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Abstract

We develop a new class of multi-image gradient-based algorithms, and a discrete Fourier transform
based algorithm to detect subpixel motions of objects in video images. Because of their enormous
practical importance, we make estimators of amplitude and phase of temporal sinusoidal motion
using both methods.

We show that to improve motion estimates of existing gradient-based algorithms, it is not suÆ-
cient to improve spatial gradient estimates alone; it is necessary to improve both spatial and temporal
gradient estimates. We use data in many images to estimate spatial and temporal derivatives to
high accuracy. By using many images, we are also able to compensate for the blur caused by the
�nite image acquisition times.

Through analysis of simple images and through simulations, we show that the inherent bias of
multi-image gradient-based methods can be made arbitrarily small for small motions. However,
for large motions, multi-image gradient based methods cease to perform well. We simulate the
performance of our algorithms in the presence of noise typical of optical microscopes and scienti�c
grade cameras. These simulations show that the sinusoidal estimators we create achieve errors below
0.001 pixels and 0.001 radians for amplitudes smaller than 1.2 pixels. However, for motions larger
than 2 pixels, the amplitude errors are larger than 0.1 pixels.

We show that Fourier transform based methods are limited by bias inherent to the method for
the analysis region sizes that interest us. In the presence of noise typical for optical microscopes,
the sinusoidal estimator we create achieves 0.1 pixel accuracy and 0.01 radian accuracy. These
inaccuracies are greater than those of already existing algorithms.

We experimentally test the performance of the multi-image gradient-based sinusoidal estimators.
We show that the algorithms achieve nanometer accuracy and precision for motions below 500
nanometers. The results agree well with the predicted performance of the algorithm based on
simulations. We also show that the algorithms are consistent to within a nanometer across regions
of the same moving object with very di�erent brightness These features of the new algorithms
represent important improvements over existing algorithms.
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Chapter 1

Introduction

The exponential growth and wide-spread availability of inexpensive computer memory, disk storage

and fast computers is radically increasing our ability to process information from optical imaging

systems. We can now analyze gigabytes of data from scienti�c grade CCD cameras quickly and

inexpensively. The ability to process huge quantities of data in conjunction with inexpensive video

imagers is creating new applications for video-systems that were not previously practical.

Video microscopy holds promise to revolutionize our ability to make quantitative measurements.

We explore methods to use video images to estimate nanometer motions. In this thesis, we investigate

ways to harness the growing computational power of computers to increase the accuracy of subpixel

motion estimators.

1.1 Background and Motivation

Recently, Davis and Freeman developed algorithms that can measure three-dimensional motions

between two volume images to hundredths of the distance between voxels [7]. Surprisingly, it is bias

inherent to their algorithm, not noise, that limits performance. We seek to develop an estimator of

motion whose performance is not limited by errors inherent to the algorithm.

Several classes of algorithms are widely used to determine motions from video images including

gradient based methods, correlation based methods and transform based methods. We investigate

these classes with the goal of understanding which classes of algorithms have the possibilities of

yielding low bias estimates.

We note that many motion estimation techniques register two images using information from

only those two volume images. In many circumstances, sequences of images exist before and after

the two images of interest. We extend gradient-based methods to use data from a sequence of images

to estimate the motion between two images. By using information from additional images, better

estimates of spatial and temporal gradients are found, leading to signi�cant bias reductions in the
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estimate.

A review of the motion estimation techniques that have previously been reported suggests another

promising technique, Fourier transform based methods. These methods use the phase di�erence

between the Fourier transform of two images to detect motion. We pursue techniques similar to

already existing methods [25, 1].

We are speci�cally interested in examining the motions of bio-mechanical and microelectrome-

chanical systems (MEMS). For these systems, sinusoidal motion is of great practical importance

because one often wants to examine the modes of the system. Therefore, we develop estimators of

amplitude and phase of temporal sinusoidal motion.

1.2 Document Summary

In Chapter 2, we review video imaging in conjunction with optical microscopy. We examine data

collection techniques, the properties of the resulting signals, and the noises introduced. The key

conclusion of this chapter is that above spatial frequencies 2, the signal to noise ratio in the images

is small.

We review the di�erent classes of algorithms that exist in the motion estimation literature in

Chapter 3. We discuss each method and explore the applicability to the challenges addressed in this

thesis. We conclude that for rigid-body translations, many techniques are not worth pursuing. We

decide to pursue gradient-based methods, and Fourier transform based methods as these methods

have the potential to measure very small subpixel motions.

In Chapter 4, we examine the limitations of gradient-based methods. Speci�cally, we show that

gradient-based methods yield estimates of velocity, not displacement. We also show that these

methods make large errors for large motions. The key conclusion of this chapter is that the accuracy

of a gradient-based algorithm is limited by the derivative estimated with the largest error. Therefore,

to make a low bias gradient-based algorithm, it is not suÆcient to calculate high accuracy spatial

gradients alone. It is necessary to estimate high-accuracy spatial and temporal derivatives.

In Chapter 5, we illustrate the design of multi-image gradient-based methods. We use the

methods to develop an estimator of amplitude and phase of temporal sinusoidal motion. Simulations

in the presence of noise typical of optical systems show that amplitude estimates with 0.001 precision

and accuracy and phase estimates with 0.001 radian precision and accuracy are achievable.

We develop a Fourier transform based estimator of temporal sinusoidal motion in Chapter 6.

Simulations in the presence of noise show that amplitude errors of 0.1 pixels and phase errors of 0.01

radians are achievable. However, these errors are larger than those of already existing algorithms.

Therefore, we do not experimentally test these algorithms.

In Chapter 7 we verify the simulations of the multi-image gradient-based methods in the presence

14



of noise by experimentally testing the algorithms. Using video microscopy, we examine the motions

of a bead and a MEMS device attached to a piezo. Generally, the simulations match the experimental

�ndings. The algorithms achieve 1 nanometer accuracy and precision for motions smaller than 500

nanometers.
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Chapter 2

Properties of the Data

This thesis is primarily concerned with the development of subpixel motion estimators. To develop

a good estimator, we examine properties of the data. In this chapter we brie
y review the data

acquisition process, the resulting signals, and the noises introduced.

2.1 Data Acquisition

A light microscope, in combination with stop-action photography and optical sectioning techniques,

collects three-dimensional images of mechanical structures whose motions are to be examined. Free-

man and colleagues dubbed the data collection process \computer microvision" [13]. We brie
y

review computer microvision emphasizing how the data collection process a�ects the data. A more

detailed account of the method is found in [13].

2.1.1 Three-Dimensional Video Microscopy

Mechanical structures whose motions are to be measured are aÆxed to the base of an optical mi-

croscope which sits on an vibration isolation table. The lens system in the microscope magni�es the

image of the mechanical structure and projects the image onto a CCD camera. To collect three-

dimensional data, a series of two-dimensional images are acquired at evenly spaced focal planes as

shown in Figure 2-1. The focal plane is adjusted by applying a voltage to a piezoelectric crystal that

translates a lens along the optical axis.

2.1.2 Stroboscopic Illumination

A sinusoidal stimulus, typically of kilohertz frequencies, excites the sample. Since most scienti�c

grade cameras collect images at the rate of tens of hertz, a light emitting diode (LED) strobes the

sample to image faster motion.
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Figure 2-1: Illustration of optical sectioning. A three-dimensional volume image is generated by
capturing a sequence of two-dimensional images at di�erent focal planes. The focal plane is adjusted
by application of a voltage to a piezo that translate the lens along the optical axis.

An LED must 
ash many times in order to provide suÆcient light to use the full dynamic range

of the camera. To obtain one plane of the three-dimensional image, the LED 
ashes at the same

phase in the stimulus cycle many times.

Repeated application of stroboscopic illumination at di�erent image planes and at di�erent phases

generates a four-dimensional image (three spatial and one temporal dimension) of the moving sample.

This four-dimensional image is the data set from which we seeks to determine motion.

2.2 Signal and Noises

We examine the e�ects of the data acquisition process on the resulting images. We then consider the

noises introduced during the data collection. We divide the noise sources into two categories. The

�rst source of noise is due to errors in image collection. The second source of noise is mechanical.

2.2.1 Properties of the signals

The lens system that collects the images can be modeled as a spatially and temporally invariant low-

pass �lter [16]. The CCD camera has pixels with non-zero length and width. Each pixel e�ectively

averages the light signal over a small region, a process which can be modeled as sampling a low-pass

�ltered version of the image. If the pixel size is small enough, the CCD camera will oversample

the continuous intensity pro�le resulting in a two-dimensional band limited image. If the focal
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planes are spaced closely enough along the optical axis, the three-dimensional volume image will be

oversampled.

2.2.2 Image Acquisition Noises

The CCD camera introduces quantization noise, shot noise, �xed-pattern noise and read noise [21].

For a 12-bit scienti�c grade camera (0-4096 gray values) under peak lighting conditions, shot noise

typically dominates quantization noise and read noise.

Fixed-pattern noise results from the varying gain of pixels in the CCD camera and from dirt on

lenses. Dirt causes variations in illumination which do not change when the object translates. See

Figure 2-2 for an example. Davis and Freeman describe a process of two-point correction [8] that

decreases �xed-pattern noise by 5 to 10 dB.

Related to �xed-pattern noise are confounding notions. Many samples have openings in them

through which stationary background patterns are visible. If an algorithm cannot detect these non-

moving regions, the stationary patterns can create e�ects similar to those caused by dirt on the

optics.

 Dirt

Figure 2-2: A example of �xed-pattern noise due to dirt on a lens. The image is one in a sequence
of images of part of a moving gyroscope (Draper Labs, Cambridge MA). The dirt, indicated by the
arrow, was observed to remain stationary while the gyroscope moved underneath it.

An additional source of error in the image acquisition process occurs due to the �nite LED

intensity. To obtain suÆcient light, the LED illuminates the sample for a fraction of the stimulation

cycle, resulting in blurring of moving objects in the acquired image. This process can be modeled

as a low-pass �lter in time.

An additional error in the data collection is due to nonlinearities in the lens. While a lens can

be approximated as a spatially invariant linear low-pass �lter; it is not perfectly linear nor perfectly

spatially invariant. It is not clear how large or how important these e�ects are.
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2.2.3 Mechanical Noise

Relative motion between the CCD camera, the optical system and the sample will be interpreted

by an algorithm as additional motion of the sample. Therefore mechanical vibrations in the data

collection system lead directly to motion estimation errors.

A typical vibration isolation table has a resonance near a few hertz. Images collected at slower

rates are particularly susceptible to the low frequencies which pass through the table. Since the CCD

camera collects each plane in the image at a di�erent time, vibrations result in net displacements

and rotations between planes of the same volume image, as well as rotations and displacements

between di�erent volume images.

The LED 
ashes many times to collect one image plane. The table will move during the collection

of one plane. Thus the collection of one frame can be modeled as an averaging process, with the

pixel averaging a volume of space as it is jiggled. For long enough averaging times, we expect the

vibrations of the table to be averaged out. Davis and Freeman found this to be the case [8].

Note that the microscope and the sample may have signi�cant displacements at very low fre-

quencies due to, for example, thermal expansion. Over the course of an experiment, an object may

\drift" in one direction which will also introduce error into the motion estimates.

2.2.4 Conclusions

The image acquisition process is limited by shot noise, which introduces variability into the images,

and �xed-pattern noise, which does not move when an object in an image does. Additionally,

relative mechanical vibrations between the camera and the optics will introduce errors into the

motion estimates.

2.3 Spectral Properties of the Data

In this section we characterize acquired data by examining the power spectrum of several images.

We seek to determine the relative powers in the shot noise and �xed-pattern noise, as well as how

the signal to noise ratio varies as a function of spatial frequency. The data in this section will be

used to design motion estimators in later chapters.

2.3.1 Methods

Images of specimens were collected using a light microscope. The images were two-point corrected

and then analyzed to determine their power spectra and their noise power spectra.
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Images

We examine three images. The �rst is a 256 by 256 pixel image of a 1 �m polystyrene bead (Lot

#46747, Polysciences, Inc, Warrington PA) dried onto a glass cover slip. This image was chosen as

an example with a small ratio of signal to noise. The second is a 512x512 image of a polysilicon

fatigue test structure designed by Exponent Failure Analysis Associates. We refer to the device

as the fatigue device. This image re
ects our interest in measuring the motions of silicon based

micromechanical structures. The third image is a 256 by 256 pixel picture of an alligator lizard

cochlea. This image re
ects our interests in biological motion estimation applications. All three

images have approximately the same average intensity.

Image Collection

The one micrometer bead was imaged with a light microscope (Zeiss, Axioplan, Thorwood, NY)

using transmitted light, a long working distance condenser with 0.6 numerical aperture (0.6 NA)

and a 20x, 0.4 NA objective with a 1x optivar. Images were captured using a 12-bit CCD camera

with 12 �m square pixels (DALSA CA-D7, Waterloo, Ontario) with an exposure time of 80 ms.

The fatigue device was imaged using the same setup, except using epi-illumination with an exposure

time of 790 ms.

The alligator lizard cochlea was collected with the same light microscope using transmitted light

with a 0.75 NA, 40x water-immersion lens with a 2.5 optivar for a total magni�cation of 100x. The

condenser NA was 0.6 so that the e�ective NA of the system was closer to 0.6. The CCD camera was

a Photometrics CH250A CCD camera with 23 �m spacing, almost twice the spacing of the DALSA

camera used in the previous two examples.

Two-Point Correction

To reduce the e�ect of �xed-pattern noise, we use a two-point correction technique. First we address

�xed-pattern o�sets in the absence of light. After a microscope is set up to image a specimen, many

images are acquired with no sample illumination. Between 50 and 128 of these images are averaged

to create a \dark" image. To address the varying sensitivities of individual pixels, many images

of uniformly bright regions are averaged together. To obtain a \bright" image for the bead and

alligator lizard we focused on the specimen and then moved the specimen to the side so that the

light path from the condenser to the imaging lens passed through air only. To obtain bright images

for the fatigue device, we replaced the fatigue device with a re
ecting silicon wafer. Between 50 and

128 images were averaged to obtain one bright image.

Images are corrected for pixel-to-pixel variations in sensitivity and o�set by calculating a cor-
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rected image

G[i; j] =
M [i; j]�D[i; j]

B[i; j]�D[i; j]

where M [i; j] represents the gray value generated by the [i; j]th pixel in the measured image, and

B[i; j] and D[i; j] represent corresponding gray values in the bright and dark images, respectively.

Power Spectrum Calculations

In all cases, \spectral density" refers to the squared magnitude of the two-dimensional Fourier

transform of an image that was �rst multiplied by a two-dimensional Hanning window. The spectral

density is scaled by the number of pixels in the image. If there were no window function, the D.C.

value of the spectral density would therefore be the average signal in the image squared in units of

gray values squared. We present the cross-section of the two-dimensional Fourier transform along

one axis of the CCD camera. All images are shown so that the cross-section is parallel to the bottom

of the images. In most cases the D.C. value is several orders of magnitude larger than other values

and is therefore removed from the plot so that details in the rest of the spectrum are more evident.

For the bead and polysilicion images, the power spectrums were obtained by averaging the power

spectrums of 32 di�erent, two-point corrected images. For the alligator lizard cochlea, only one image

was used.

Noise Analysis

We attempt to determine the power spectrum of the shot noise and �xed-pattern noises. As an

estimate of the power spectrum of the �rst, we subtract the average of 32 images from each image

and then average the power spectra of the residual images. The resulting power spectrum is therefore

a measure of the variability in the sequence of images. To estimate �xed-pattern noise, we average

the spectra of 32 two-point corrected images of a 256x256 pixel region that appear close to uniformly

bright, containing little structure. The region was located several hundred pixels away from the bead.

2.3.2 One Micrometer Bead

Figure 2-3 shows the spectrum of the two-point corrected image of a one micrometer bead. Relative

to the magnitude of its signal, the power spectrum of the bead has large variability from one frequency

to an adjacent frequency above spatial frequency 2, with � being the Nyquist frequency. We found

that two-point correction reduced the variability in the power spectrum by more than a factor of

two.

We estimated the variability of images of the bead by examining the residual images found by

subtracting a mean image from each initial image of the bead as described in Section 2.3.1. The

average power spectrum of the residual images is shown in Figure 2-3. We examined the variability
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Figure 2-3: Top left: two-point corrected, 256x256 pixel image of a 1 �m diameter bead. Top right:
average power spectrum of the bead image after two-point correction. Bottom left: average power
spectrum of 256x256 region containing little visible structure after two-point correction. The region
was located several hundred pixels away from the bead. Bottom right: average power spectrum of
residual images. These images are the results of subtracting the average image of the bead from
each image of the bead as described in Section 2.3.1.
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of the residual images �nding the standard deviation to be 9.4 gray values, or �51 dB relative to

the energy in the bright transmission �eld. Using Dalsa's claim of a gain of 73 electrons per gray

value, shot noise would account for 7 gray value units of the variability.

Also in Figure 2-3 is the power spectrum of a two-point corrected region containing little visible

structure; we refer to it as an empty region. This power spectrum has approximately the same

frequency to frequency variability seen in the power spectrum of the bead image. We found the

standard deviation of the region before and after two-point correction to be 53 and 34 gray value

units respectively, corresponding to �36:2 and �41 dB relative to the energy in the bright region.

Comparing the power spectrum of the empty region and the power spectrum of the residual image,

we see that there is roughly a factor of 10 more energy in the empty region.

We also examined several empty regions with dimensions between 50 and 100 pixels on a side,

rather than 256 pixels. We found that the standard deviation of theses smaller regions before and

after two-point correction averaged to �44 dB and and �50 dB relative to the energy in the bright

region.

2.3.3 Polysilicon Fatigue Device

Figure 2-4 shows an image of the polysilicon fatigue device and its average power spectrum. The

peaks in the spectrum correspond to the periodicities in the device. Note that the shape of the

spectrum is qualitatively similar to the the spectrum of the bead. Speci�cally, for spatial frequencies

larger than 2, the variability in the spectrum from one frequency to an adjacent frequency is larger

than the average magnitude of the spectrum.
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Figure 2-4: Polysilicon Failure device and its power spectrum.

We examined the residual images as we did for the bead. The average power spectrum of

the residual images (not show) is 
at, with the exception of several peaks that correspond to the

periodicities in the device. The standard deviation of the residual images was 9.5 grey units, very
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close to the value found for residual images in the last section.

Unlike the image of the bead, there is no region near the fatigue device that contained no

structure. We instead examined the standard deviation of the 512x512 bright �eld image which we

found to be 60 gray value units, 13% larger than the non two-point corrected empty region near

the bead. Because we used a mirror to acquire the bright �eld image, the bright �eld image may

be contaminated by dirt on the mirror. We examined several rectangular regions within the bright

�eld image with dimensions between between 50 and 100 pixels on a side that appeared to have no

dirt. We found those regions to have standard deviations between 33 and 49 gray values. However,

the means of these regions di�ered by between 30 and 40 units.

2.3.4 Alligator Lizard Ear

Figure 2-5 shows an image of an alligator lizard cochlea. The CCD that collected the image used

23 �m pixels, almost twice the dimension of the pixels used in the previous two images. Figure 2-5

shows the power spectrum of one image of the ear. Because the power spectrum is derived from

only one image, the frequency to frequency variability is not a good noise measure for this image.

We present this image to point out that the power spectrum of the lizard ear is similar in shape and

magnitude to the other two power spectra presented.
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Figure 2-5: Alligator Lizard Ear and its power spectrum.

2.3.5 Discussion

We interpret the power spectrum of the residual images from the bead to be mainly due to shot noise.

If the variability were entirely due to the shot noise, we would predict a gain of 37 electrons per

gray value, not the 73 quoted by DALSA. In fact, using the listed saturation power, frame rate, and

quantum eÆciency of the camera, we calculated a gain closer to 40 electrons per gray value. That
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the residual images from the fatigue device gave almost the identical variability with an exposure

time a factor of 10 longer bolsters the argument that the variability is due to shot noise and not, for

example, dark current.

For the image of the bead, where the intensity across the image is almost uniform, one would

expect the power spectrum of the shot noise to be roughly white. The uniformly bright image of the

bead is particularly interesting in that the image was as bright as an experimenter would normally

allow. Therefore, we expect the residual noise spectrum will always be smaller than the power

spectrum of the residual images shown in Figure 2-3.

We attribute the power spectrum of the empty region near the bead as being due to �xed-pattern

noise. The spectrum of this region accounts for the frequency to frequency variability of the power

spectrum of the image of the bead. It also seems to account for much of the variability in the fatigue

device. We note that the power spectrum of the empty region is roughly 10 dB larger than the

power spectrum of the residual images. We conclude that over a 256x256 region, �xed-pattern noise

is 10dB larger than shot noise.

Our measurements of empty rectangular regions with between 50 and 100 pixels on a side show

almost 8 dB less �xed-pattern noise than the 256x256 empty region. That we found a similar

dependence on region size in the standard deviation of the bright �eld images of the fatigue device

suggests that �xed-pattern noise strongly depends on region size for our camera. We conclude that

analysis region size should be chosen carefully for algorithms susceptible to �xed-pattern noise.

Looking at the power spectra of the bead and the fatigue device, we note that the spectra become

level with large variability after spatial frequency 2. We also observe that the power spectrum of the

empty region becomes levels at 3� 10�3 energy density units, the same power at which the spectra

of the images of the bead and the fatigue device become level. We conclude that the variability in

the bead and fatigue device spectra is due to �xed-pattern noise and that the signal to noise ratios

of the two test images are small for spatial frequencies greater than 2.

The power spectrum of the lizard ear reaches 3 � 10�3 energy density units roughly at spatial

frequency 2.5. If the image were acquired on the DALSA camera, its frequency range would be

condensed by a factor of two due to the greater sampling rate of the DALSA over the Photometrics

camera. Thus, if the lizard image were photographed using the DALSA camera, we would expect

the �xed-pattern noise would swamp the power spectrum in the lizard ear image spectrum near

spatial frequency 1.75.

2.3.6 Conclusions

We examined the spectra of an image of a bead, a silicon based structure, and a biomechanical

structure. We found the power spectra of all three quantitatively similar. For the bead and the

fatigue device, the signal to noise ratio drops below 1 near spatial frequency 2. If the lizard ear had
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been acquired on the same camera, we expect the same �ndings.

We also examined noise spectra which we attributed to �xed-pattern noise and shot noise. We

concluded that for the DALSA camera, for region sizes larger than 256x256 pixels, �xed-pattern

noise is �41 dB after two-point correction, 10 dB larger than shot noise. However, we found that for

region sizes between 50 and 100 pixels on a side, �xed pattern noise levels of �50 dB are achievable

after two point correction.
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Chapter 3

A Review of Motion Estimation

Algorithms

We seek to estimate three-dimensional translations of a rigid body from a sequence of volume images.

We are speci�cally interested in subpixel motions and attempting to measure the smallest possible

detectable motions. We review motion estimation techniques in the literature with the purpose of

�nding estimators that are not fundamentally resolution limited.

There are several reviews and comparisons of motion detection algorithms including [36, 3, 31,

2, 28]. However, the challenges we address are very di�erent from many of the problems faced

in the motion estimation literature. Many researchers contend with varying 
ow �elds resulting

from very complicated motion. The rigid, irrotational motion assumptions allow us to ignore these

complications. Most investigators don't have the luxury of three-dimensional data; many attempt

to determine three-dimensional motion from two-dimensional images from one or multiple cameras.

Most notably, by using scienti�c grade cameras in conjunction with targets whose motions are driven,

we enjoy signi�cantly larger signal to noise ratios than those of the majority of researchers. ( See

Chapter 2 for a description of the data acquisition process.)

In this chapter, we review many of the classes of algorithms used in motion detection. We

highlight the gradient-based class of algorithms, block matching and Fourier transform methods

which we pursue in later chapters. We also discuss several popular methods that are not appropriate

for the challenges we address.

3.1 Gradient Methods

Gradient methods are based on the assumption that for small irrotational motions, the intensity

re
ected from a small patch on a sample will remain unchanged from one image to the next. That
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the intensity does not change due to a translation is known as the constant brightness assumption

(See [18] for a more thorough discussion on the validity of this assumption).

We follow Horn's derivation [19]. He writes the constant brightness assumption as

E(r; t) = E(r + Ær; t+ Æt) (3.1)

where E(r; t) is the continuous brightness function and the displacement vector is Ær = (Æx; Æy; Æz).

We expand the right side using a Taylor expansion to �nd

E(r + Ær; t+ Æt) = E(r; t) +rE � Ær +
@E

@t
Æt + : : : (3.2)

where r is the gradient over spatial coordinates and the ellipsis represents high order terms. For

small displacements, we drop the high order terms. (In Section 4.2, we explore what conditions

make this a good approximation). Combining (3.1) and (3.2), we �nd

rE � Ær +
@E

@t
Æt = 0: (3.3)

Equation (3.3) is a method of measuring the local displacement vector, Ær , occurring in time Æt given

estimates of the partial derivatives of the continuous intensity distribution.

The CCD camera samples the continuous intensity function. We call G[i; j; k; l] the sampled

version of the intensity function taken at time l and location (i; j; k). Equation (3.3) becomes

Gx[i; j; k; l]Æx +Gy[i; j; k; l]Æy +Gz[i; j; k; l]Æz +Gt[i; j; k; l]Æt = 0 (3.4)

where Gx is the estimate of the partial derivative of the continuous intensity function with respect

to x, and the other partial derivatives are de�ned similarly. We have not speci�ed how the partial

derivatives should be calculated. Also, we have chosen to evaluate the partial derivatives at location

(i; j; k; l) where the continuous intensity function was sampled; we could alternatively choose to

evaluate the partial derivatives at other locations.

If the moving body is rigid and moves without rotational, the displacement vectors should be

identical everywhere. By evaluating the partial derivatives at many di�erent locations, we create a

system of over-constrained equations which can be solved using the method of least squares. One

minimizes the error

X
l;m;n

(GxÆx +GyÆy +GzÆz +GtÆt)
2 : (3.5)
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where the sums are over i; j and k and (bÆx; bÆy; bÆz) is the motion estimate.

The method of least squares provides a maximum likelihood estimate of a parameter in the

presence of additive, Gaussian noise [4]. Our dominant noise sources, discussed in Chapter 2, are

neither Gaussian nor additive. We therefore must regard the use of linear least squares as heuristic.

However, gradient-based methods using least square techniques have been shown to be e�ective.

Davis and Freeman shows achieves 0.01 pixel accuracy using these methods [7].

3.1.1 Higher Order Taylor Approximations

Gradient methods can be extended to higher order by taking the total derivative out to quadratic

terms or further. We consider the second order expansion,

0 = rE � Ær +EtÆt +
1

2
Æ
Tr(rE)Æ +

1

2
EttÆ

2
t + ÆtrE � Æ + : : : (3.7)

where the ellipsis represents higher order terms.

We can estimate the �rst and second derivatives at many points to create a set of non-linear over-

constrained equations. Once again, we can use the method of least squares to solve these equations,

which will result in three coupled nonlinear equations of three variables.

Finding solutions to nonlinear equations is generally diÆcult. However the results from the

previous section can be used as a starting point for searching for the solution to this nonlinear

equation. Methods of steepest descent should give acceptable results.

Higher order derivative estimates can be included in gradient-based methods by solving for the

�rst-order estimate and then progressively solving for the higher order solutions iteratively.

3.2 Block Matching

Block Matching is based on the assumption that two images of a moving object are related by a

simple shift,

G(r; 0) = G(r + Ær ; 1): (3.8)
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where the 0 and 1 label the di�erent images. The displacement between two images can then be

estimated using a least square minimization,

(bÆx; bÆy; bÆz) = argmin
Æx;Æy;Æz

X
i;j;k

�
G[i+ Æx; j + Æy; k + Æz; 1]�G[i; j; k; 0]

�2
: (3.9)

To �nd subpixel shifts, one uses an interpolator to determine the values of the intensity function at

locations that were not sampled. In principle, one could then search all possible sets of trial shifts

to minimize the least square sum. However, searching is computationally intensive.

Instead, note that Equations (3.8) and (3.1) are almost identical. If one were to calculate

the spatial derivatives in the gradient-based method using the interpolator of the block matching

technique, the two algorithms would di�er from each other in only one respect. The gradient-based

method includes a time derivative that is not present in the block matching techniques.

Davis and colleagues argue that any block matching problem can be cast as an gradient-based

problem [9]. By calculating the spatial and temporal derivatives of the gradient-based approach

carefully, the least square minimizations in each case can be made to be identical. Similarly, Davis

and colleagues show that all gradient-based approaches can be cast as block matching problems.

Since block matching and gradient method approaches are equivalent, we can choose which

class of algorithms to use based on criteria such as the number of calculations required. With

one exception, we choose to pursue gradient-based algorithms to avoid computationally intensive

searches. The exception is Fourier Transform based block-matching methods.

3.3 Fourier Transform Based Methods

To derive the Fourier Transform motion estimator, start with the block matching Equation (3.9),

and expand the square:

argmin
Æx;Æy;Æz

X
i;j;k

G[i+ Æx; j + Æy; k + Æz; 1]
2 � 2G[i+ Æx; j + Æy; k + Æz ; 1]G[i; j; k; 0] + G[i; j; k; 0]2

(3.10)

Only the �rst and second terms depend on the translation so that we can drop the third term.

Translations result in phase changes in the frequency domain. Using Parseval's theorem [34] the

motion estimate becomes

bÆr = argmin
Ær

Z



��� bG�[
; 1]
��2 � 2 bG[
; 0] bG�[
; 1]e�j2�
�Ær

�
d
 (3.11)

where 
 is the spatial frequency vector and bG[
; 0] is the Fourier transform of the windowed image

G[i; j; k; 0]. Only one of the two remaining terms depends on the translation, so that we can drop
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the other term. The �nal result is the well known correlator based on the cross power spectrum,

[22]:

bÆr = argmax
Ær

Z



bG[
; 0] bG�[
; 1]e�j2�
�Ærd
: (3.12)

We estimate the integral as a sum, evaluating the argument only at the frequencies that result from

a discrete Fourier transform,

bÆr = argmax
Ær

X



bG[
; 0] bG�[
; 1]e�j2�
�Ær : (3.13)

The result suggests �nding the phase-plane that best correlates with the cross power spectral density

of the two images. Thus, the e�ect of the motion was to induce a phase-change between the spectra

of the two images.

Rather than testing various translations, we �t a plane to the phase data using a least squares

approach,

bÆr = argmin
Ær

X



 
tan�1 Re(

bG[
; 0] bG�[
; 1])

Im( bG[
; 0] bG�[
; 1])
+ 2�
 � Ær

!
: (3.14)

Note that if the sum of the motions in the three directions is bigger than a pixel, one must \unwrap"

the phase, which is one reason why many people have shunned this approach [14, 26].

We discuss this method in more detail in Chapter 6.

3.3.1 Other Fourier Transform Based Methods

There are several other methods that use the phase of a Fourier transform to estimate motion. Kuglin

and Hines �rst developed the Phase Correlation Algorithm [25]. They examine the phase correlation

function which is the inverse Fourier transform of the phase di�erence between two images. It can

be shown that this function has a peak at the displacement between the two images. For integer

shifts, this method works very well. For fractional displacement shifts, one can search for the peak

in the correlation function by zero padding the Fourier transform before taking the inverse. The

resolution of this method is therefore fundamentally limited by the amount of padding one is willing

to do. For example, to obtain 1
8 pixel resolution, one must pad by the data by a factor of 8 in all

dimensions.

Others have used the phase correlation method to obtain integer pixel shifts and then used block

matching based searches to determine the fractional-pixel motion [15]. Using a similar method,

Pearson et al. claim they achieved 0.08 pixel accuracy [36].

Douglas developed a slightly di�erent algorithm [11]. He starts with Equation (3.9) and uses
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Parseval's theorem to write an equivalent minimization in the frequency domain:

argmin
Ær

X



�� bG[
; 1]� bG[
; 0]e�j2�
�Ær ��2: (3.15)

He uses a Gauss-Newton search method to �nd the resulting translation. By expanding Equation

(3.15), one can show that the equation is identical to (3.13). However, the technique can fail to �nd

a global minimum.

Koc and Liu derived methods to estimate subpixel motions based on the discrete cosine and sine

transforms [23, 24]. They pursue this technique because the Fourier transform is incompatible with

discrete cosine transform based video coding standards. They make no claims that their algorithms

perform better than Fourier transform based methods. In fact, their derivation of a \pseudo-phase"

simply relates cosine and sine transforms to the Fourier transform. Thus, the method is e�ectively

a Fourier transform based method with a di�erent name.

3.3.2 Other Basis Functions

One way to consider the Fourier transform is simply as a conversion of the data to a more useful set of

basis functions. The complex exponential functions are useful since a translation simply modulates

their phase.

It seems that there might be other useful basis functions. Some groups have used the Hermite

Polynomials as a basis set [29]. However, their use for them was a method of calculating derivatives

for interpolation.

A useful set of basis functions should contain direct information about the translation. The

simplest basis set would be the set of functions which are multiplied by a factor related to the

translation. These functions would be eigenfunctions of the translation operator. One can show

that complex exponentials are the unique eigenfunctions of the translation operator [38].

3.4 Spatio-temporal Filters

To derive the method using of spatio-temporal �lters, we start by assuming constant velocity,

E(r; t) = f(r + vt):

where f is the brightness function. Taking a Fourier transform in space, we �nd

bE(
; t) = bF (
)e�j2�
�vt:
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Taking a Fourier transform in time,

bE(
; !t) = bF (
)Æ(!t +
 � vt)

where Æ is the Dirac delta function. For constant velocity, all energy is concentrated along a hyper-

plane in the frequency domain. One might use the magnitude response to a series of bandpass

�lters (such as the Fourier transform) to attempt to identify the hyper-plane and thus determine the

velocity. However, if motion varies in space and time, one desires a �lter that is localized in regions

of space and time where the velocity can be considered constant, and has a narrow pass-band in the

frequency domain. Spatio-temporal �lters attempt to do just that [17, 30].

The uncertainty relationship becomes important in making these �lters. The uncertainty relation

states that for any function, there is a limit to the product of its localization in space and its

localization in the frequency domain [5]. Gabor developed a set of �lters that achieve the minimum

uncertainty product. Therefore, Gabor �lters are often used.

For rigid body translational motion, we believe spatio-temporal �lters will function adequately.

However, because of the rigid body constraint, there is no need for �lters that are localized in space.

Therefore, we do not pursue methods using Gabor �lters. Note that for rigid body rotations, Gabor

methods may be useful.

The work of Fleet and Jepson using Gabor �lters is particularly noteworthy because their al-

gorithm achieves subpixel motion accuracy and consistently performs well in comparisons to other

algorithms [3, 12]. To discern motion, they examine the phase of the response of the images in

time to a Gabor �lter. They claim that analyzing the phase yields a much more robust and a more

accurate result than analyzing the magnitude of the response. Their methods are very similar to

Fourier transform based methods which also detect motion using the phase response of a set of

�lters. Their method, however, has one major drawback: many parameters in the technique need

to be experimentally determined based on the images and the motion.

3.5 Re-Sampling Methods

There are various block matching approaches based on interpolation and re-sampling of an image

[36]. These techniques use interpolation to determine the value of the continuous intensity distri-

bution between actually sampled points. These interpolated values are then treated as if they were

measured. The process is known as up-sampling or re-sampling.

By up-sampling by a factor of 8, one can use very simple block matching techniques to ob-

tain 0.125 pixel precision. These techniques e�ectively trade computation for memory usage. The

resolution of re-sampling methods are limited by available memory and interpolation methods.

The resolution of these techniques is typically limited by memory, not by noise considerations.
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Because the \new data" are functions of the initial data, the variance of the new data points is

a function of the variance of the initial data. If noise were an issue, one would need to treat the

interpolated data points di�erently than the initial data.

We note that no gain is made when re-sampling an image since the same amount of information

exists before and after the re-sampling (This is the data processing inequality from information

theory [6]).

3.5.1 Mutual Information Methods

Alignment can be approached as a maximization of the mutual information of two images [39].

Mutual information has many advantages over simple least square correlation techniques. Mutu-

al information methods are insensitive to lighting gradations. These methods work for non-linear

transformations. Information based techniques have reduced sensitivity to outliers in the data sets

which is important when noise distributions are not exponentially distributed. Also the methods

work well with multiply-peaked probability distributions, where correlation techniques fail. How-

ever, rigid body motion estimation has none of these extreme problems which mutual information

based methods are useful for solving. Since mutual information methods are computationally very

intensive, we do not explore them.

3.6 Summary

We examined many of the techniques in the literature used to estimate motion with the goal of

�nding classes of estimators that could detect the smallest possible subpixel translations of rigid

bodies from a sequence of video images. We found many of the techniques to be either inappropriate

for estimating rigid body translations or inheritly resolution limited. However, we noted that block

matching approaches, gradient-based methods and some Fourier Transform based methods may not

be inheritly resolution limited and therefore have the potential to estimate very small motions.

We saw that gradient-based methods and block matching approaches could be cast into one

another. The choice of which approach to use should therefore be based on criteria such as compu-

tational considerations. We prefer gradient-based methods in order to avoid potentially expensive

searches.

We choose to examine two techniques further: Fourier transform based methods and gradient-

based methods.

36



Chapter 4

Limitations of Gradient-Based

Algorithms

4.1 Introduction

We examine design limiting factors of gradient-based methods. We start by considering limitations

in gradient-based methods due to using only �rst-order gradients in the estimate of motion. By

ignoring higher order derivatives, the accuracy of gradient-based methods is limited.

If a derivative is calculated at a point (x; t) and another derivative is calculated at the same

point (x; t), we call the derivatives co-located. Some researchers have published results using non-

co-located derivative estimators. We examine several examples of the errors that can arise from

using exact, non-co-located derivatives.

We explore the e�ects of errors in realizable co-located derivative estimates. We examine images

of single sinusoids as test images because they are mathematically tractable. As an concrete example

algorithm, we consider the �rst-di�erence estimator developed by Horn [19] and extended by Davis

[10].

4.2 Accuracy Limitations of First and Second-Order Gradient-

Based Methods

Typically, gradient methods use �rst-order derivatives to estimate motion. Ignoring higher order

derivatives limits the accuracy of motion estimates. In this section, we explore the accuracy lim-

itations in �rst-order and second-order gradient-based algorithms that use co-located derivative

estimates. To do so, we assume that derivatives can be calculated exactly. In practice, this is not
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achievable. Therefore, this analysis represents an upper bound on the accuracy of an achievable

gradient-based estimate.

4.2.1 Co-located, Exact, First-Order Gradients

The �rst-order gradient-based constraint equation was derived in section 3.1 and is given by setting

the total derivative of the continuous intensity function to 0. If E is the continuous intensity function,

the constraint equation is given by

rE � bÆr + @E

@t
Æt = 0 (4.1)

where r is the spatial gradient operator, bÆr is the motion estimate and Æt is the time between two

images. Consider a continuous intensity function E given by

E(r; t) = f(r � d(t)) (4.2)

where f is a function, r is the spatial coordinate vector and d(t) is the vector displacement as a

function of time. By substituting into (4.1) and calculating co-located spatial and temporal gradients,

we �nd

rf(r � d(t)) � bÆr �rf(r � d(t)) � d0(t) = rf(r � d(t)) �
�bÆr � d

0(t)
�
= 0 (4.3)

where d0(t) is the time derivative of the displacement function. If the gradient of f is zero, it is not

possible to estimate the motion. If the gradient of f is not zero, we conclude

bÆr = d
0(t)Æt: (4.4)

The displacement estimate is simply the �rst-order Taylor expansion of the displacement function,

which we recognize as instantaneous velocity. Thus, �rst-order gradient-based methods should work

well when motion has been sampled frequently enough in time so that assuming constant velocity

between images is a good approximation. If the two images are taken at times 0 and 1 then the bias

is given by

Bias = d
0(t)� [d(1)� d(0)]: (4.5)

The bias is the di�erence between the average velocity and the instantaneous velocity.
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4.2.2 Co-located, Second-order Gradients

For second-order methods, we show in Appendix A that

bÆr = d
0(t)Æt +

1

2
d
00(t)Æ2t +O(Æ4t ) (4.6)

where d00(t) is the second time derivative of the displacement function.

The displacement estimate is not exactly the �rst two terms in the Taylor expansion of the

displacement function, as one might expect. However, the error consists of terms which we assume

are small in the derivation. Thus, the displacement estimate is close to what one would expect. We

conclude that second-order methods have a small bias when the acceleration of an object is close to

constant between images.

4.3 E�ects of Non-co-located Derivative Estimates

Some researchers have used non-co-located derivatives with gradient-based methods. In this section,

we explore some of the e�ects of calculating non-co-located spatial and temporal derivatives. For

simplicity, we consider a one-dimensional image of a single spatial frequency. Once again, we assume

derivatives can be calculated exactly.

Let the images have N pixels consisting of

G[i; k] = E0 +E1 cos
(i+ �� d(k)) (4.7)

where 
 is the spatial frequency of the sinusoids, � is an o�set and (i; k) index the sampled spatial

and temporal coordinates. If the derivatives are calculated exactly, they will be

Gx[i; k] = �
E1 sin
(i+ �� d(k)) (4.8)

Gt[i; k] = 
E1 sin
(i+ �� d(k))d0(k) (4.9)

In one dimension, the gradient-based estimator is given by

bÆx = argmin
Æx

X
i

(Gx
bÆx �Gt)

2; (4.10)

which leads to

bÆx = �

P
GxGtP
GxGx

: (4.11)

We seek to understand the e�ects of calculating non-co-located derivatives. We substitute Gx[i +
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�; k + �] and Gt[i; k], where � and � are separations in space and time, into the one-dimensional

gradient-based estimator (4.11) and use trigonometry to obtain

bÆx = d0(k)

P
i cos
(�+ d(k)� d(k + �))�

P
i cos
(2i+ 2�+ �� d(k + �)� d(k))

N �
P

i cos 2
(i+ �+ �� d(k + �))
: (4.12)

It is straight forward to show that the summation of cos(2
i) over an image is small compared to

the number of points in the image, N , except for frequencies in the highest and lowest �
N of the

spectrum. We approximate the rightmost numerator summation and the denominator summation

as negligible compared to N so that we �nd

bÆx � d0(k) cos
(�+ d(k)� d(k + �)): (4.13)

Unless � + d(k) � d(k + �) is a multiple of 2�, the estimator will not give an estimate of velocity.

The only way to guarantee an unbiased estimate of velocity is to have � = 0 and d(k)�d(k+�) = 0.

We examine several values of � and � to see the problems that can result. We consider constant

velocity motion in time to simplify the analysis. In Chapter 5 we will use methods to easily calculate

derivatives at location at pixels and halfway between pixels. Therefore, we consider cases where �

and � take on the values f� 1
2 ;

1
2 ; 0g. Since the cosine in (4.13) yields identical results independent

of the sign of its argument, (�; �) and (��;��) yield the same errors.

In the top-right plot of Figure 4-1, derivatives are calculated at the same time, but di�erent

places (� = 1
2 ; � = 0 or � = � 1

2 ; � = 0). Estimates of motion for higher spatial frequencies give the

wrong sign. One can show that the severity of the problem decreases as � shrinks towards 0.

In the top left plot derivatives are calculated at the same place, but di�erent times (� = 0; � = 1
2

or � 1
2 ). This algorithm gives small bias for small displacements. This method is notable because it

is the basis of the standard block-matching algorithm described in Chapter 3.

In the bottom two plots, the derivatives are calculated at di�erent times and di�erent places

(� = � 1
2 ; � = � 1

2 ). The estimators sometimes determine the sign of the motion incorrectly. However,

for the regions in which they estimate the sign of the motion correctly, the maximum bias for the

highest frequencies are about 0.1 pixels. These errors are greater than those of existing algorithms

[7].

4.3.1 Discussion

We have shown that if co-located temporal and spatial derivatives can be calculated perfectly then

gradient-based methods exactly determine velocity. We have also shown that non-co-located deriva-

tives can lead to errors even if the derivatives are calculated perfectly. We have not excluded the

possibility of the existence of a small bias, non-co-located, gradient-based motion estimator. How-
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Figure 4-1: The e�ect of calculating exact, non-co-located spatial and temporal derivatives for linear
motion in time. For the top right, the derivatives are separated by (� = 1

2 ; � = 0). For the top left,
the derivatives are spaced by (0; 12 ). In the bottom left plot, the derivatives are spaced by ( 12 ;

1
2 )

and for the bottom right the derivatives are spaced by (� 1
2 ;

1
2 ).
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ever, we argue that any researcher attempting to develop a non-co-located gradient-based method

should be careful to understand the limitations of the algorithm. We consider only co-located

derivative estimates in the remainder of this chapter.

4.4 Co-located, Realizable Derivatives

In this section, we examine the e�ects of errors in realizable co-located derivative estimates using

linear functions of the data. We examine images of single sinusoids in one dimension because these

images are mathematically simple enough to obtain closed-form expressions for motion estimates.

4.4.1 Derivatives Estimates as Filters

Linear functions can be considered �lters. We consider derivative estimates as a cascade of one-

dimensional �lters in space and time convolved with a sequence of video images. We choose one-

dimensional �lters rather than multidimensional �lters to simplify the analysis.

In one dimension, a spatial derivative estimate, for example, consists of a spatial derivative �lter

and a temporal interpolation �lter. The interpolation may be necessary so that derivatives are

co-located. The spatial and temporal derivative estimates, Gx and Gt, can be written as

Gx = Hx[i] �Hit[t] �G[i; t]; and (4.14)

Gt = Hix[i] �Hit[t] �G[i; t] (4.15)

where Hl is a derivative �lter in the l
th direction and Hil is an interpolating �lter in the l

th direction.

The phase lag of each �lter determines the location of the derivative estimate. The �lters are chosen

to have linear phase so that the contributions of each spatial frequency to a derivative estimate are

in phase. In the frequency domain, the requirement of linear phase limits the form of each �lter, so

that

Hx(
x;
t) = Dx(
x)e
�j
x�x ; (4.16)

Hix(
x;
t) = Dix(
x)e
�j
x�ix ; (4.17)

Ht(
x;
t) = Dt(
t)e
�j
t�t ; and (4.18)

Hit(
x;
t) = Dit(
t)e
�j
t�it ; (4.19)

where the D's are real functions and the �'s are phase lags. So that the derivative estimates are co-

located, the phase lag of the spatial �lters in each derivative estimator must be identical. Similarly

the phase lag of the temporal �lters of each derivative estimator must be the same. Therefore

�x = �ix and �t = �it.
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4.4.2 Constant Velocity Motion in One Dimension

We consider the sequence of one-dimensional images of a sinusoid moving with constant velocity

G[i; t] = E1 cos[
(i+ �� Æxt)] (4.20)

where t indexes the images in time. The only spatial frequency in these images is 
. Similarly, the

only temporal frequency in these images in �
Æx. We �nd that the derivative estimates due to the

�lters are given by

Gx[i] = Dx(
)Dit(�
Æx)E1 cos
(i+ �� �x � Æx(t� �t)); and (4.21)

Gt[i] = Dix(
)Dt(�
Æx)E1 cos
(i+ �� �x � Æx(t� �t)): (4.22)

Using 4.11, we �nd the gradient estimate of motion to be

bÆx = �
Dix(
)

Dx(
)

Dt(�
Æx)

Dit(�
Æx)
: (4.23)

The estimate of motion is always independent of the phase of the sinusoid and the number of places

at which the derivatives are evaluated. Also, the estimate of the motion depends only on the ratios

of the �lters along the space and time axes, not on the �lters themselves. Observe that if identical

derivative and interpolation �lters are used in space and time, that is if Dx = Dt and Dix = Dit,

for translations between adjacent images of 1 pixel, the estimator is unbiased.

4.4.3 Example: The First-Di�erence Algorithm in One Dimension

Consider two sampled images G[i; 0] and G[i; 1] acquired at times 0 and 1, and over the spatial range

i = 1; 2; : : : ; N . For two images, one can assume constant velocity motion without loss of generality

so that the results of the last section apply. The �rst-di�erence derivative estimators are given by

Gt[i] =
1

2

i+1X
i0=i

G[i0; 1]�G[i0; 0]; and (4.24)

Gx[i] =
1

2

1X
k0=0

G[i+ 1; k0]�G[i; k0]: (4.25)

The method calculates the spatial derivative by taking a �rst-di�erence between two adjacent points

in each of the images and then averaging the two results together. This spatial derivative calcu-

lation is equivalent to using the 2-point derivative �lter (1;�1) in each image and then using the

interpolating �lter ( 12 ;
1
2 ) in time. Similarly, the time derivative estimate is equivalent to using the

2-point derivative �lter (1;�1) in time and then the 2-point interpolating �lter ( 12 ;
1
2 ) in space.
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For the �rst-di�erence algorithm we �nd,

Dt(�
Æx) = 2 sin 
Æx
2 ;

Dix(
) = cos 

2 ;

Dx(
) = �2 sin 

2 ; and

Dit(�
Æx) = cos 
Æx
2 ;

The derivative of e�j
x is �j
e�j
x so that the magnitude of the frequency response of an ideal

di�erentiator is 
. In Figure 4-2, the frequency response of the �rst-di�erence derivative �lter is

compared to the frequency response of the ideal derivative estimator. For large frequencies the

derivative estimator diverges from the ideal result. An ideal interpolator shifts a complex exponen-

tial, leaving its magnitude unchanged. Therefore, an ideal interpolator has an amplitude response of

one. In Figure 4-2, we show that the response of the 2-point interpolator diverges from the response

of the ideal interpolator at very small frequencies.
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Figure 4-2: Frequency response of �rst-di�erence derivative �lter and interpolation �lter compared
with the frequency response of the corresponding ideal �lters.

Using Equation (4.23), we �nd the �rst-di�erence estimate of motion for images of single fre-

quencies to be

bÆx = tan(
Æx=2)

tan(
=2)
(4.26)

which is plotted in Figure 4-3. For low frequency images, the estimator is almost unbiased. For


 = 1, the method makes errors near hundredths of a pixel. For 
 = 2, the bias of the �rst-di�erence

algorithm is closer to tenths of a pixel. For 
 = 3, the bias in the algorithm is close to 0.5 pixels.

Given that the 2-point interpolator diverges from the ideal interpolator at such low frequencies,

one might expect that the �rst-di�erence algorithm would make much larger errors than it actually
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Figure 4-3: Estimates bÆx of the displacement Æx between two sinusoidal images using the �rst di�er-
ence estimator. The curves illustrate gradient-based estimates of displacement (4.11) for sinusoidal
images with frequencies 
, where 
 = � is the Nyquist frequency.

does. However, Equation (4.23) shows that it is not the performance of the individual �lters that is

important but the ratio of the �lters. The ratios of the �lters are given by

Hix(
)

Hx(
)
=

1

2 tan 

2

; and (4.27)

�
Ht(�
Æx)

Hit(�
Æx)
= 2 tan


Æx
2

: (4.28)

In Figure 4-4, one can see that the ratio of the �rst di�erence di�erentiator to the 2-point interpolator

is close to ideal up to frequencies near 1. In some sense, the error in the interpolator was somewhat

counteracted by the error in the di�erentiator.

4.4.4 Sinusoidal Motion in One Dimension

In this section, we show that the �lter-based techniques we have developed apply to more general

motions. We consider the case of sinusoidal motion in time. Consider a sequence of images of the

form:

G[i; t] = cos
x(i+ �x �Axd); with

d = sin
t(t+ �t)

where Ax is the amplitude, �t is the phase and 
t is the frequency of the sinusoidal motion. Filters

in space act independently of the motion in time so that we need only determine the e�ect of �lters

in time. First, we determine the temporal frequencies in the image. To do this, we expand the cosine
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Figure 4-4: Plot of 2 tan 

2 which is the ratio of the frequency response of the 2-point di�erentiator

(1;�1) to the 2-point interpolator ( 12 ;
1
2 ).

in a Taylor series in the displacement function,

cos
x(i+ �x �Axd) = cos[
x(i+ �x)]� sin[
x(i+ �x)](
xAxd)

+
1

2
cos[
x(i+ �x)](Ax
xd)

2 + : : :
(4.29)

where the ellipsis represents higher order terms. If a �lter in time Ht with response Dt(
t) acts on

the image, we �nd

Dt cos(
x(i+ �x �Axd)) = Dt(0) cos(
x(i+ �x))�Dt(
t)(
xAxd) cos(
x(i+ �x +
�

2
))

+Dt(2
t)
(
xAxd)

2

2
cos(
x(i+ �x)) + : : :

(4.30)

where we have assumed no phase lag for simplicity. Notice that the result contains the same spatial

frequencies in the original image, though some of the frequencies are shifted by �
2 . Cosines of the

same frequency with relative phase lag of �
2 are approximately orthogonal when summed over an

image. Using this approximation, we �nd the motion estimate,(4.11), to be

bÆx = �
(Hit(0) +Hit(2
t)

(
xAxd)
2

2 )(Ht(0) +Ht(2
t)
(
xAxd)

2

2 ) +Hit(
t)Ht(
t)(
xAxd)
2

(Hit(0) +Hit(2
t)
(
xAxd)2

2 )2 +Hit(
t)2(
xAxd)2

Hix(
x)

Hx(
x)

(4.31)

where we have included only terms up to the second-order in the expansion.
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4.4.5 Constant Velocity Motion in Two Dimensions

In two dimensions, the gradient-based estimator is given by

bÆx = P
GxGy

P
GyGt �

P
G2
y

P
GxGtP

G2
x

P
G2
y �

P
GxGy

P
GxGy

(4.32)

bÆy = �
P

G2
x

P
GyGt +

P
GxGy

P
GxGtP

G2
x

P
G2
y �

P
GxGy

P
GxGy

: (4.33)

In two dimensions, as in one dimension, we consider derivatives as cascades of �lters. Derivative

estimates consist of a cascade of two interpolating �lters and one di�erentiating �lter. We consider

the sequence of images given by

G[i; j; t] = E1 cos
�

x(i+ �x � Æxt) + 
y(j + �y � Æyt)]: (4.34)

Our choice of test images leads to diÆculties because each image in the sequence is constant along

lines parallel to 
xi+
yj = 0. Motion cannot be determined along this direction. We have chosen

this sequence of images despite this diÆculty because of the particularly simple form of the motion

estimates. Motions can be discerned perpendicular to the lines of constant intensity. This direction

is constrained to have 
xbÆy = bÆx
y. Solving Equation (4.32) using this constraint, we �nd the

component vectors of the motion to be

bÆx = �Ht(�
t)

Hit(�
t)


x
Hx(
x)
Hix(
x)


x +
Hy(
y)
Hiy(
y)


y
; and (4.35)

bÆy = �Ht(�
t)

Hit(�
t)


y
Hx(
x)
Hix(
x)


x +
Hy(
y)
Hiy(
y)


y
(4.36)

where 
t = 
xÆx + 
yÆy. Once again, the motion estimates depend only on the ratio of �lters in

each direction.

4.4.6 The First-Di�erence Algorithm in Two Dimensions

We explore the �rst-di�erence algorithm is two dimensions to analyze crosstalk. We consider the

images

G[i; j; 0] = cos
x(i+ �x) cos
y(j + �y) (4.37)

G[i; j; 1] = cos
x(i+ �x � Æx) cos
y(j + �y � Æy) (4.38)
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In two dimensions, the �rst-di�erence derivatives consist of a 2-point derivative and two 2-point

interpolators; the formulas are given in [7]. After a a lengthy calculation, we �nd1.

bÆx = 1

tan 
x

2

sin
xÆx
cos
ydy + cos
xÆx

(4.39)

bÆy = 1

tan

y

2

sin
ydy
cos
ydy + cos
xÆx

(4.40)

The motion estimates are shown in Figure 4-5. The error in motion estimates in the x-direction
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Figure 4-5: Crosstalk between motion in two directions for an image consisting of a spatial frequency

x in the x direction and 
y in the y-direction.

increases as 
yÆy increases for constant 
x. The sign of the motion estimate is not always correct.

For some combinations of frequencies and displacements, the estimates of motion are in�nite.

1We simulated the results and found that the formulas agreed with the simulated results in all six decimal places
examined.
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4.4.7 Discussion

In all cases examined, we found that the spatial �lters used in the estimator in each direction

appeared as ratios of interpolators to di�erentiators. That this happened is very general, independent

of the spectral content of the image. To understand this, consider pre�ltering an image along the

x-direction. Rather than pre�ltering the image, one could equivalently convolve all the derivative

and interpolation �lters in the x-direction which the pre�lter. In the frequency domain, the ratio

of the response of derivative and interpolating �lters along that direction would remain unchanged.

However, the frequency response of each �lter may look very little like the ideal derivative and

interpolating �lters. We conclude that when designing gradient-based estimators, one need not

worry about the exact shape of derivative and interpolation �lter in space, only their ratio.

If derivative and interpolation �lters are not ideal, they can be considered the convolution of

the ideal �lters and a pre�lter of the image. For the �rst-di�erence algorithm, the derivative and

interpolation �lters both decrease from an ideal as shown in Figure 4-2. Thus, the �rst-di�erence

algorithm e�ectively includes a low pass �lter.

Examining Figure 4-3, the estimate of motion for 
 = 3 becomes in�nite for displacements

slightly larger than one pixel. This e�ect illustrates a problem of the gradient-based methods. For

large motions, gradient-based methods cease to give accurate motion estimates. We pointed out that

for images of a single spatial frequency in one dimension, the only temporal frequency in the image

is 
Æx. Once this temporal frequency becomes larger than �, temporal frequencies are aliased. For


 = 3, aliasing in the time domain occurs for displacements slightly larger than one pixel.

For sinusoidal motion, terms of d2 and d3 lead to higher harmonics of the temporal frequency


t. For high order terms, the higher harmonics will become greater than �. Those harmonics will

be aliased into the other temporal frequencies. For large motion, we expect the energy in the higher

harmonics to be important and therefore the e�ects from aliasing will become important. Examining

the expansion in Section 4.4.4, \large" means Ax
x approaching 1.

One might presume that the poor estimates of motion of the �rst di�erence algorithm in two

dimensions is due to poor derivative and poor interpolation estimates. However, if that were the

case, similar e�ects would have been seen in one dimension. We pointed out in Section 4.4.5 that the

temporal frequencies in the image are given by 
t = 
xÆx + 
yÆy. Motion in both directions lead

to higher temporal harmonics than motion in only one direction. We attribute the poor estimates

of motion in Figure 4-5 to aliasing temporal frequencies greater than �.

4.5 Relative Errors in Filters

It is not possible to calculate derivatives exactly. An important question to consider is the relative

importance of temporal and spatial �lter errors. In data collected using video microscopy, one
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typically has many more points in an image for the support of spatial �lters than images in time for

the support of temporal �lters. The question arises if it is worth while to calculate spatial derivatives

to much better accuracy that temporal derivatives.

For simplicity, we consider the case of constant velocity motion in one dimension for images of

a single sinusoid. It is well known that for uncorrelated errors, the square of the fractional error in

a ratio is given roughly by the sum squares of the fractional error of the elements in the ratio2[4].

Using Equation (4.23), we immediately conclude

�
bÆxbÆx �

�
(
�Dt=Dit

Dt=Dit
)2 + (

�Dix=Dx

Dix=Dx
)2
� 1

2

(4.41)

where the epsilons represent errors in the corresponding ratios.

Thus if the fractional error in any one of the ratios is larger that the rest, its square will dominate

the sum. Similar results can be derived in higher dimensions. We conclude that there is little

advantage to calculating �lters in one dimension to much higher accuracy than �lters in any other

dimension.

4.6 Conclusions

We showed that estimating co-located derivatives in �rst-order gradient-based methods leads to

estimates of velocity. We showed that for spatial �lters used in gradient-based methods, it is the

ratio of the response of the derivative and interpolation �lters that is key, not the response of the

individual �lters themselves.

We showed that for large motions, gradient-based methods can be expected to produce poor

estimates of motion. We showed that when motions become large enough, temporal frequencies

greater than � are produced and aliased to other frequencies. We showed that these error can cause

the gradient-based estimates to become arbitrarily large.

We also concluded that calculating spatial �lters to much higher accuracy than temporal �lters is

only marginally productive. We conclude that to calculate gradient-based methods to high accuracy,

we need to calculated spatial and temporal �lters to high accuracy. This conclusion leads us toward

using sequences of images in the support of temporal �lters. We investigate multi-image based

gradient methods in the next chapter.

2Actually, this result is typically derived assuming the elements in the ratio are noisy. However, we can equally
well assume that the elements in the ratio are equal to their mean plus some small error.
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Chapter 5

Development and Simulations of

Multi-Image Gradient-Based

Algorithms with Applications for

Sinusoidal Motion Estimation

5.1 Abstract

We demonstrate a design method for motion detection algorithms that use data in many images

to estimate motion between two images. We use the technique to develop a class of gradient-based

algorithms to measure the amplitude and phase of an object undergoing sinusoidal motion. We

simulate the performance of the algorithm in the absence of noise to show that the systematic bias

in the class of amplitude estimators is less than 0.001 pixels for motions smaller than 1.2 pixels

in amplitude. For our applications in which noise is of the order of �50 dB, amplitude estimates

with 0.001 precision and accuracy and phase estimates with 0.001 radian precision and accuracy are

achievable.

5.2 Introduction

Davis and Freeman [7] used the �rst di�erence algorithm created by Horn [19, 18] to perform sub-

pixel image registration. They found the �rst di�erence algorithm bias limited and created a linear

bias compensation (LBC) algorithm to improve the performance of the registration method. Still,

they found the bias inherent to LBC to be roughly one order of magnitude higher than the standard
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deviations due to noise. In the presence of blur due to non-zero image acquisition times, the errors

inherent to LBC increase [8].

We create a technique for designing gradient-based algorithm whose estimates, for small enough

motions, are not limited by errors inherent to the algorithm. To improve the accuracy of gradient-

based algorithms over the �rst di�erence algorithm, it is not suÆcient to improve spatial derivative

estimates alone; it is necessary to improve both spatial and temporal derivatives estimates (see

Chapter 4 or Chapter 6 of [10]). To improve derivative calculations, we use the data in a sequence

of images rather than two images. Additionally, by using data in a sequence of images, we are able

to compensate for e�ects due to �nite image acquisition times.

We are motivated by our work using optical microscopy to measure the driven motions of bio-

mechanical and microelectromechanical systems (MEMS). When exciting many of these systems with

sinusoids, we expect sinusoidal responses of the same frequency. Therefore, we use our technique to

develop a least square estimator of amplitude and phase of temporal sinusoidal motion.

5.3 The Design of Multi-Image Gradient-Based Algorithms

Let G[i; j; t] represent a time-series of sampled images. We showed in Chapter 3 that the gradient-

based estimate of motion between two adjacent images in the sequence is given by26666666664

bÆxbÆybvx
bvy

37777777775
= �

24 PP
GxGx

PP
GxGyPP

GxGy

PP
GyGy

35�1 24 PP
GxGtPP
GyGt

35 (5.1)

where the sums are over i and j, (Gx;Gy;Gz;Gt) are the estimates of the spatial and temporal

derivatives of the continuous intensity function, and (bÆx; bÆy) is the motion estimate. We then showed

in Chapter 4 that if the co-located derivatives are calculated exactly, the motion estimates measure

instantaneous velocity, not displacement.

Multi-image gradient-based methods use data in a sequence of images to estimate the gradients

in Equation (5.1). The challenge of �nding a gradient-based estimate of velocity is �nding estimates

of co-localized derivatives and choosing the points at which the derivatives will be calculated.

5.3.1 Derivative Estimation

We choose to calculate derivatives using linear functions of the data so that unbiased noise in the

image acquisition process does not create a bias in derivative estimates. Since linear functions can be
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considered �lters, the process of calculating derivatives is equivalent to �nding a derivative-estimating

�lter.

We consider a derivative estimate as a convolution of the data with a cascade of one-dimensional

�lters in each direction. While there are potential advantages to creating multidimensional �lters

rather than sequences of one dimensional �lters, for simplicity of design we choose to create one

dimensional �lters. In our formulation, the most general derivative calculation in the x-direction,

for example, consists of a derivative �lter in the x-direction, an interpolation �lter in the y-direction,

and an interpolation in time. The interpolations may be necessary so that all derivatives are co-

located. The derivative estimates can be written as

Gx[i+ �i; j + �j ; t+ �t] = Hx[i] �Hiy [j] �Hit[t] �G[i; j; t]

Gy[i+ �i; j + �j ; t+ �t] = Hy[i] �Hix[j] �Hit[t] �G[i; j; t]

Gt[i+ �i; j + �j ; t+ �t] = Ht[i] �Hiy[j] �Hix[t] �G[i; j; t]

where Hl is a derivative �lter in the lth direction, Hil is an interpolating �lter in the lth direction,

and (�i; �j ; �t) represents the o�set relative to a pixel location where the derivatives are calculated.

The delay of the �lters determines the locations at which the derivatives are estimated. The �lters

are chosen to have linear phase so that the contributions of each spatial frequency to a derivative

estimate are in phase.

We choose to estimate derivatives at one of two locations relative to a pixel (i; j) in space: at

(i+ 1
2 ; j +

1
2 ) and at the pixel (i; j). We calculate temporal derivatives either at the time an image

was taken, or between two successive images

5.3.2 Filter Design Using The Parks McClellan Algorithm

We use the Parks-McClellan algorithm (reviewed in [34]) to create the one dimensional �lters in space

and time. We brie
y review the algorithm here. The method requires a desired �lter responseHd(!),

the desired length of the �nite impulse response �lter, and a weighting function W (!) indicating the

relative importance of errors as a function of frequency. The Parks McClellan Algorithm determines

the �lter A(!) that minimizes the maximum of the absolute value of the weighted error E(!), given

by

jE(!)j = jW (w)[Hd(!)�A(!)]j: (5.2)

The algorithm achieves the minimum by creating a �lter whose error oscillates from positive to

negative with equal weighted amplitude.

To use the algorithm, we must determine the appropriate error weighting function. We would
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like the error for a typical image to be as small as possible. For an image with spectrum G(!) along

one direction, the error is given by

Z
G(!)[Hd(!)�A(!)]d! =

Z
G(!)

E(!)

W (!)
d!: (5.3)

Since E(!) oscillates from positive to negative, one way make the expected error small is to use the

spectrum of an \average" image as the weighting function in the Parks McClellan algorithm. For

our microscope images, we choose an !�1 weighting.

We �nd there is little energy in our microscope images above spatial frequency 2. In order to

obtain smaller errors for frequencies smaller than 2, we set the weighting function to be 0 above

spatial frequency 2.

All �lters were calculated using Matlab 5.1's \remez" function and are listed in the last section

of this chapter.

5.3.3 Derivative and Interpolation Filters

The derivative of e�j!x is �j!e�j!x so that the magnitude of the frequency response of an ideal

di�erentiator is !. Derivative �lters have odd symmetry so that �lters which estimate derivatives at

a pixel have an odd number of points in their support. Filters which estimate derivatives between

pixels have an even number of points. Several example derivative �lters are shown in Figure 5-1.
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Figure 5-1: Frequency response of odd and even derivative �lters created using the Parks McClellan
algorithm with weighting function that varies inversely with frequency in the range 0 to 2 and is 0
in the range 2 to �. The �lter with support 2 is used in the �rst di�erence algorithm.

By using odd �lters to estimate all the gradients at the same point (i; j), no interpolating �lters

are necessary. Conversely, even derivative estimators in the x-direction, for example, estimate a

derivative at (i+ 1
2 ; j) so that an interpolator in the y-direction is necessary so that all derivatives

are estimated at (i + 1
2 ; j +

1
2 ). Filters that interpolate 1

2 pixel are symmetric with even support.
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An ideal interpolator has a magnitude response of 1. Figure 5-2 illustrates several example �lters.
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Figure 5-2: Frequency response of interpolation �lters created using the Parks McClellan algorithm
with weighting function as described in Figure 5-1. The �lter with support 2 is used in the �rst
di�erence algorithm.

In Figure 5-3, the maximum of the weighted error, Equation (5.2), is plotted versus �lter support

for each of the three types of �lters. The errors decrease exponentially with �lter support.
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Figure 5-3: Maximum weighted error (5.2) of �lters created using a Parks McClellan algorithm with
weighting function as described in Figure 5-1.

5.3.4 Example: Constant Velocity Motion in One Dimension

As a simple example, we consider a gradient-based estimator in one dimension analyzing an image

of a single sinusoid, translating with constant velocity. As shown in Chapter 4, the number of points

in the image and the phase of the sinusoid have no e�ect on the results.

We consider the sequence of images G[i; t] = sin 2(i � vt). This choice should give the largest

error for our estimators in the frequency range of interest. We use identical derivative �lters in
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space and time and identical interpolation �lters in space and time. Figure 5-4 shows the bias in

the estimate of the motion between 2 images using the multi-image gradient-based algorithms with

varying support. The error in the motion estimate drops exponentially with the number of images

and number of points in space that are used. Note the very slight trend of increasing error for larger

velocities.
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Figure 5-4: Error in the estimate of motion between two images using the data in many images.
The sequence of images consists of sin 2(i� vt). The bottom two traces use 32 images and 32 points
in space and 33 images and 33 points in space to calculate each derivative. The next highest traces
use 16x16 and 17x17 regions in space-time. The number of images and pixels used to calculate
each derivative in an estimator is shown next to its trace. The highest trace is the �rst di�erence
algorithm with a support of 2x2.

5.3.5 Discussion

Figure 5-3 shows that the weighted error of even derivative �lters is more than an order of magnitude

smaller than the weighted error of odd derivative �lters for supports of each �lter that di�er by one.

Interpolation �lter errors with even support, however, are comparable to odd derivative �lter errors.

The result is that, for the example shown in Figure 5-4, the bias of estimators based on even �lters

is comparable to the bias of estimators based on odd �lters.

As shown in Figure 5-3, the error in the �lters decrease exponentially with �lter support. This

decrease in error leads to an exponential decrease in error in motion estimation with �lter support,

as shown in Figure 5-4. That the motion error decreases exponentially with �lter support illustrates

the huge potential advantages of using multi-image based methods.

It is straightforward to show that for the example, 2v is the only temporal frequency in the

images we examine. As v approaches 1, the temporal frequency approaches 2 and the error in the

temporal �lters increases due to the increased ripple allowed by the Parks McClellan algorithm.

The increasing ripple explains the very slight trend of increasing error for larger velocities shown in
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Figure 5-4.

If v were to continue increasing, eventually the temporal frequency would pass �. Temporal

frequencies higher than � are aliased into other frequencies. Thus, the multi-image gradient methods

should cease to estimate motion well for large enough motions. It is generally true that multi-image

gradient-based methods give small errors only for small enough motions.

5.4 Development of a Sinusoidal Motion Estimator

We develop a multi-image gradient-based estimator of amplitude and phase for motion that is

believed to be sinusoidal at a known frequency. To do this, we specify the design of the �lters and

determine how to combine individual estimates of velocity into an estimator of amplitude and phase.

For concreteness, we assume that eight evenly-spaced images are collected per period of the motion.

We allow the temporal �lters to wrap around, using the �rst picture as if it followed the last and

the last picture as if it preceded the �rst.

5.4.1 Derivative design

The spatial frequencies in an image are independent of the motion. Therefore, for the design of

spatial derivative and interpolation �lters, we use the same error weighting function that is used in

Section 5.3.2, !�1 between spatial frequencies 0 and 2, and 0 between 2 and �.

Although the motion is sinusoidal, the changes in brightness are not. However, the changes

in brightness are periodic, consisting of a linear combination of the oscillating frequency and its

higher harmonics. The temporal �lters need be accurate only in a small bandwidth around those

frequencies. For the case of eight images per cycle, those frequencies are �
4 ;

�
2 ;

3�
4 ; � where � is the

Nyquist frequency. We de�ned the region of non-zero weighting function around each frequency ! to

be 0:999! to 1:001!, except for � for which the region is 0:999� to �. It is not clear what weighting

function is appropriate. We used !�1 weighting so that for small motion and therefore for small

temporal frequencies, the �lters are particularly accurate. For temporal interpolators, the weighting

function is zero in the region including spatial frequency � because the response of a symmetric

even support �lter must be zero at spatial frequency � [34]. The response of both �lters is shown in

Figure 5-5.

By collecting eight images in time, only the �rst three and a half harmonics can be examined.

Higher harmonics are aliased to other frequencies. A straight forward analysis shows that energy

in the higher harmonics will become signi�cant when Ax!x + Ay!y approaches 1, where Ai is the

amplitude and !i is the highest spatial frequency in the ith direction.
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Figure 5-5: Frequency response of the 8-point temporal derivative and temporal interpolation �lters.

5.4.2 Estimator Design

We seek to estimate the amplitude and phase of the sinusoidal motion based on eight velocity

estimates. For simplicity, we illustrate the design process in one dimension. We assume motion in

time of the form

dx(t) = Cx cos(
�

4
t) + Sx sin(

�

4
t) (5.4)

so that the velocity becomes

vx(t) = �Cx
�

4
sin(

�

4
t) + Sx

�

4
cos(

�

4
t): (5.5)

The goal is to determine (Cx; Sx) and use them to estimate amplitude and phase.

We consider two estimator designs. Using Equation (5.1), we obtain eight velocity estimates,

one for each pair of adjacent images. We obtain an estimate of amplitude and phase using a

discrete Fourier transform. To determine the displacement amplitude and phase, divide the velocity

amplitude by the driving frequency and shift the phase by 90 degrees. We call this technique the

DFT method. The DFT method yields the amplitude and phase of the �rst, second and third

temporal harmonics.

A di�erent technique uses the sinusoidal assumption directly. We make a linear least square

(LLS) �t to velocity. We minimize

argmin
Cx;Sx

X
j;i;k

����Gx[i; j; k]vx(t) + Gt[i; j; k]

����2 (5.6)
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from which we �nd0@Cx
Sx

1A =
1
�
4

0@ P
G2
x sin

2(�4 k) �
P

G2
x cos(

�
4 k) sin(

�
4 k)

�
P

G2
x sin(

�
4 k) cos(

�
4 k)

P
G2
x cos

2(�4 k)

1A�10@ P
GxGt sin(

�
4 k)

�
P

GxGt cos(
�
4 k)

1A
(5.7)

where the sums are over i; j and k.

In the presence of noise, one might suspect that the LLS estimate would outperform the DFT

method. However, this is not necessarily the case since each estimate of velocity uses the same data

so that the measurements of velocity are not independent as the LLS method assumes. There is no

guarantee that the LLS method will outperform the DFT method.

All of our simulations, both in the presence and absence of noise, have shown that the two

methods produce insigni�cantly di�erent results. For the rest of this document, we present the

results using the LLS method only.

5.4.3 Evaluation for Images of Spatial Frequency Pairs

As a simple test image, we consider an image of the form cos(!xi + �x) cos(!yj + �y). We choose

the highest frequencies in the range of interest, !x = 2, and !y = 2 where the �lter errors should

be maximal. Results for �x = 0:5 and �y = 2:34 are presented in Figure 5-6 and Figure 5-7. We

have chosen two algorithms. The �rst uses �lters with 8x8x8 support. The second uses �lters with

8x16x16 support. For small motions the algorithm that uses a larger support has smaller bias than

than the algorithm that uses a smaller support. However, for motions larger than about 0.7 pixels,

the two algorithms perform almost identically. Figure 5-7 shows the phase errors made by both

algorithms. The errors made by each algorithm appear very similar. Examining the data, the phase

errors made by the two algorithms are, in fact, identical.

The dependencies of errors on most factors other than amplitude are small. Speci�cally, changing

the phases of the image �x and �y relative to the sampling positions has very little e�ect. Similarly,

the dependence of the absolute phase of the motion has little di�erence. The relative phase of the

motion in the x- and y- directions does make a small di�erence. The contours in Figure 5-6 and

Figure 5-7 bulge by roughly 0.1 pixels (the performance improves slightly) when vx � vy and the

motions in each direction are 90 degrees of phase. We tested a di�erent algorithm that used �lters

with support 1x17x8, 17x1x8 and 1x1x8 to estimate x, y, and t derivatives respectively; we also

examined an algorithm that used 1x33x8, 33x1x8, and 1x1x8 �lters. These algorithms gave nearly

identical results to the 16x16x8 support algorithm.

We repeated the test of the four algorithms with !x = 1, and !y = 1. The simulated bias results

were almost identical to the the biases shown in Figure 5-6 and Figure 5-7 except each of the axes
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Figure 5-6: Error in the estimate of amplitude using eight images in time and either 8x8 or 16x16
support �lters in space. The translating image consists of cos(2i+ 0:5) cos(2j + 2:34). The analysis
region was 60 by 60 pixels. Motion in the x-direction was Ax sin(

�
4 t+0:10); motion in the y-direction

was Ay sin(
�
4 t+ 0:8853975) where (Ax; Ay) are the tested amplitudes. All scales are in pixels.
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Figure 5-7: Error in the estimate of phase using eight images in time and either 8x8 or 16x16 support
�lters in space. The simulation is described in Figure 5-6. Phase bias is measured in radians.
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scaled by a factor of 2.

5.4.4 Duty-Cycle Compensation

We call the fraction of the sinusoidal cycle during which an image is collected, the duty-cycle. A

non-zero duty-cycle leads to blurring of moving objects. This e�ect can be modeled as a low-pass

temporal �lter. We create temporal derivative and interpolating �lters that counteract the e�ects

of blurring.

Consider the case of eight evenly spaced images per cycle with a 1
8 duty-cycle. Uniform light

intensity during the image acquisition time corresponds to the normalized low-pass �lter 2 sin(!=2)
! .

We redesign our temporal �lters to compensate for this e�ect. We call this duty-cycle compensation

(DCC). The desired temporal derivative �lter becomes w2

2 sin(!=2) and the desired temporal interpo-

lating �lter becomes w
2 sin(!=2) . We use the Parks-McClellan algorithm to create the �lters using the

weighting described in Section 5.4.1.

We repeat the simulations in the last section with a 1
8 duty-cycle. In Figure 5-8 we compare the

errors of a gradient-based algorithm using a 16x16x8 support designed with or without duty-cycle

compensation. For small motions, the DCC algorithm yields amplitude errors that are 2 order of

magnitude smaller than those of the algorithm without duty-cycle compensation. For larger motions,

the estimators make similar amplitude errors. The phase errors of both algorithms are very similar

at all amplitudes.

We tested the odd support �lter algorithms described in the last section. Their performance was

comparable to the 16x16x8 support �lter algorithm, using duty-cycle compensation. Once again we

found the errors of the 8x8x8 support algorithm were signi�cantly greater than those of the 16x16x8

support algorithm.

5.4.5 The Addition of a Low-Pass Filter

We designed spatial �lters that ignored frequencies above 2. The spectral content of images above

this range will causes errors in derivative estimates. One way to reduce these errors is to low-pass

�lter images before the algorithms process them. Equivalently, we convolve all of the spatial �lters in

the algorithm with a low-pass �lter. We have chosen a simple symmetric, 4 point �lter to attenuate

frequencies above 2. The response of the �lter is plotted in Figure 5-9.

Adding a low-pass �lter should have no e�ect on the results of the images just presented. The

low-pass �lter simply attenuates the amplitude of images of pairs of spatial frequencies. Simulations

veri�ed this assertion.
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Figure 5-8: Error in the estimate of amplitude and phase for an multi-image gradient-based algorithm
using a 16x6x8 support �lter with or without duty-cycle compensation. The images are as described
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Figure 5-9: Frequency Response of the four point low-pass �lter.
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5.4.6 Discussion

As the motions increase in amplitude, the energy in aliased temporal harmonics increases. For

large enough motions, we expect the errors in the temporal �lters to dominate errors in the spatial

�lter and that due to those errors, the velocity estimator will yield poor estimates of motions.

Figure 5-6 illustrates the e�ect. For small motion, Ax!x + Ay!y << 1, the temporal �lters are

almost exact so that errors in spatial �lters dominate. Since the 8x16x16 support algorithm has

exponentially smaller errors in it's spatial �lters than the 8x8x8 support algorithm, for small motions

it's errors are signi�cantly smaller than those of the algorithm will less support. For larger motions,

Ax!x + Ay!y > 1 , the two algorithms perform almost identically, making errors that surpass one

pixel. In this regime, the temporal �lter errors dominate the spatial �lter errors so that the two

algorithms yield similar results.

It may seem surprising that in Figure 5-7 the two algorithms give identical errors in estimating

phase. This result is limited to images of pairs of spatial frequencies. For this case, errors in a spatial

�lter lead to estimates of the velocity that are a constant multiplied by the actual velocity. Thus,

the sine and cosine amplitudes both err by the same factor, leading to an accurate phase estimate.

That the phases of the sinusoidal motion, and the phases of the image led to small e�ects is not

surprising. We believe that Ax!x + Ay!y is the parameter of importance. This belief is supported

by the �nding that testing the same four algorithms with !x = 1, and !y = 1 yields almost identical

bias plots to Figure 5-6 and Figure 5-7 except that each of the axes scaled by a factor of two.

Figure 5-8 shows that duty-cycle compensation is e�ective for reducing amplitude errors for small

motions. However, for large motions, DCC has little e�ect. Duty-cycle compensation only e�ects

the �rst three harmonics of the motion. Higher harmonics are aliased into other frequencies and

therefore cannot be compensated for duty-cycle e�ects. Thus, DCC breaks down as motions become

large enough so that the energy in higher harmonics becomes signi�cant.

It is interesting to note that the estimates of phase for both algorithms in Figure 5-8 are almost

identical. This stems from the fact that for images of pairs of spatial frequencies, the non DCC

temporal �lters yield a multiple of the correct answer for the sine and cosine amplitudes so that the

phase estimator is una�ected. This does not hold for images with more complex spectra.

In the presence of noise, one must be careful using duty-cycle compensation. As the duty-cycle

gets too large, the attenuation of temporal frequencies increases to the point that it becomes diÆcult

to recover them from noise. Therefore, one must be careful not to use too large a duty-cycle.

5.5 Simulations of a Sinusoidal Motion Estimator

We simulate tests of the performance of the multi-image gradient-based sinusoidal motion estimators.

We simulate sinusoidal motions of three test images, evaluating errors in the absence of noise to
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evaluate the inherent bias of the algorithms. We simulate sinusoidal motions of the same three test

images in the presence of noise typical of optical systems. We compare the performance of LBC

with that of the multi-image gradient-based estimators.

5.5.1 Methods

Algorithms

We tested the four multi-image gradient-based algorithms listed in table 5.1. For each multi-image

algorithm, we used both the LLS and DFT methods to estimate amplitude and phase. Because

the results of the eight di�erent calculations were found to be similar, we report results using the

LLS method with algorithm 16 . We also tested the pairwise linear bias compensated (LBC) image

registration algorithm that was developed by Davis and Freeman [7] and then developed into a

sinusoidal estimator [8].

Name x-Derivative Filter
Support

y-Derivative Filter
Support

t-Derivative Filter
Support

algorithm 14 11x11x8 11x11x8 11x11x8
algorithm 16 19x19x8 19x19x8 19x19x8
algorithm 15 20x4x8 4x20x8 4x4x8
algorithm 17 36x4x8 4x36x8 4x4x8

Table 5.1: Filter support of derivative calculations for the multi-image algorithms. The x- and y- axes
are aligned respectively along the bottom and side of each image. AxBxC refers to the dimensions,
in pixels, of the box shaped �lter support region, respectively along the x,y and t directions. The
�lters include duty-cycle compensation and a 4 point low-pass �lter. For each algorithm, we use the
LLS and DFT methods to estimate amplitude and phase. Thus, we test a total of eight multi-image
motion estimators.

In all cases, simulated results showed similar results along the x- and y-axes. Therefore, All

estimates are reported as amplitudes and phase along the x-axis only.

Images

We analyze the performance of three di�erent test images. The �rst image is of a dark spot in the

form of a Hanning window on a bright background. This image was found to well simulate a spot

used as experimental tests of the algorithms. The Hanning window took the form

G[i; j] =

8<: M0(1�
1+cos 2�r=6

7 ) for jrj < 3;

M0 otherwise
(5.8)

where r was the distance in pixels from the center of the spot andM0 was adjusted to appropriately

simulate the noise levels. To avoid artifacts that could result if the simulated spot were always
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aligned with the pixel grid, the center of the spot was chosen randomly, using a uniform distribution

in a square bounded by the center of four pixels in a 2x2 box.

The second image is a polysilicon fatigue test structure designed by Exponent Failure Analysis

Associates. The image of the fatigue test represents our interests in the motions of MEMS. The

third images is a synthetic aperture radar (SAR) image of the Galapagos Islands1.

Translations

Translations of the simulated spot were accomplished by recalculating images using Equation (5.8).

Translations of the fatigue test device and SAR images were accomplished by taking the discrete

Fourier transform of the 512x512 pixel images, multiplying by a pure phase and then inverse trans-

forming the images. To avoid artifacts near the boundaries of the image, derivatives were evaluated

in only the middle 32 by 32 pixel region. The �lters used larger regions in support of their derivative

estimates.

To simulate �nite image acquisition time, we averaged 100 images evenly spaced in time during

the acquisition period. For the fatigue test structure and SAR images, we transformed the images,

averaged the results of a 100 di�erent pure phase multiplications, and then inverse transformed the

image.

For the test, motion in the x-direction was given by Ax sin(
�
4 t�1:3) and motion it the y-direction

given by Ay sin(�4 t� 1:4). For each test consisting of a 100 sequences of images, a di�erent pair of

amplitudes, Ax and Ay, were chosen.

Simulated Noise

We simulate the e�ects of noise introduced by a CCD camera, including �xed-pattern noise, shot

noise and quantization errors. Motion was simulated by creating a sequence of eight high-precision

images representing the average number of electrons collected at each pixel during the duty-cycle.

To simulate �xed pattern noise, each pixel (i; j) was then multiplied by a random gain factor taken

from a Gaussian distribution. The (i; j) pixel in each set of eight images was multiplied by the

same gain factor. The standard deviation of the Gaussian distribution was set to 0.00315 so that

it simulated �50 dB of �xed-pattern noise relative to the average signal energy in the image. Shot

noise was simulated using a pseudo-random Poisson number generator at each pixel. The number

of electrons was then divided by 32, the number of electrons needed to increment the A/D output

of a camera by one, and then truncated. The gain was chosen to set the shot noise to be �50 dB

relative to the average signal energy in the analysis region of each image.

1Image (P-43899) courtesy of the Jet Propulsion Laboratory, Pasadena, CA.
http://www.jpl,nasa.gov/archive/mpe2.html.

66



Figure 5-10: Test Images. On the left is an SAR image of the Galapagos Islands. On the right is
the polysilicon failure device. The boxes indicate analysis regions.

All noise simulations were repeated using 100 sequences of images consisting of 10 di�erent

�xed-noise patterns. Each image in the 100 sequences received a di�erent shot noise distribution.

5.5.2 Performance in the Absence of Noise

To investigate inherent bias in the multi-image gradient-based algorithms, we simulated their perfor-

mance in the absence of noise. Figure 5-11 shows the performance of algorithm 16 for the SAR and

fatigue test device images. There are a number of important similarities in the errors of algorithm

16 in both images. For both images, amplitude errors remained below 0.001 pixels for amplitudes

smaller than 1.2 pixels. For larger motions, the amplitude errors gradually increase, passing 0.01

pixels. This trend of gradually increasing errors was also seen in Figure 5-6 for the image of the

product of cosines. Error in amplitude estimates of the spot (not shown) were also less than 0.001

pixels for amplitudes less than 1.2 pixels. The same trend of gradually increasing error was also

seen for the spot. Phase errors using the image of the SAR and Failure Device remain below 10�2

radians for all cases, dropping well below 10�4 radians for small motions. For the image of the bead

(not shown), phase errors remained below 10�3 radians for all amplitudes examined.

5.5.3 Performance in the Presence of Noise

Figures 5-12 and 5-13 shows the e�ects of adding �50 dB of shot and �xed pattern noise to the spot,

failure device and SAR image. For the spot, the amplitude bias in algorithm 16 is almost uniform

remaining near 0:01 pixels. Conversely, the amplitude bias of LBC is slightly less than 0:1 pixels for

most amplitudes. Standard deviations for both algorithms (not shown) were almost uniform at 0.01
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Figure 5-11: Error in the estimate of amplitude and phase using algorithm 16 . Each trial consisted
of eight simulated images acquired with 1

8 duty-cycle at evenly space phases of the sinusoidal motion.
The simulation is described in detail in Section 5.5.1.
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pixels.

For the SAR and fatigue test structures, the amplitude errors of algorithm 16 in the presence

of noise are quantitatively similar to the amplitude errors in the absence of of noise shown in

Figure 5-11. For motions smaller than roughly 1.2 pixels, amplitude errors are smaller than 0.001

pixels. Conversely, LBC's errors almost reach 0.1 pixels for the same amplitudes. However, for large

enough motions, Algorithm 16's errors are larger than those of LBC. For both images, standard

deviations were uniform at 0.001 pixels.

Phase errors for algorithm 16 for the image of the bead remain near 10�3 radians. Conversely,

phase errors of LBC become almost as large as 10�2 radians. For both algorithm 16 and LBC, phase

errors for the SAR image and fatigue test structure image are quantitatively similar. Algorithm 16's

phase errors range from below 10�4 radians up to 10�2 radians. LBC's phase errors remain mostly

between 10�3 and 10�2 radians. The standard deviation for estimates of phase by algorithm 16 and

LBC for the image of the fatigue test device are shown in Figure 5-14. The standard deviations

ranges from about 3 � 10�3 to 10�2 radians. The standard deviations of phase by algorithm 16

and LBC for the image of the SAR device were quantitatively similar to those of the SAR image.

Standard deviations for phase estimates of the motion of the bead ranged from a factor of three to

a factor of �ve higher for both algorithms.

Algorithm 15 and algorithm 17 performed as well as algorithm 16 using both the LLS and DFT

methods. For all cases, similar results were obtained in for motion estimates along the y- and x-axes.

5.5.4 Discussion

Figure 5-11 shows that in the absence of noise, the inherent bias in the multi-image gradient-based

algorithms is smaller than 0.001 pixels for small enough motions. However, for larger motions, the

multi-image gradient-based algorithms make errors larger than 0.1 pixels. The multi-image gradient-

based methods do not perform well for large motions. The diÆculty, in the case of sinusoidal motion,

is that the brightness of a pixel does not vary sinusoidally with time. For large motions the temporal

frequencies in the brightness function become larger than � and are aliased into other temporal

frequencies, causing errors.

In the presence of noise, the standard deviations of the multi-image based methods are compa-

rable to those of LBC. For the SAR and fatigue test structure images, for motions smaller than 1.2

pixels, the amplitude error of the multi-image gradient methods is more than an order of magnitude

smaller than that of LBC. However, for motions approaching 2 pixels, the amplitude errors of the

multi-image gradient methods exceed those of LBC. Similarly, algorithm 16 makes signi�cantly s-

maller amplitude errors for small enough motions. For motions approaching two pixels in amplitude

in either direction, the phase errors in both algorithms become similar.

We conclude that the multi-image based algorithms perform signi�cantly better than LBC for
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Figure 5-12: Bias for the estimate of amplitude using algorithm 16 (left) and LBC (right) in the
presence of �50 dB of shot noise and �xed-pattern noise. All axes are in pixels. The simulation are
described in Section 5.5.1 and Section 5.5.1
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Figure 5-13: Bias for the estimate of phase using algorithm 16 (left) and LBC (right) in the presence
of �50 dB of shot noise and �xed-pattern noise. Phase is measured in radians. The simulation are
described in Section 5.5.1 and Section 5.5.1
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Figure 5-14: The standard deviation of phase errors for algorithm 16 for simulations of the fatigue
test structure image. The simulations are described in Section 5.5.1 and Section 5.5.1

motions smaller than about 1.2 pixels, and comparably to LBC for motions up to 2 pixels. This

gain in performance comes at computational costs. While the number of computations for both

algorithms scales linearly with the number of pixels in an analysis region, multi-image gradient-

based algorithms require between tens and thousands more multiplications and additions per pixel

in the analysis region.

It is possible to improve the dynamic range of the multi-image based algorithms. Either by

down-sampling the images, making super-pixel motions into sub-pixel motions or by equivalently

low-pass �ltering an image, the multi-image gradient-based methods can be made to work for larger

motions.

5.6 Conclusions

We have developed a method based on cascades of �lters to create multi-image gradient-based

algorithms. We have illustrated this technique for sinusoidal motion where we have shown that it

is possible to achieve errors inherent in the algorithm smaller than 0.001 pixels in amplitude and

smaller than 0.001 radians in phase for motions smaller than 1.2 pixels. We have shown that in the

presence of �50 dB shot noise and �xed-pattern noise, the algorithms still achieve error this small.

We have shown that for larger motions, the errors inherent to the algorithm increase, eventually

becoming comparable to existing algorithms such as LBC. However, by down-sampling or low-pass

�ltering an image, it is possible to increase the dynamic range of the method.

While we have illustrated the use of the multi-image technique for sinusoidal motion, the same

methods are applicable for arbitrary motion. The limitations of the method are that images must

be sampled frequently enough in time to satisfy the Nyquist criterion.
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5.7 Filters

Length Temporal Filters
Interp., no DCC �0.0249546183106627 0.0835526882564852 �0.187030489727413

0.628370372733361 0.628370372733361 �0.187030489727413
0.0835526882564852 �0.0249546183106627

Deriv., no DCC �0.0489387545422273 0.0696364235870484 �0.158276184031824
1.28910639031026 �1.28910639031026 0.158276184031824
�0.0696364235870484 0.0489387545422273

Interp., DCC �0.0378010678346327 0.125047021427472 �0.267629124130556
0.680287727944692 0.680287727944692 �0.267629124130556
0.125047021427472 �0.0378010678346327

Deriv., DCC �0.14903590789871 0.204171130411121 �0.408622311811501
1.69565453432943 �1.69565453432943 0.408622311811501
�0.204171130411121 0.14903590789871
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Length Spatial Derivative Filter

8 �0.00286216383353546 0.0194079387912599 �0.102277846435357
1.22945478993064 �1.22945478993064 0.102277846435357
�0.0194079387912599 0.00286216383353546

16 �2.7006484352869e�05 0.000214437570001811 �0.000983311903970464
0.00347041534087513 �0.0107467889783358 0.0328020859998998
�0.121030730300938 1.25150829022001 �1.25150829022001
0.121030730300938 �0.0328020859998998 0.0107467889783358
�0.00347041534087513 0.000983311903970464 �0.000214437570001811
2.7006484352869e�05

17 �0.000502321109685936 0.00336800530337642 �0.0128450407337949
0.0367375494850381 �0.0877302533889347 0.187633106381368
�0.388930509333614 0.939689807053354 0
�0.939689807053354 0.388930509333614 �0.187633106381368
0.0877302533889347 �0.0367375494850381 0.0128450407337949
�0.00336800530337642 0.000502321109685936

33 �3.49589617109824e�07 3.94225697555072e�06 �2.41437567272228e�05
0.000105884231519362 �0.000370560391102016 0.0010956938320803
�0.0028351294807867 0.00657523476932475 �0.0139135332551632
0.0272544346753638 �0.0500738402018483 0.0874842787085976
�0.147882293734463 0.24853122026952 �0.439078709811418
0.968118055508647 0 �0.968118055508647
0.439078709811418 �0.24853122026952 0.147882293734463
�0.0874842787085976 0.0500738402018483 �0.0272544346753638
0.0139135332551632 �0.00657523476932475 0.0028351294807867
�0.0010956938320803 0.000370560391102016 �0.000105884231519362
2.41437567272228e�05 �3.94225697555072e�06 3.49589617109824e�07

Length Spatial Interpolating Filter

8 �0.0122099803061808 0.0538078242669685 �0.158462745547521
0.616840504977136 0.616840504977136 �0.158462745547521
0.0538078242669685 �0.0122099803061808

16 �0.000255171473531746 0.0016387438183934 �0.00602175636195368
0.0167166926834678 �0.0391305570001712 0.0836286567793996
�0.182808582018383 0.626231904061036 0.626231904061036
�0.182808582018383 0.0836286567793996 �0.0391305570001712
0.0167166926834678 �0.00602175636195368 0.0016387438183934
�0.000255171473531746

Length Spatial Low Pass Filter
4 0.14962930880927 0.51071846633449 0.51071846633449

0.14962930880927
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Chapter 6

Development and Simulation of

Fourier Transform Based Image

Registration Techniques

6.1 Abstract

We develop a two-image Fourier transform based motion estimator. For comparison with previous

chapters, we build on this algorithm to make an estimator of amplitude and phase of sinusoidal

motion. In the presence of noise typical for our applications, �50 dB of �xed-pattern noise and

�50 dB of shot noise, amplitude errors of 0.1 pixels and phase errors of 0.01 radians are achievable.

However, these errors are larger than those of already existing algorithms.

6.2 Introduction

Gradient-based methods rely on derivatives in space and time to estimate motion. While these

methods are e�ective, they are limited both by the order to which derivatives are estimated and by

accuracy limitations in calculating the derivatives.

A di�erent approach to image registration is the maximization of the output of a statistical

correlator. For subpixel motion estimation, such a technique is limited by its interpolation method

and by the ability of a search algorithm to �nd the global maximum in the correlator. Since it is

diÆcult to guarantee that a search will �nd the maximum, one would like to �nd a correlation-based

method that does not require a search. Fourier transform based correlation methods satisfy this

criteria. A translation in space between two images causes a phase shift in the Fourier domain.
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To detect motions, we develop a least squares estimator to detect phase di�erences in the Fourier

domain between two images.

We make an estimator of amplitude and phase of sinusoidal motion based on a two-image reg-

istration algorithm. We simulate the performance of this estimator in the presence of a duty cycle

and noise as we did in Chapter 5.

6.3 Development of the Estimator

We start by developing the theory of Fourier-based correlation methods. We choose a window

function to use with the estimator. Then, we examine which frequencies to examine in the estimator.

To implement the pairwise registration algorithm, we develop a phase unwrapping technique. We

�nish this section by developing an estimator of amplitude and phase for sinusoidal motion.

6.3.1 Theory of Fourier-Based Correlation

Knapp and Carter [22] review Fourier-based methods. We closely follow their derivation. For

simplicity, we consider a one dimensional signal corrupted by additive, zero mean, stationary random

noise. We make the additive noise approximation more because it yields mathematically tractable

results than because it realistically describes our data1.

Consider f(x), a band-limited continuous signal in space, and a shifted version f(x+ d), both of

which are subject to additive noise. A detector measures

y1(x) = f(x) + n1(x); (6.1)

y2(x) = f(x+ d) + n2(x) (6.2)

where y1(x) and y2(x) are the detected signals and n1(x) and n2(x) are additive noise sources

with identical power spectrums, independent of each other and independent of the data. The cross

correlation function is given by

Ry1;y2(Æ) = E[y1(x)y2(x� Æ)] =

Z
1

�1

Y1(!)Y
�

2 (!)e
j!Æd! (6.3)

where E denotes expectation, Y1 is the Fourier transform of y1 and Y
�

2 is the complex conjugate of

the Fourier transform of y2. The cross correlation is a real function with a maximum near Æ = d.

The detector samples the functions y1 and y2 at a rate that is assumed to be greater than Nyquist's

1CCD signals are corrupted mainly by shot noise, quantization noise, �xed-pattern noise and read noise [21]. The
approximation to additive noise may be satisfactory if shot noise dominates other noises and only small intensity
variations exist spatially.
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frequency. The correlator becomes

Ry1;y2(Æ) =

Z �

��

Y1(
)Y
�

2 (
)e
j
Æd
 (6.4)

where Æ is now measured in pixels. The detector samples a rectangular window of data. Is it often

bene�cial to multiply the data by a particular window function because estimates of spectrums are

convolved with the Fourier transform of a window function [34]. We discuss the choice of window

function to the next section.

Since the signal to noise ratios of Y1 and Y2 will vary as a function of frequency, it is typically

bene�cial to �lter y1 and y2 before �nding the cross correlation function. Knapp and Carter review

several �lters. We use the �lter that achieves the Cram�er-Rao bound. After normalizing the cross

spectral density, the appropriate frequency weighting simpli�es to the signal to noise ratio, P (
)
N(
) ,

where P (
) is the signal power and N(
) is the noise power. The correlator becomes

R(Æ) =

Z �

��

P (
)

N(
)

Y1(
)Y
�

2 (
)

jY1(
)Y2(
)j
ej
Æd
 =

Z �

��

P (
)

N(
)
ej[�(
)�
Æ]d
 (6.5)

where we have replaced the normalized cross spectral density by a phase ej�(
).

The right side of Equation (6.5) is maximized by the phase-plane ej
Æ that best correlates with

the �ltered cross spectral density function of the two images. We avoid a search by �tting a plane

to the phases of the discrete Fourier frequencies using a least squares approach. To accomplish this,

remember that the cross correlator is real so that one need only consider the real portion of the

complex exponential, a cosine. Under high signal to noise conditions, we expect �(
) � 
d so that

the maximum of R(Æ) will occur close to d. Therefore, �(
) � Æ will be small near the maximum

so that one can expand the cosine and keep only the lowest order terms that depend on �(
)�
Æ.

Since cos(x) = 1� x2

2 +O(x4), we �nd

R(Æ) �

Z �

��

P (
)

N(
)

�
1�

1

2
(�(
)�
Æ)2

�
d
: (6.6)

We approximate the integral by evaluating the integrand at the discrete Fourier transform frequen-

cies. We ignore terms that have no dependence on Æ so that maximizing R is equivalent to

bÆ = argmin
Æ

X

= 2�

M
; 4�
M
;::: ;�

P (
)

N(
)
(�(
) �
Æ)2 (6.7)

where M is the number of points in the analysis region, and bÆ is the motion estimate. We have

excluded the contributions of half the discrete Fourier spatial frequencies due to symmetries of the

discrete Fourier transform [34].
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In two dimensions, a similar derivation of the estimator leads to

( bÆx; bÆy) = argmin
Æx;Æy

X

y=��;::: ;�


x=
2�
M

; 4�
M

;::: ;�

P (
x;
y)

N(
x;
y)
(�(
x;
y)�
xÆx �
yÆy)

2 (6.8)

where ( bÆx; bÆy) is the motion estimate and (
x;
y) is the discrete Fourier spatial frequency. We have

summed the contributions due to half the discrete Fourier spatial frequencies rather than all of them

due to symmetries in the two-dimensional discrete Fourier transform [27]. Minimizing, we �nd

0@bÆxbÆy
1A =

0@ P
P
N
2

x

P
P
N
x
yP P

N
x
y
P P

N
2
y

1A�10@P P
N �
xP P
N �
y

1A (6.9)

where the sums are over the discrete Fourier frequency pairs 
x;
y.

6.3.2 Choice of Window Function

Window functions average spectra in the frequency domain. The amplitude and phase estimated

at each discrete Fourier frequency (
x;
y) are the weighted averages of the amplitudes and phases

of a band of frequencies centered at (
x;
y). If the spectral energy in the image varies over a

band, then the weighted average introduces bias into the estimator. To see this, consider that our

derivation of (6.9) attributes all the energy in a band to the center frequency in the band. If, for

example, the lower half of the band has most of the spectral energy in the band, then attributing all

the energy to the center frequency causes errors in the estimator. Since the bands become smaller

as the analysis region increases in size, the spectral energy in a band will become more uniform as

the analysis region increases and the bias in a Fourier transform based estimator will decrease. In

fact, Fourier-based methods are asymptotically unbiased as the analysis region becomes large [40].

Window functions have side lobes which average frequencies outside the main band. These side

lobes also create bias in the estimates of amplitude and phase. We seek a tradeo� between side lobe

amplitude and main lobe width. A table of common window functions is found in [34]. We examined

the rectangular window function because it has the main lobe with the smallest width. It has side

lobes with magnitude �13 dB relative to the magnitude of the main lobe. The large relative height

of the side lobes generally causes the rectangular window function to perform poorly in the presence

of noise. By doubling the allowable width of the main lobe, we can choose from from a variety of

window functions with much smaller side lobes. We examine the Hanning window based estimator

whose maximum side lobe amplitude is �31 dB. For our tests in the presence of noise, the Hanning

window always outperformed the rectangular window based estimator. Therefore, we report results

exclusively for the Hanning window.
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6.3.3 Discrete Fourier Frequency Exclusion

The discrete Fourier transform of an image is equivalent to the Fourier transform of the image tiled

in�nitely in all directions [34]. At the edges of the image mismatches occur: for example, the right

edge of one image abuts the left edge of a tiled image. These mismatches cause high frequencies

which, through the sidelobes of the window function, causes bias in the estimators of amplitude and

phase at a given discrete Fourier frequency pair. The errors are particularly prevalent along the


x = 0 and 
y = 0 axes. We therefore eliminated all discrete Fourier frequency pairs from the sums

in (6.9) for which either of the frequencies are 0.

Willsky et.al [40] calculates the Cram�er-Rao bound for estimating phase using a rectangular

window function. For frequencies within �
M of 0 or �, the minimum variance of the phase estimate

is highly dependent on the phase, potentially becoming in�nite. Similar results apply to the phase

of a cross-spectral density. For a Hanning window, the same results apply except the range of

frequencies changes to within 2�
M of 0 or �.

We do not wish to include frequencies in the sums in (6.9) for which the minimum variance of the

phase estimate may be in�nite. For the rectangular window function, we therefore do not include

any frequencies pairs in which either frequency is 0 or �. For the Hanning window function, we

do not include any frequency pairs in which either frequency is 0,�, 2�M , or � � 2�
M . If the images

to be registered have a large D.C. component, the Hanning windowed Fourier transform will have

a large amplitude at frequency 2�
M whose phase will be independent of the motion. Therefore, it is

reasonable to ignore this frequency in the sum.

6.3.4 Implementation

To implement Fourier transform based registration, we must estimate the weighting function P
N

as a function of frequency. Based on the data in Chapter 2, we note that �xed-pattern noise,

the dominant source of noise, is roughly independent of frequency. We assume that the noise is

independent of frequency so that N is reduced to a scale factor. To estimate a power spectrum, we

use the magnitude squared of the Fourier transform of the windowed image. When estimating the

pairwise-motion between two images in a sequence, we use the average of the power spectrums of

each of the images in the sequence as the weighting function.

One diÆculty with Fourier-based methods is that phase is de�ned only in the range from �� to

�. When � becomes larger than �, it's value wraps to ��; this e�ect is known as phase wrapping. In

the absence of noise, phase wrapping occurs in the Fourier domain in the region j
xÆx+
yÆyj > �.

We address phase wrapping by noting that if both Æx and Æy are known to be smaller than a certain

value, there is a diamond shaped region in the Fourier domain in which phase wrapping will not

occur. This region includes the lowest spatial frequencies where, for our applications, the highest
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signal to noise ratios exist. Thus, we should be able to obtain a good estimate of the motion from

the diamond shape region. Once the estimate of motion exists, we subtract the phase due to the

motion estimates to obtain a residual phase. If the initial motion estimates in each direction are

within 0.5 pixels of the actual motions, no phase wrapping will occur in the residual phase. We

can then use the entire region to estimate a correction to the original motion estimate. We assume

that Æx and Æy are known to within 2 pixels. This statement could hold either because the motion

is known to be small or because a di�erent algorithm was used to estimate the motion to within 2

pixels.

In practice, rather than using two passes to estimate the displacements, we iterate on the last step

so that residual phases which are close to � and �� are phase unwrapped correctly. For the cases

we have examined, the algorithm has not needed more than the initial motion estimate using the

diamond shape region and two iterations. We stop the iteration process after the motion estimate

ceases to change by more than 10�6 pixels or after 100 iterations.

We summarize the two-image registration algorithm:

1. Estimate power spectrum of the signal P (
x;
y).

2. Find an estimate of Æx and Æy to within 2 pixels.

3. Subtract the phase due to the motion estimate from the cross spectral phase of the two images.

4. Estimate the motion using equation (6.9), summing over frequencies in a diamond shape region

as described in the text.

5. Subtract the phase due to the estimate from the remaining cross spectral phase.

6. Estimates the motion using the entire frequency domain.

7. Repeat steps 5 and 6 until the new estimate ceases to change by more than 10�6 pixels, or

after 100 iterations.

6.3.5 Sinusoidal Estimation

We design a sinusoidal estimator assuming eight evenly spaced images during a cycle as in Chapter

5. We calculate seven pairwise motions between images 1 and 2, 2 and 3, : : : , and 7 and 8. We use

the motion estimates to calculate position versus time, de�ning the position at the �rst image to be

0. We then use an 8 point discrete Fourier transform to estimate amplitude and phase.

If images are acquired using a 1
8 duty cycle, moving objects are blurred in the acquired image.

It is possible to compensate the images for blurring before calculating the pairwise motions. We do

this using the 8 point duty-cycle compensated (DCC) temporal interpolation �lter found in Section

5.7. We then use the eight compensated images to estimate amplitude and phase. The interpolator

has a time lag of 1
2 temporal unit which causes of a phase shift of �

8 . We adjust the phase estimate

to compensate for the phase lag of the interpolator.
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6.4 Methods

Our methods are almost identical to those of Chapter 5. As in Chapter 5, we test the synthetic

aperture radar (SAR) image of the Galapagos Islands, the image of the fatigue test device and the

image of the spot. We also test a simulated image of a rod and a spot.

As in Chapter 5, for each simulation of one pair of amplitudes, the center of the spot was chosen

randomly, using a uniform distribution in a square bounded by the center of four pixels in a 2x2

box.

As in Chapter 5, we use Fourier transform based methods to shift the image of the SAR and

fatigue test device images. To minimize the e�ects of using a discrete Fourier transform to simulate

motions and another transform to detect motions, we use a 512x512 pixel support for the shifting

transform, much larger than the registration transform.

We consider analysis region sizes of 32 by 32 and 64 by 64 pixels. We examine displacement

amplitudes between 0 and 2 pixels in both directions. We choose not to consider larger motions so

that the phase wrapping algorithm does not require a �rst guess. The tests reported in this chapter

have motions in the x-direction with a phase of �1:3 radians relative to a sine where the x-axis is

parallel to the bottom of the image. Motions in the y-direction have a phase of �1:4 radians relative

to a sine. These phases were chosen to be consistent with the gradient-based method tests. Tests

not reported in this chapter have shown a small dependence on the phases of the motions.

All noise simulations are identical to those of Chapter 5. Bias refers to the estimated value

subtracted from the actual value.

6.5 Performance with No Duty Cycle

We consider motion estimates of a spot moving sinusoidally. The errors in Hanning-based estimates

of amplitude for motions along one axis are shown in Figure 6-1 for 32x32 and 64x64 pixel regions.

For the spot, the errors in amplitude estimation are approximately linear with amplitude. Doubling

the dimensions of the region size shrinks the error by more than a factor of two. The pair-wise

data showed that the Hanning estimator consistently returned estimates of the motion that scaled

with the actual motion. The error in the phase estimator (not shown) was approximately 3� 10�4

radians for all amplitudes for both region sizes.

We simulated motions of the image of the rod and spot shown in Figure 6-2. The simulations

were identical to those of the bead. For both 32 by 32 pixel regions and 64 by 64 pixel regions,

amplitude estimator errors were larger than 1 pixel (not shown). For many amplitudes, phase errors

were larger than one radian (not shown).
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Figure 6-1: Error in the amplitude estimate of the spot along one axis using the Hanning-based
estimator. Each trial consisted of eight simulated images of a moving spot acquired at evenly space
phases of its sinusoidal motion. For each amplitude, the center of the spot was chosen randomly,
using a uniform distribution in a square bounded by the center of four pixels in a 2x2 box.

Figure 6-2: Image of a rod and a spot. The spot is an radially symmetric Hanning window of radius
20 pixels. The rod has a cross section of a Hanning window of length 6 pixels.
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Figure 6-3: Bias in the estimate of amplitude and phase of the spot using a Hanning-based estimator
with and without duty cycle compensation. For each test, eight evenly spaced images of the spot
moving sinusoidally in time were simulated with 1

8 duty cycle. The analysis region is 32x32 pixels.
For each simulation, the center of the spot was chosen randomly, using a uniform distribution in a
square bounded by the center of four pixels in a 2x2 box.

6.6 Performance with One Eighth Duty Cycle

We consider simulated images of the spot moving sinusoidally, acquired with 1
8 duty cycle. In

Figure 6-3 we examine the errors in estimates of amplitude and phase with and without duty cycle

compensation (DCC) for a 32x32 pixel region surrounding the bead. The largest decrease in the

amplitude estimator error due to DCC is 20%. However, for motions with amplitudes near 2 pixels

in both directions, the amplitude estimator error increases. DCC signi�cantly increases the error in

the phase estimate for large motions.

Repeating the identical experiment with a 64x64 pixel region produces almost identical phase

errors to those of the 32x32 pixel region. The errors in the amplitude estimate are similar to the

32x32 pixel analysis region, but scaled so that the maximum error for the non-DCC estimator is

0.06 pixels rather than 0.1 pixels. As it does for the smaller of the two region sizes, DCC at most
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decreases the error by 20%, but increases the error for amplitudes near 2 pixels in both directions.

We �nd that duty-cycle compensation has similar e�ects for images of the fatigue test device

and the SAR image. DCC creates up to a 20% decrease in error in the amplitude estimate, but can

increase the error in the amplitude estimate for large motions. For large motions, DCC increases

the error in the phase estimate. We present no additional results using duty cycle compensation

because of its marginal bene�ts.

6.7 Performance in the Presence of Noise

Figure 6-4 and Figure 6-5 show the errors and standard deviations of the Hanning window based

estimators of amplitude and phase for the image of the fatigue test device in the presence of noise.

Errors in amplitude vary linearly for both the 32x32 region size and the 64x64 region size. The

errors using the larger region are approximately half the size of the errors using the smaller region

size. Standard deviations for both cases are roughly 0.002 pixels. Phase errors range from less than

10�4 radians to 10�2 radians.

Simulations of the SAR image and the image of the bead yielded similar results to the fatigue

test device. Phase errors ranged from less than 10�4 radians to 10�2 radians in both cases. For both

region sizes of the SAR image, amplitude errors along an axis varied linearly with amplitude along

that axis. For the bead, amplitude errors along an axis varied linirealy with amplitudes along that

axis for the 32x32 pixel region only. We found that amplitude errors using the 64x64 pixel region

surrounding the bead decreased by a factor of 2 over the 32x32 pixel region for most amplitude

pairs, and not at all for others. Table 6.1 compares the maximum amplitude estimate errors and

average standard deviations for all three images. In all cases the maximum error either decreased

or remained the same with increasing analysis region size.

Image 32x32 pixel region 64x64 pixel region
Error Stan. Dev. Error Stan. Dev.

Fatigue device 0.12 0.003 0.08 0.002
SAR Image 0.06 0.001 0.05 0.0003
Bead 0.11 0.01 0.11 0.01

Table 6.1: Maximum error and average standard deviation of the Hanning-based amplitude estima-
tor. All numbers are in pixels. The simulations are described in Figure 6-4.

6.8 Discussion

In all simulations, in the absence or presence of noise, we found that increasing the region size

decreased the error in the Hanning-based estimator. We believe this e�ect is due to the band
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Figure 6-4: Bias and standard deviation in the estimate of amplitude of the fatigue device using
a Hanning-based amplitude estimator for 32x32 and 64x64 pixel regions. Each trial consisted of 8
images of the device acquired with evenly spaced phases with duty cycle 1

8 and �50 dB of shot noise
and �50 dB of �xed-pattern added.
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Figure 6-5: Bias and standard deviation in the estimate of phase for the fatigue test device using a
Hanning-based amplitude estimator for 32x32 and 64x64 pixel regions. The simulation is described
in Figure 6-4.

86



approximation discussed in Section 6.3.2. As the region size increases, the bands decrease in size

and the spectrum in the band becomes more uniform so that the error decreases.

In all cases, the Hanning-based estimator underestimated the motion. By multiplying an image

by a pattern, Hanning-based estimators e�ectively add �xed-pattern noise to the sample. For spectral

estimation, window functions tradeo� precision and accuracy [27]. Window functions make the same

tradeo� for motion estimation. By adding a pattern to the sample, we reduce variability in the results

but lose accuracy.

It is not surprising that duty cycle compensation did not have as large a bene�cial e�ect for the

Hanning-based estimator as it did for the gradient-based methods in Chapter 5. The Fourier-based

correlator is inherently biased so that at best DCC could remove the additional bias due to duty

cycle e�ects. That DCC creates larger errors for large enough motions is also not surprising. Large

motions produce temporal harmonics that are aliased into the �rst three harmonics of the motion

as described in Chapter 5.

The simulation results of the image of the rod and spot illustrates that the Fourier-based estima-

tors can make large errors depending on image content. The image was chosen to accentuate e�ects

due to edge mismatches discussed in Section 6.3.3. The edge mismatches cause high frequencies

which, though the sidelobes of the window function, cause bias in the motion estimate.

For 32x32 pixel region sizes, the errors in the Hanning window based amplitude estimator are

roughly a factor of 2 larger than the errors of the LBC amplitude estimator examined in Chapter

5. For larger region sizes, it is possible that the Hanning-based estimator would outperform LBC.

However, we did not investigate this possibility.

6.9 Conclusion

We developed a sinusoidal amplitude and phase estimator using Fourier-based correlation methods.

We showed that using a Hanning windowed discrete Fourier transform on 32x32 pixel region yields

amplitude errors less than roughly 0.1 pixels and phase estimates with better than 0.01 radian

accuracy. However, by examining the image of the rod and the spot, we showed the possibilities for

large error depending on image content.

The errors made by the Fourier-based estimator we developed are larger than the errors made

by the linear bias corrected gradient-based algorithm developed by Davis and Freeman [7]. Because

there exists a algorithm that makes smaller errors and because of the possibility for particularly large

errors depending on image content, we choose not to examine the algorithm we developed further.
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Chapter 7

Measurements of Sinusoidal

Motions with Nanometer Accuracy

using Multi-Image Gradient

Methods and a Light Microscope,

7.1 Abstract

We investigate the use of multi-image gradient-based methods in conjunction with light microscopy

to estimate the amplitude and phase of sinusoidal motion. We compare the errors made estimating

amplitude using the multi-image gradient-based methods to those made by a linear bias corrected

image registration algorithm developed by Davis and Freeman [8]. The multi-image based estimators

achieve nanometer precision and accuracy estimates of amplitudes for motions smaller than 500

nanometers; ten times the maximum amplitude for which LBC achieves the same accuracy and

precision. The multi-image gradient-based methods are shown to give results consistent to within a

nanometer using di�erent analysis regions of the same images. Computer simulations are shown to

well approximate algorithm performance.

7.2 Introduction

Multi-image based gradient methods were developed as a technique to create algorithms whose

performance is not limited by bias inherent to the algorithm. We used the technique to develop esti-

mators of amplitude and phase of sinusoidal motion (Chapter 5). Simulations with noise conditions
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representing those found in optical microscopy show that errors below 0.001 pixels in amplitude

are achievable for motions smaller than 1.2 pixels. For an optical microscope using a 20x objective

and a CCD camera with 10 �m pixels, those simulations predict roughly 2 nanometer precision and

accuracy.

Image resolution using light microscopy is limited to roughly the wavelength of light, typically

500 - 700 nm [16]. Any structure in an imaged target smaller than the resolution of the imaging

system is blurred. However, because gradient-based algorithm rely on moving image contrasts, it is

possible to detect motions of blurred images to a fraction of the blurring distance. Limitations on

motion estimation are instead determined by the contrast of the target, the resolution and precision

of the optics and camera, by sample vibrations and other noise sources.

In this paper, we compare the performance of two types of gradient-based algorithms. The �rst

algorithm is a sinusoidal estimator based on linear bias corrected (LBC) two-image motion estimates

[8]. The second is a class of algorithms based on multi-image �lters. Simulations have shown that

the class of multi-image gradient-based methods have signi�cantly smaller inherent bias than the

LBC algorithm.

We tested the accuracy and precision of the two types of gradient-based algorithms, comparing

estimated motions to those given by a laser-vibrometer. We compared the experimental results to

predictions based on computer simulations of noise processes. We examined the consistency of the

two methods on di�erent analysis regions of the same images. We also examined consistency between

the di�erent multi-image algorithms in the class.

7.3 Methods

Images of test structures were obtained using a combination of light microscopy and stroboscopic

illumination. Images are corrected for the varying gains and o�sets in the camera using a two-point

correction technique. Motions are estimated by analyzing the corrected images with motion estima-

tion algorithms. Results are compared to laser doppler measurements of motion and simulations of

the algorithm.

7.3.1 Test Structures

To test our motion detection system, we used two test specimens. The �rst was a fatigue test

structure designed by Exponent Failure Analysis Associates, Inc. This imaging target was chosen

to represent our interests in the motions of microelectromechanical systems (MEMS). We mounted

the chip containing the test structures on a piezo stack (AE0203D08, NEC, Japan) to move the chip

perpendicular to the optical axis. The second test structure was a 1 �m polystyrene microsphere

(Polysciences, Warrington, PA) which we refer to as a bead. The bead was chosen as a small signal
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to noise target, to test the limitations of our technique. The bead was attached to a 0.17 mm glass

cover slip which was attached to a piezo stack (AE0203D08, NEC, Japan) so that the motions of the

bead were perpendicular to the optical axis. In both cases, the piezo and CCD camera were aligned

so that more than 99% of the motion was along one axis of the camera.

We drove both piezos with a 99.681 Hz sinusoidal stimulus voltage. The fatigue test device has

a resonance at 20 kHz [13], and we measured the out of plane resonance of the glass cover slip to be

313 hertz. By driving both piezos at a frequency well below the resonance of each system, we expect

the majority of the motions of each specimens were in-plane motions due to the piezo stimulus.

7.3.2 Video Microscopy

A light microscope (Zeiss, Axioplan, Thorwood, NY) imaged the bead using transmitted light, a

long working distance condenser with 0.6 numerical aperture (0.6 NA) and a 20x, 0.4 NA objective

with a 1x optivar. This con�guration re
ects our interests in biological applications. The fatigue

test device was imaged using epi-illumination with the same light collection system. Images were

recorded using a 1024x1024 pixel 12-bit CCD camera with 12 �m pixel spacing (DALSA CA-D7,

Waterloo, Ontario). We measured the magni�cation of our imaging system to be 568.8 nanometers

per pixel. The video microscope rested on a vibration-isolation table to attenuate 
oor vibrations.

7.3.3 Stroboscopic Illumination

The maximum frame rate of a scienti�c grade CCD camera is typically on the order of tens of hertz.

We use stroboscopic illumination to image faster motions. A computer controlled current source

pulses a green LED, (Nichia NSPG500S, Tokushima 774, Japan) so that a test sample is illuminated

during a chosen phase of its motion. Light from the LED is collected using a halogen lamp housing

with the LED positioned in place of the halogen lamp. The plastic lens that had covered the LED's

die was milled away and the 
at surface polished so that illumination was K�ohler [20].

7.3.4 Image Analysis

Images are corrected for pixel-to-pixel sensitivity and o�set variations using a linear �t to the

response of each pixel. We use a two-point correction technique as illustrated in [8]. We collect

a \dark" image to correct for varying o�sets in the camera. After a microscope is set to image a

specimen, between 50 and 128 images were collected with no sample illumination. We average these

images to obtain the dark image. To compensate for the varying sensitivities of individual pixels, we

attempt to image a uniformly bright region. To obtain \bright" images for the bead, we focused on

the bead and then moved the glass cover slip to the side so that the light path from the condenser

to the imaging lens passed through air only. To obtain bright images for the fatigue test device, we
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replaced the structure with a re
ecting silicon wafer. For both cases, between 50 and 128 images

were averaged to obtain a bright image.

For each measured image E, we create a corrected image G given by

G[i; j] =
E[i; j]�D[i; j]

B[i; j]�D[i; j]

where E[i; j] represents the gray value generated by the (i; j)th pixel in the measured image, and

B[i; j] and D[i; j] represent corresponding gray values in the bright and dark images, respectively.

7.3.5 Motion Detection

We tested the pairwise linear bias compensated (LBC) image registration algorithm that was de-

veloped by Davis and Freeman [7] and then developed into a sinusoidal estimator [8]. We also

tested four multi-image gradient-based algorithms listed in table 7.1. For each multi-image algorith-

m, there are two di�erent methods for estimating sinusoidal amplitude and phase: the linear least

square (LLS) �t technique and the discrete Fourier transform (DFT) method. Both methods are

described Chapter 5. Because the results of the eight di�erent calculations were found to be similar,

we report results using the LLS method with algorithm 14 in all sections except Section 7.6, where

we compare the performance of the di�erent methods.

Name x-Derivative Filter
Support

y-Derivative Filter
Support

t-Derivative Filter
Support

algorithm 14 11x11x8 11x11x8 11x11x8
algorithm 16 19x19x8 19x19x8 19x19x8
algorithm 15 20x4x8 4x20x8 4x4x8
algorithm 17 36x4x8 4x36x8 4x4x8

Table 7.1: Filter support of derivative calculations for the multi-image algorithms. The x- and y- axes
are aligned respectively along the bottom and side of each image. AxBxC refers to the dimensions,
in pixels, of the box shaped �lter support region, respectively along the x,y and t directions. The
�lters include duty cycle compensation and a 4-point low-pass �lter as described in Chapter 5. For
each algorithm, we use the LLS and DFT methods to estimate amplitude and phase as described in
the text. Thus, there are a total of eight multi-image motion estimators.

In each test, the piezo was stimulated sinusoidally with constant amplitude and eight images

evenly spaced in phase were collected. The LED was controlled so that the duty cycle was 1
8 period.

The tests were repeated 100 times to estimate the mean and standard deviation of each method.

Measurements of amplitude and phase were also made using a laser doppler interferometer

(OFV511 with controller OFV3001, Polytec, Waldbronn, Germany). The laser was focused on

a piece of re
ecting tape attached to the end of the piezo. Data were sent to a spectrum analyzer

(3562A, Hewlett Packard) to measure velocity amplitude and phase. Estimates of displacement
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amplitude were obtained by dividing the velocity amplitude by the frequency of the motion and 2�.

Laser doppler measurements were performed both before and after the video data collection. We

report the numbers before each experiment.

For each sample we examined a 32x32 pixel analysis region. The multi-image gradient-based

algorithms use points outside the analysis regions in the support of their estimates; LBC does not.

In order to compare the consistency of the algorithms on di�erent contrast functions, we examined

an additional 32x32 pixel region in the image of the fatigue test device. We used a second analysis

region on the comb drive of the device as shown in Figure 7-1. We consider this second region only

in Section 7.4.2.

Figure 7-1: Image of the fatigue test device on the left and the bead on the right. For both images,
motion was parallel to the bottom of the image. The two boxes on the fatigue test device indicate
analysis regions. The analysis region on the combs of the fatigue test device was examined only in
Section 7.4.2 for a consistency check.

All estimates are reported as amplitudes and phase along one axis only.

7.3.6 Simulations

To test our understanding of the performance-limiting mechanisms, we compared experimental re-

sults to simulations of theoretical models. The simulations included �xed-pattern noise, shot noise,

quantization errors, and blurring.

The bead was found to be well simulated by a Hanning window given by

G[i; j] =

8<: M0(1�
1+cos 2�r=6

7 ) for jrj < 3;

M0 otherwise
(7.1)

where r represents the distance to the center of the spot and M0 was chosen to adjust noise levels.
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Motions of the fatigue test device were modeled using an image of the device in conjunction with a

discrete Fourier transform, multiplication by a pure phase and an inverse transform.

For our camera, shot noise was measured to be �51 dB. Measurements of �xed-pattern noise

depended on the size of the region used. For regions slightly larger than our analysis region, �xed-

pattern noise was found on average to be �44 dB before two-point correction and �50 dB after

two-point correction. We simulated identical �xed-noise patterns on ten sets of eight images. We

simulated ten di�erent randomly-generated �xed-noise patterns for a total of 100 simulations. Note

that the simulations are inherently 
awed in that they are based on many di�erent �xed-pattern

noises, instead of the single �xed-noise pattern in our camera.

The �nite duty cycle of the strobe causes blurring of the moving objects in acquired images. Blur

was simulated by averaging 100 images evenly spaced in time during the image acquisition period.

7.3.7 Calibration Errors

The laser doppler instrument is guaranteed to be calibrated only to within 1 percent. An additional

multiplicative factor in the calibration of the laser doppler interferometer is possible due to the

misalignment of the laser with the motion of the piezo. We aligned the laser by maximizing its

reported signal. We found several local maxima in signal amplitude each within 1% of the others.

Due to alignment and calibration errors, it is possible that the motions reported using the laser

doppler interferometer and the motions estimated using the image processing algorithms will disagree

by as much as several percent. We are interested in errors of roughly 1 nanometer. We expect

di�erences between the laser doppler and video measurements due to calibration errors to be less

than a nanometer for amplitudes smaller than roughly 50 nanometers.

7.4 Results

7.4.1 Amplitude Accuracy and Precision

In Figure 7-2 we plot the error in the estimate of amplitude by algorithm 14 and LBC for images of

the fatigue test structure. The shaded regions represent � one standard deviation of the simulations

of the error. For motions smaller that about 50 nanometers, the multi-image algorithm errors are

between 1 and 2 nanometers. For the same range, LBC errors are in the range of 10 nanometers. For

small motions the simulations and experiment overlap; however, for larger motions, the simulations

and errors diverge. We �nd that increasing the laser doppler estimate by 1% makes the simulated

and experimental values agree better. In Figure 7-3 we multiply the laser doppler measurement by

1.01. Assuming this calibration correction of the laser doppler measurement, algorithm 14 achieves

nanometer resolution for all measurements.
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Figure 7-2: Error in the estimate of amplitude by algorithm 14 and LBC as a function of the laser
doppler estimate of amplitude for the central analysis region of the fatigue test device. Error refers
to the algorithm estimate subtracted by the laser doppler estimate. The error bars are the square
root of the sums of the variances of the algorithm and the laser doppler amplitude. The large error
bar at 10 nanometers is due to a single outlier in the data. The grey regions are the � one standard
deviation regions predicted by simulations. A reference line at zero error is shown for clarity.

1e–4 1e–3 1e–2 0.1 1
Amplitude (pixels)

0.1 1 10 100 1000

Amplitude  (nm)

–20

–15

–10

–5

0

5

10

E
rr

or
 (

nm
) 

Algorithm 14

1e–4 1e–3 1e–2 0.1 1
 Amplitude (pixels)

0.1 1 10 100 1000

 Amplitude (nm)

–0.04

–0.02

0

0.02

E
rr

or
 (

pi
xe

ls
) 

LBC

Figure 7-3: Error in the estimate of amplitude by algorithm 14 and LBC as a function of the laser
doppler estimate of amplitude for an image of the fatigue test device. The plot is identical to
Figure 7-2 except we have multiplied the laser doppler measurements by 1.01.
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In Figure 7-4 we plot the error for algorithm 14 and LBC for the bead as we did in Figure 7-

2. The experiment and simulations overlap. LBC loses nanometer accuracy roughly above 10

nanometers and then diverges quickly reaching a maximum error of 20 nanometers. Algorithm

14 loses nanometers accuracy near 50 nanometers. However, algorithm 14's error slowly diverges

reaching a maximum of only 5 nanometers.
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Figure 7-4: The error in the estimate of amplitude by algorithm 14 and LBC as a function of the laser
doppler amplitude for an image of a single bead. Other aspects of this �gure are as in Figure 7-2.

Figure 7-5 shows the precisions of algorithm 14 and LBC are between 1 and 3 nanometers for

images of the bead for all measurements. Similar results were found for the fatigue test device. The

simulated precisions roughly overlay with the experimental precisions up to 80 nanometers. For

larger amplitudes, the simulations appear to diverge from the data exponentially. The divergence is

actually roughly linear, appearing exponential because of the semi-logarithmic plot.

7.4.2 Consistency

An important measure of accuracy is the di�erence in motion estimates using di�erent analysis

regions. One would like an algorithm that gives the same answer independent of the content of the

analysis region. In Figure 7-6 we show the di�erence between estimates of motion for two di�erent

regions of the fatigue test device. LBC gives answers that di�er in mean by more than 5 nanometers.

Conversely, estimates from algorithm 14 for the two di�erent regions di�ered in mean by less than

2 nanometers. The other seven multi-image algorithms performed as well or better than algorithm

14 .
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Figure 7-5: The precision (standard deviation) of algorithm 14 and LBC as a function of the laser
doppler estimate of amplitude. Experimental values are shown as \x" and \o". Simulated values
are shown as lines.

7.5 Phase

Except for the largest motions, the standard deviation of phase estimates for LBC and algorithm 14

dominate the accuracy of both algorithms. Figure 7-7 shows the precision of the phase estimates as a

function of amplitude. The precisions are roughly the same and agree with experimental predictions.

A similar plot for the fatigue test device shows the same shape, with both algorithms yielding roughly

a factor of two decrease in standard deviation at all amplitudes.

7.6 Consistency Among Multi-Image Based Methods

In Figure 7-8, we plot the di�erence in the amplitude estimate between algorithm 14 and the seven

other algorithms at a function of the amplitude estimate of algorithm 14 for the central analysis

region in the fatigue test device. For the 9,800 points in the �gure (14 test voltages, 100 tests, and

7 algorithms) the maximum di�erence between all eight algorithms for any motion estimate is 0.6

nanometers. The di�erence between each DFT and LLS estimate using the same �lters (not shown)

is almost a factor of ten smaller than the di�erence between motion estimates using di�erence �lters.

7.7 Discussion

We have shown that for the fatigue test structure, the multi-image gradient-based estimators and

LBC yield estimates of motion with nanometer precision and accuracy. Figure 7-3 shows that

algorithm 14 retains nanometer accuracy up to 500 nanometers while LBC retains the same accuracy

up to only 10 nanometers. LBC is limited by bias inherent to the algorithm that exists even in the
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Figure 7-6: Di�erence in amplitude estimates between two regions of the fatigue test device as a
function of the estimate in one of the regions. The �rst region is in the interior of the device; the
second region focuses on the comb drive of the device as shown in Figure 7-1

absence of noise [7]. Conversely, the multi-image gradient-based methods were designed to have

inherent bias below 0.001 pixels up to amplitudes slightly larger than a pixel. The inherent bias in

LBC accounts for the di�erence in the performance of the two algorithms.

The bead has a radius of roughly 3 pixels so that the great majority of the analysis region around

the bead contains no signal. Even under these conditions, algorithm 14 is able to estimate motions

with errors less 5 nanometers. Conversely, LBC's error approaches 20 nanometers for the same data

set.

The precision of the two algorithms is comparable. Figure 7-5 shows that LBC has a roughly 20%

smaller standard deviation at all amplitudes. That LBC has the smaller amplitude is not surprising.

For estimation techniques, there is typically a tradeo� between accuracy and precision. We feel

that the accuracy gain in the multi-image algorithms over LBC is well worth the 20% increase in

standard deviation over LBC.

Our simulations accurately predicted precision and bias with the exception of the precision of

the amplitude estimator as shown in Figure 7-5. For large motions, the simulations of amplitude

precision predict linearly larger variability than is found in the data set. Because our simulations

included ten di�erent �xed noise-patterns that were not identical to the �xed-noise pattern of our

camera, we expect our simulations to yield somewhat di�erent results from the actual experiment.

Therefore, we do not �nd the linear divergence surprising.

That the simulations predict the majority of the errors and precision of the algorithms suggests

that the noise factors simulated, shot noise and �xed-pattern noise, are in fact the dominate noises

in the algorithms. If, for example, table vibrations played a large role, we would have expected

signi�cantly larger standard deviations than what we found.
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Figure 7-7: Phase Precision (one standard deviation) for each algorithm for the image of the bead as
a function of the laser doppler measurement of amplitude. The simulated results are for algorithm
14; LBC's simulated precision is very similar. No e�orts were made to handle phase wrapping errors.
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Figure 7-8: Amplitude dependence of the di�erence between amplitude estimates using algorithm
14 and the other seven multi-image algorithms. The analysis region was the central region of the
fatigue test device as indicated in Figure 7-1
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The consistency of the gradient-based algorithms over two regions with very di�erent spectral

content is remarkable (see Figure 7-6). It is equally remarkable that all eight algorithms give

estimates of motion within 0.6 nanometers of each other. The algorithms were designed to be

consistent for regions for images with most of their energy below spatial frequency 2. The algorithms

estimate derivatives using very di�erent �lters with lengths that di�er by more than a factor of

3. That the algorithms perform so closely supports our assumptions that derivatives can be well

estimated using �lter-based methods.

It is not surprising that the standard deviation of the phase estimator increases inversely with

amplitude. Phase is calculated using the ratio of the amplitudes of the in-phase and out-of-phase

components of the motion. As the two components shrink, their precision remains roughly constant

(see Figure 7-5) so that the fractional uncertainty in the ratio should increase inversely proportional

to amplitude magnitude.

7.8 Conclusion

We have shown that multi-image gradient-based estimators of amplitude can achieve nanometer

accuracy and precision for motions smaller than 500 nanometers. LBC gives errors a factor of 10

larger over the same range so that the new methods provide signi�cant improvements over LBC. We

have shown that the multi-image algorithms are consistent to within a nanometer across di�erent

analysis regions of the same images. Finally, we have shown that our simulations using �xed-pattern

noise and shot noise capture the majority of our experimental �ndings.
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Chapter 8

Summary

Our goal was to create an estimator of temporal sinusoidal motion that was not limited by errors

inherent in it. We investigated widely-used methods to estimate motion and chose two approaches

to achieve our goal. The �rst approach was based on gradient methods. The second approach was

based on Fourier transforms.

8.1 Multi-Image Gradient-Based Algorithms

We created a new class of multi-image gradient-based algorithms. We showed that these algorithms

estimate velocity, not displacement. We also showed that the inherent bias of these algorithms

can be made arbitrarily small for small enough motions. However, for large enough motions, the

algorithms make large errors. These errors are due to temporal changes in brightness that are not

sampled suÆciently to meet the Nyquist criteria.

Using the multi-image gradient-based algorithms, we created estimators of the amplitude and

phase of temporal sinusoidal motion. We simulated the performance of these estimators for images

of a spot, a microelectromechanical device and a synthetic aperture radar image of the Galapagos

Islands. In the presence of noise typical of our image acquisition systems, �50 dB of shot noise and

�50 dB of �xed pattern noise, the estimators achieved errors below 0.001 pixels and 0.001 radians for

amplitudes smaller than 1.2 pixels. However, for motions larger than roughly 2 pixels, the amplitude

errors were larger than 0.1 pixels.

We tested the accuracy of our methods by comparing motions estimated using the algorithms

to those measured by a laser doppler interferometer. We examined the motions of a fatigue test

structure and a bead attached to a piezo. For the fatigue test structure, the algorithms achieved

nanometer accuracy and precision for motions below 500 nanometers. The simulations well predicted

the performance of the algorithms; the estimator achieved near 0.001 pixel accuracy and precision.

We also showed that the algorithms are consistent to within a nanometer across regions of the same
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moving object with very di�erent brightness distributions. For a moving bead, an object chosen for

its particularly small signal to noise ratio, we showed that the algorithms achieved �ve nanometer

accuracy and precision.

We compared the accuracy of the multi-image gradient based algorithms to those of the linear

bias corrected algorithm (LBC) created by Davis and Freeman [7]. We showed that these methods

also achieved nanometer precision and accuracy, but only for motions below roughly 10 nanometers.

Thus, the range of high accuracy estimation for the multi-images algorithms is a factor of 10 bigger

than the range for LBC. However, unlike our estimator, LBC works well for motions larger than 2

pixels.

8.2 Fourier Transform Based Methods

We developed a Fourier transform based motion estimator. However, for the 32x32 pixel regions that

interest us, this estimator was found to be limited by bias inherent in the estimator. We examined

an image of a rod and a spot, chosen to accentuate edge e�ects, and found that the estimator could

make errors greater than 1 pixel in amplitude and 1 radian in phase. Simulations in the presence of

noise for more representative images of our applications showed the Fourier transform-based methods

achieved 0.1 pixel accuracy and 0.01 radian accuracy. These inaccuracies are greater than those of

already existing algorithms, such as LBC.

8.3 Conclusion

The multi-image gradient-based algorithms achieved our goal of making a sinusoidal estimator that,

for small enough motions, is not limited by bias inherent to the method.

We believe these algorithms will be of great practical importance to the �eld of microelectrome-

chanical systems (MEMS). High accuracy measurement tools are vital for the test and validation

of MEMS. This work also has applications for measuring bio-mechanical motions, such as sound-

induced motions of inner ear structures. More accurate measurement tools will help elucidate the

mechanisms that underlie our remarkably sensitive hearing.

Our methods take advantage of the increasing availability of CCD cameras and computational

power to obtain quantitative motion measurements from an optical microscope. These measure-

ments transforms optical microscopes from qualitative imagers to quantitative motion measurement

systems.
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Appendix A

Second Order Gradient Methods

with Perfect Derivative Estimation

Recall (3.7)

0 = rE � bÆr +EtÆt +
1

2
bÆTr EHrbÆr + 1

2
EttÆ

2
t + ÆtrE � bÆr + : : : (A.1)

where EHr = rr(rrE) is the spatial Hessian of the continuous intensity function E, Et is the

temporal derivative of E and r is the spatial gradient operator. Let E(r; t) = E(r � d(t); 0). In

this case, we can write the equations in simpler form by separating out the spatial and temporal

derivatives. We �nd

Et = �rE � d0(t); (A.2)

rEt = �EHr � d
0(t); and (A.3)

Ett = �rE � d00(t) + d
0TEHrd

0(t): (A.4)

Using these three equations, we rewrite (A.1) as

0 = rE �

�bÆr � d
0(t)Æt �

1

2
d
00(t)

�
+
1

2

hbÆTr EHrbÆr + 2ÆtbÆTr EHrd0(t) + Æ2td
0T (t)EHrd

0(t)
i
+ : : : :

(A.5)

We would like a solution of the form bÆr = d
0(t)Æt +

1
2d

00(t)Æ2t . Substituting this trial solution into

(A.5), we �nd
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0 =
1

8
Æ4td

00T (t)EHrd
00(t) + : : : (A.6)

So the solution we desire is correct up to order Æ2t . The assumption of gradient-based methods is

small motions, which we quantify by requiring the �rst term in the Taylor expansion of the motion

to be much larger than the second,

d
0(t)Æt >> d

00(t)Æ2t (A.7)

Thus the error in (A.6) is small compared to other terms.
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