastfor thespot.In contrast,
biasesfor LBC arenot only larger thanthosefor the multi-
image method, they are also much less target dependent.
Thebiasin LBC is not significantlyimprovedby the greater
amountof signal that is available in the fatigue and SAR
imagesequencethanin the spotimagesequence.
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Figure 10. Biasfor theestimateof amplitude(A,) using7x7x8 algorithm(left) andLBC (right) plottedasa functionof driving amplitude,
in thepresencef —50 dB of shotnoise fixed-pattermoise,andquantizatiorerrors.Otheraspect®f thisfigureareasdescribedor Figure8.

6.1 Motions larger than a pixel

The biasin estimatingthe amplitudeof sinusoidalmotion

becomeslarge for displacementamplitudesgreaterthan a

pixel (Figure 7). Onereasonfor the increaseis that while

motionsmay be sinusoidalthe brightnesof a pixel doesnot

vary sinusoidallywith time. As motionsbecomelarger, the

enegy athightemporalfrequencie®f thebrightnesgunction

increases. For motionslarger than abouta pixel, thereis

significantenegy in temporalfrequenciesgyreaterthan the

Nyquistfrequeng; thisenepgy s aliasedo otherfrequencies,
causingerrors.
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Performanceof the multi-image algorithmsfor large
amplitude motions can be improved. For example, if the
imagesaredown-sampledsuperpixel motionsarecorverted
to sub-pibel motions. The critical part of such a down-
samplingstratey is the low-passfiltering, which removes
large spatialfrequenciesAs notedin Section3.5,theselarge
spatialfrequenciesauselarge temporalfrequencies.From
this argument,it follows thatthe low-passfilter usedaspart
of our spatialfilters (Figure 1) is not only importantto filter
outlow signal-to-noiseegionsof thespectrumlt alsoaffects
thedynamicrangeof the motion estimator
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6.2 Volume Support

Filter errors causemotion estimationerrors. This is most
apparentn Figure9 wherethe 7x7x5 and7x7x 7 algorithms
performmary ordersof magnitudepoorerthanthe 7 x 7 x 2,
7x7x4 and7x7x8 algorithms.Figure5 shovsthattheerror
in the 7-pointtemporalderivative is muchlargerthanthe 8-
pointderivativefilter. Sincethe 7x7x8 and7x7x7 algorithms
areotherwisethesamewe concludethattemporalfilter error
dominateghe7x 7 x 7 algorithm.

For small motions, errors in spatial filters dominate
errorsin temporalfilters. Figure 9 shows that for motions
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smallerthanabout0.1 pixels per frame, changingfrom the
TxTx2tothe7x7x4tothe7x7x8 algorithmhasalmostno

discernibleeffects. Corversely changingromthe3x3x8 to

the5x5x8 or 7x7x8 algorithmhasalargeeffect. We conclude
thaterrorsin spatialfilters dominateerrorsin temporalffilters

for thesmallestmotions.

For motionslargerthanaboutl pixel, the performance
of the3x3x8, 5x5x%x8 and7x 7 x 8 algorithmscorverge.
Thus, for large motions, spatial filters supportis almost
unimportant. This can be explainedfrom the discussionn
the last section: thereis significantenegy in high temporal
frequenciedor large motions. Thus, temporalfilters which
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are accuratefor high temporal frequenciesproduce more
accuratemotion estimatesthan temporalfilters which are
accurateonly in the smallestpart of the spectrum. For the
largestmotions,temporalfrequenciesare aliasedleadingto
errorsin all temporalffilters, regardlesf support.

6.3 Comparison of multi-image algorithms
with LBC

The bias in LBC estimatesis smaller than those for the
multi-image algorithms for the largest amplitude motions
(Figure 7). This is not surprising,since reducingbias for

large amplitude motions was the problem that motivated
developmentof LBC [26]. Also, LBC usesa king stepping
approachwhich allows it to better handle motions larger
thana pixel. The biasin LBC estimateds larger thanthat
for the multi-image algorithmsfor the smallestamplitude
motions. In fact, the biasin LBC is nearly equalto that of

thefirst-differencemethod. It is possibleto shav thatin the
limit of small displacementsestimateswvith LBC approach
thosebasedon thefirst-differencealgorithm. Thusfor small
motions,thebiasof LBC is largerthanthe biasof the multi-

imagegradientbasedmethodshecausehe new methodsuse
moreaccuratdilters.

6.4 Computational Costs

The motion estimationalgorithmsthat are comparedn this
paperdiffer not only in statisticalperformancebut alsoin

computationalcosts. Implementingthe filters directly, the
numberof computationdor multi-imageandfirst-difference
algorithmsscalesasn,nyn:ABC wheren,, n, , andn; are
the dimensionsof the analysisregion and A, B, andC' are
thedimensionf the gradientandinterpolationfiltersin the
z-, y- andt- directions. Using symmetriesn thefilters and
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normalizingthefilters leadsto significantcomputationasav-

ings; approximately90% of the computationsare additions,
not multiplications. The numberof computationsfor LBC

is approximately4 timesthe numberfor the first-difference
algorithm.The3 x 3 x 8 algorithmrequiresslightly morethan
2 timesasmary computationsasdoesLBC. Similar factors
for 5x5x8 and7x7x8 algorithmsare7.3,and14.2respectiely.

On a moderncomputer we have found that this increase
in computationtime is insignificant comparedto the time

requiredto readthe imagesfrom a disk (which is invariant
acrossalgorithms). For further speedenhancementit is

alsopossibleto take advantageof the fact that the gradient
filtersarecomposedrom onedimensionafiltersto achieve a

scalingof nynyni(A + B + C).

6.5 Other Image Sequences

The imageswe examinedare not standardonesin the ma-
chinevision community Most of the standardmageshave
beendesignedto testissuessuch as occlusion, regions of
small gradients,and complex motion fields. We have only
addresse@ccuray in this paper not theseothercomplicat-
ing issues(althoughwe believe that our methodscould be
incorporatednto otheralgorithmsdesignedo addresghese
issues).

We briefly report resultstesting our algorithms with
threestandardmagesfrom Barronet. al: Sinusoid1,Sinu-
soid2 and the TranslatingTree Sequencd34]. Insteadof
the temporalfilters reportedin this paper we usetemporal
filters that do not compensatéor the finite acquisitiontime
of a camera. For the Sinusoidlimage sequencewhere
v (1.585,0.863) pixels/frame,the (3 x3x 8, 5x5x 8
and7 x 7 x 8) algorithmsall performedroughly the same—
generatingerrorslessthan0.02and0.01pixels/framen each
directionrespectiely. Theseerrorsarecomparabldo those



reportedfor the spot, fatigue device, and Galapagodsland
imagesin this paper For the image sequenceSinusoid?2,
v = (1,1), ourmethodshaderrorssmallerthanle — 4 pixels.

FortheTranslatingTreeSequenceye designedLucas
andKanade[35] windowing schemesxactly asdescribedy
Barron [34], using our derivative filters. Preliminarytests
shaw ourfiltersyield resultscomparabléo thosereportedoy
Barron. Barroneffectively usesl5 x 11 x 11 filtersin his
gradientestimateglargerthanthefilters usedin this study).
TheTranslatingTreeSequencsuffersfrom temporalliasing
alongthe bordersof the objectsin the scene. We have not
attemptedo optimizeour filters to compensatéor temporal
aliasing.

7 Conclusions

We have developeda classof multi-image gradient-based

algorithmswhoseinherenterrorsfor measuringnotionsare
smallerthan the errors and variationsintroducedby noise
typical for scientific-gradeCCD cameras. The algorithms
use filters to accuratelyestimatederivatives and therefore
accuratelyestimatemotions. The methodshase more than
an order of magnitudeless error than the first difference
algorithmcreatedby Horn and Schunck{11] andDavis and
Freemars LBC [26].

We introduceda methodof usingfilters to compensate

for the effectsof the non-zeroacquisitiontime of animager
The non-zero acquisition time blurs moving objects and
would otherwiseleadsto errorsin motion estimates. We
alsointroduceda methodfor designingspatialderivative and
interpolationfilters togetherin orderto obtainhigh accurag
motion estimateswith relatively smallfilter support.Finally,
we note that even with only two images,it is possibleto
improve the error of the first differencealgorithmby using
higherorderspatialfilters.
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Appendix 2: Spatial Filters
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