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Abstract. A new method is presented for quickly solving non-rigid reg-
istration problems that use linear elastic formulations, with no boundary
conditions. The algorithm successfully solves ill-conditioned systems of
equations formerly thought to be impractical. The running time of the
method scales linearly as the number of nodes in the system. We demon-
strate a matcher by warping one segmented amygdala onto the amygdalas
of 29 other patients with good matching results. The technique required
only a few minutes for each match on a desktop computer.

1 Introduction

The non-rigid matching of three dimensional shapes is an enabling method for
many medical image analysis applications. Such matching is used to find the
correspondence between an anatomical atlas and a volumetric dataset, so that
information from the atlas can be transferred to a patient. Non-rigid warping of
shapes is also used between two labeled volumes to derive a deformation field
that can be used to match corresponding grayscale images [3,7]. In addition, in
order to correlate shape and disease, organs can be non-rigidly aligned enabling
machine learning algorithms to classify them based on deformation fields [4].

Because regions of medical image data often contain little useful information,
the wide variety of non-rigid warpers must usually constrain the displacement
field in some way. Elastic models are a popular choice since they are easy to
understand and simulate, and their smoothness properties may be as likely as
other constraints. [3,7,13,8].

The past several years have seen considerable activity in the usage of intensity-
based mechanisms for solving medical image registration problems [10,14,11,5,
9,12,6]. These approaches have the advantage of not requiring segmentation of
the image data, and they have proven robust in a number of applications [15].

In light of these issues, it seems clear that grayscale-based matching using
elastic deformation models is an attractive approach to solving such problem-
s. There are, however, remaining issues of the computation time and the ill-
conditioned nature of the simulation. Perhaps, because of these issues, there
have been a number of approaches based on surface models or surface/volume
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hybrids. While attractive from a computational point of view, these may be sig-
nificant compromises because of the different mechanics of shell structures and
volumetric structures. For example, it may be simpler to capture the property
of thin rods being easier to bend than thick rods with a volumetric mechanical
model rather than a surface model.

Based on the above observations, it has been our our primary goal in this
project to implement a grayscale-based image matcher based on an elastic defor-
mation model combined with an image agreement term. In this paper we present
a fast algorithm that does exactly that. We illustrate our method by aligning 30
different segmented amygdala-hippocampus complexes to each other.

1.1 Related Work

Christensen et al. [2] introduce models based on viscous fluids that have have
demonstrated impressive registration among different human brains. These mod-
els are far more flexible than models based on elasticity and in some applications
may yield unphysical deformations spread over large regions[13].

Ferrant et. al implemented a matcher by first finding correspondences using
an active surface algorithm and then using the displacements of the active surface
model as boundary conditions for an elastic model of the interior warping[7]. This
method is generally limited by errors in the correspondences found in the active
surface algorithm.

Davatzikos and Prince examined a method which is closer to a full elastic
solver[3]. They establish correspondences between surfaces at a series of points.
They then use an elastic force and an image driving force to fill in the rest of the
deformation field. Wang and Staib [13] found that constraining the deformation
field at a series of points led to a “jiggling effect” near the surface. They therefore
modified this method by not forcing the deformation field to be fixed at the
surface points, but rather to penalize the deformation field for deviating from
the set points.

Our methods are similar to those of Wang and Staib [13] in the use an elastic
energy objective function with a statistical image agreement term. However, they
note that with these two terms alone, the resulting equations are ill-conditioned
and difficult to solve. They add landmark points to improve the conditioning of
the equations to make them easier to solve. Our main contribution in the present
paper is to develop a linear-time approach that overcomes the ill-conditioning of
the problem.

2 Methods

The matching process begins by filling the volume of one shape with tetrahedra.
The mesh then aligns itself to the other label volume may by minimizing a com-
bination of an elastic energy term and an image agreement term. The resulting
minimization is non-linear and leads to ill-conditioned equations. We describe
here a solver that handles these difficulties.
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We begin by dividing a 3D shape into a mesh of small volumetric elements.
Most packages that divide objects into elements are designed for regularly shaped
mechanical parts, not irregular medical organs[6]. Our two main concerns are to
produce a mesh that accurately represents a surface with as few skewed tetrahe-
dra as possible. Skewed tetrahedra lead to errors in solving elasticity equations
and can halt the progress of a typical solver[1].We have constructed our own
mesher which accomplishes these two goals.

We use a probabilistic framework to match two shapes by maximizing the
log probability of the deformation field given the data. Using Bayes rule,

argmax log P(r|data) = argmax log P(data|r) + log P(r) — log P(data)

where 7 is the deformation field. The probability of the data, P(data), is inde-
pendent of the warping, so we ignore this term.

To estimate P(r), we turn to statistical physics, where the probability that
a system is in a configuration is proportional to e Z/(K8T) We use the linear
elastic energy as described in the introduction. The elastic energy of the mesh
is given by the integral of the stress strain product over the volume. Through
standard means [16], the integral can be linearized about a current configuration.
One can then approximate the energy of the system as ir” Kr where K is an
elasticity matrix. The matrix K is proportional to Young’s modulus Y and also
depends on Poisson’s ratio v. Note that the matrix K changes each time the
configuration of nodes changes.

Our aim is to create a full grayscale nonrigid alignment method, therefore, we
use a volumetric data agreement term rather than a voxel-based agreement term.
In the present case of label data, we set the center of the voxel values to 0 and 1
according to the label, and interpolate for values elsewhere. We use the average
intensity, I7(r), inside each tetrahedron as the observed data. Further, we as-
sume that the probability of I(7) for a given tetrahedron is independent of I (r)
for all other tetrahedra. Therefore, log P(data|r) = 3 o ahedra 108 P(I7(r)|lT).
where I is the label of a tetrahedron and the warping r determines the position
of each tetrahedron. We use a simple linear probability so that P(Ir(r)|lr) =

Ir(r)P(Q|ir) + (1 — Iz(r))P(0|l7).

—rTKr 5
arg:naxm+ Z log P(Ir|lT). (1)

Tetrahedra

One standard way to maximize a function is to use a Newton based solver to
find the zeros in the gradient of the maximization function. Such a solver would
find that given the guess 7y, in the k** iteration, the change in the deformation
field, dr, in the k + 1** iteration solves

K _ —Kme d(log P(Ir|i))
o7 ~Her = gem + 2 p= (2)

Tetrahedra
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where Hp is the Hessian of the image agreement term. We modify the standard
Newton solver to stably and consistently find a good maximum. Since we model
intensities as being linear in the neighborhood of each tetrahedron, Hp is sin-
gular. Worse, it has positive eigenvalues making the maximization unstable. We
therefore do not use the Hessian of the image agreement term.

The elasticity matrix K is also singular. For example a rigid translation of the
entire mesh causes no elastic energy increase, and therefore a rigid translation is
in the null space of the elasticity matrix. One standard method for solving linear
systems with singular matrices is to increment the diagonal of the matrix. We
therefore add a small constant € multiplied by the identity, I, to the elasticity
matrix to improve the conditioning of the matrix. This term essentially penal-
izes any displacement and is similar to an inertial energy or mass. We use the
following iteration:

—Kra 3 d(log P(Ir|lT))

K
[——= +el]or = KT I . (3)

KsT Tetrahedra
This iteration will cease only when the driving forces, the right hand side is zero.

While the “mass” term improves the conditioning of the elasticity matrix, the
elasticity matrix is still poorly-conditioned. Solving a poorly-conditioned linear
system is not a problem for standard Krylov subspace solvers. Such methods
attempt to iteratively minimize the squared error in the system of equations
while minimizing the norm of the solution vector. However, because there may
be no exact solution, an iterative solver will require many iterations before it
converges. We therefore do not try to solve the system of equations to high
precision. A standard technique in a Newton solve is to find an approximate
solution to the matrix equation (3), using only a few iterations of the iterative
matrix solve. Using this technique, the matrix solve time can be improved by
more that a factor of 100. And, because there may be no exact solution, little is
lost in solving the system approximately.

We make one additional modification to the non-linear maximization to speed
the convergence to a final solution. We start the maximization by only consider-
ing tetrahedra that were in the first labeled volume. After 90% of the those tetra-
hedra are overlapping the second labeled shape, we consider tetrahedra outside
the labeled volume as well. By having both labeled and unlabeled tetrahedra ap-
plying forces, the final convergence rate is increased. We stop the iteration when
the norm of the force vector has decreased below a threshold and the objective
function has leveled off.

3 Experiment

We report the results of our matcher applied to a the segmented, left hippocampus-
amygdala from a data set of 30 patients including 15 normal and 15 schizophrenic.
The data set was hand segmented.
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We meshed a left amygdala chosen randomly from one of the data sets. We
initially aligned the mesh with the other 29 data sets using the second order
moments of the mesh and the labeled data. We then ran our matcher 29 times.

3.1 Matching Results

Of the 29 matches, we divide the results into three groups based on a qualitative
shape description. The first group includes 13 amygdalas that have relatively
smooth surfaces and similar features. The second group includes 14 amygdalas
that have small protrusions and sharp discontinuities in their surfaces. The final
group includes 2 amygdalas with large protrusions and very different features
from the remaining amygdalas.

In the first group, the shapes of the amygdalas are comparable. They have
similar bulbous ends, a long curved middle region and a “head” on the other
end (see Figure 1). For this group, after the mesh is warped, more than 90%
of the voxels inside the mesh are labeled correctly. Figure 1 shows an example
match from this set. The initial alignment in the left most image between the
mesh (dark) and a label map (light) shows a slight rotation between the two
amygdalas. There are width differences in the middle and base of the amygdalas.
The “head” portion of the mesh is significantly smaller than the head portion
of the label volume. The match shown in Figure 1 has a mesh surface that cuts
through the surface of the label map, sometimes being behind that surface and
sometimes in front. A cross section through the mesh, (not shown) shows that
the surface of the mesh is essentially a smoothed version of the surface of the
label map.

The convergence of the algorithm on all matches in this group resembled the
convergence shown in Figure 1. There is an initial alignment phase which take
roughly 6 iterations. At the end of this phase the great majority of the alignment
between the mesh and label map is completed. Generally, between iterations 20
and 30, the forces due to the tetrahedra in the background of the mesh are
activated. This causes label tetrahedra previously inside the labeled region to
move towards the boundary of the label volume. After roughly 40 iterations,
the final shape of the mesh is determined. However, a total of 70-80 iterations
are required to maximize the objective function. In these remaining iterations,
very small motions in the mesh are observed. All matchings in this group are
complete by the 80th iteration and reached a maximum in the objective function
between -1440 and -1640.

The second group of images includes 14 matches where a maximum was found
in the objective function, but roughly 60-80% of the voxels inside the deformed
mesh were labeled correctly. These hand-segmented amygdalas show many small
protrusions as well as sharp discontinuities in the surface. The deformed mesh
cuts through the surface of the label map, smoothing the bumps and protrusions.
These examples reached a maximum in the objective function of between -1620
and -1800, in approximately 80-100 iterations.

The last 2 amygdalas are shaped very differently from the remaining amyg-
dalas. Figure 2 shows one of those two amygdalas. The “head” of the amygdala
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Fig. 1. The left image shows the initial alignment of the mesh (dark) with an un-
smoothed triangulated surface of the labeled amygdala (light). The second image shows
the triangulated surface alone. The third image shows the result of the non-rigid align-
ment on the mesh. The right most image shows the result of the warping overlayed on
the triangulated surface. The plot shows the objective function versus iteration for a
representative simulation in the first group.

does not seem to exist in this segmentation. The middle portion of the amyg-
dala is in the shape of a half-cylinder shell, rather than a solid rod. There are
numerous protrusions coming out of the amygdala. The matcher spreads the
head-portion of the mesh out along the the semicircular. For these two cases,
the algorithm converged to a maximum near -2100 in 80-100 iterations.

Fig. 2. An example of the matcher in group 3. The layout of this figure is identical to
that of Figure 1
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3.2 Matcher Performance

For the 1100 node meshes we examined in this paper, the matcher ran converged
in 80 iterations in 3 minutes on a 450 Mhz Pentium III. On larger meshes, 80
iterations were still sufficient. For 2400 nodes, the time doubled to 6 minutes.

4 Discussion

Figure 1 illustrates that the head of the meshed amygdala is able slide into the
head of the target-amygdala. This type of unconstrained movement is difficult
to achieve and in one illustration of the effectiveness of our approach. Given the
density of the mesh, the resulting match seems very reasonable.

The second and third group of amygdalas illustrate a fundamental problem
with shape matching. While believable matches between smooth medical data
is possible by a variety of methods, it is not obvious how a matcher should
respond to small protrusions, segmentation errors, etc. Additionally, it is very
difficult to find correspondences between data sets separately from finding a
global optimization to a warping. In this sense, a method like ours that does not
require identification of any correspondences is appropriate for this problem.

It is not clear that the way our method handles protrusions and irregularities,
by cutting through them, is appropriate. We deliberately selected a coarse mesh
that would not be able to align itself to these protrusions. However, we could
have selected a finer mesh that would have deformed itself more closely to the
irregular boundaries of many of the amygdalas. In this way the density of the
mesh is a parameter that determines the results of the deformation. This is both
an asset and a liability of our method.

The algorithm in this paper has shown its ability to solve ill conditioned
problems very quickly and give reasonable results. It is fundamentally a linear
algorithm, with time scaling like the number of nodes in the mesh. Figure 1
suggests that we may be able to stop the warping process with fewer iterations
and thereby further increase the speed of our process.
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