
Implementing Signatures for
Transactional Memory

Daniel Sanchez, Luke Yen,
Mark Hill, Karu Sankaralingam

University of Wisconsin-Madison

Executive summary

2

 Several TM systems use signatures:

Represent unbounded read/write sets in bounded state

 False positives => Performance degradation

• Use Bloom filters with bit-select hash functions

 We improve signature design:

1. Use k Bloom filters in parallel, with 1 hash function each

Ƒ Same performance for much less area (no multiported SRAM)

Ƒ Applies to Bloom filters in other areas (LSQs…)

2. Use high-quality hash functions (e.g. H3)

Ƒ Enables higher number of hash functions (4-8 vs. 2)

Ƒ Up to 100% performance improvement in our benchmarks

3. Beyond Bloom filters?

Ƒ Cuckoo-Bloom: Hash table-Bloom filter hybrid (but complex)

3

Outline

 Introduction and motivation

 True Bloom signatures

 Parallel Bloom signatures

 Beyond Bloom signatures

 Area evaluation

 Performance evaluation

• True vs. Parallel Bloom

• Number and type of hash functions

 Conclusions

Support for Transactional Memory

 TM systems implement conflict detection

• Find {read-write, write-read, write-write} conflicts
among concurrent transactions

• Need to track read/write sets (addresses read/written) of
a transaction

4

 Signatures are data structures that

• Represent an arbitrarily large set in bounded state

• Approximate representation, with false positives but no
false negatives

Signature Operation Example

6

Program:

xbegin

LD A

ST B

LD C

LD D

ST C

…

0000000000000100 000000100010010000100100 00100010

Hash function

00000000

Read-set sig Write-set sig

ABCDExternal ST E

00100100 00100010

ALIAS
(A-D)

FALSE POSITIVE:
CONFLICT!

External ST F

00100100 00100010

NO CONFLICT

Bit field

HF HF

Motivation

 Hardware signatures concisely summarize read & write sets of
transactions for conflict detection

 Stores unbounded number of addresses

 Correctness because no false negatives

 Decouples conflict detection from L1 cache designs, eases virtualization

 Lookups can indicate false positives, lead to unnecessary stalls/aborts
and degrade performance

 Several transactional memory systems use signatures:

• Illinois’ Bulk [Ceze, ISCA06]

• Wisconsin’s LogTM-SE [Yen, HPCA07]

• Stanford’s SigTM [Minh, ISCA07]

• Implemented using (true/parallel) Bloom sigs [Bloom, CACM70]

 Signatures have applications beyond TM (scalable LSQs, early
L2 miss detection)

7

Outline

8

 Introduction and motivation

 True Bloom signatures

 Parallel Bloom signatures

 Beyond Bloom signatures

 Area evaluation

 Performance evaluation

• True vs. Parallel Bloom

• Number and type of hash functions

 Conclusions

True Bloom signature - Design

 Single Bloom filter of k hash functions

9

True Bloom Signature - Design

10

 Design dimensions

• Size of the bit field (m)

• Number of hash functions (k)

• Type of hash functions

 Probability of false positives (with independent,
uniformly distributed memory accesses):

k
n k

F P

1
P (n) 1 1

m

Larger is better

Examine in
more detail

Number of hash functions

11

 High # elements => Fewer hash functions better

 Small # elements => More hash functions better

Types of hash functions

 Addresses not independent or uniformly
distributed

 But can generate almost uniformly distributed and
uncorrelated hashes with good hash functions

 Hash functions considered:

12

Bit-selection H3

(inexpensive, low quality) (moderate, high quality)

[Carter, CSS77]

True Bloom Signature – Implementation

 Divide bit field in words, store in small SRAM

• Insert: Raise wordline, drive appropriate bitline to 1,
leave rest floating

• Test: Raise wordline, check value at bitline

 k hash functions => k read, k write ports

13

Problem
Size of SRAM cell

increases quadratically
with # ports!

Outline

14

 Introduction and motivation

 True Bloom signatures

 Parallel Bloom signatures

 Beyond Bloom signatures

 Area evaluation

 Performance evaluation

• True vs. Parallel Bloom

• Number and type of hash functions

 Conclusions

Parallel Bloom Signatures

15

 To avoid multiported memories, we can use k
Bloom filters of size m/k in parallel

Parallel Bloom signatures - Design

 Probability of false positives:

• True:

• Parallel:

16

 Same performance as true Bloom!!

 Higher area efficiency

k
n k

F P

1
P (n) 1 1

m

k
n k

m1 e

k
n k

m1 e

k

(if 1)
m

k

n

F P

1
P (n) 1 1

m / k

Outline

17

 Introduction and motivation

 True Bloom signatures

 Parallel Bloom signatures

 Beyond Bloom signatures

 Area evaluation

 Performance evaluation

• True vs. Parallel Bloom

• Number and type of hash functions

 Conclusions

Beyond Bloom Signatures

 Bloom filters not space optimal => Opportunity
for increased efficiency

• Hash tables are, but limited insertions

 Our approach: New Cuckoo-Bloom signature

• Hash table (using Cuckoo hashing) to represent sets
when few insertions

• Progressively morph the table into a Bloom filter to allow
an unbounded number of insertions

• Higher space efficiency, but higher complexity

• In simulations, performance similar to good Bloom
signatures

• See paper for details

18

[Carter,CSS78]

Outline

19

 Introduction and motivation

 True Bloom signatures

 Parallel Bloom signatures

 Beyond Bloom signatures

 Area evaluation

 Performance evaluation

• True vs. Parallel Bloom

• Number and type of hash functions

 Conclusions

Area evaluation

 SRAM: Area estimations using CACTI

• 4Kbit signature, 65nm

20

k=1 k=2 k=4

True Bloom 0.031 mm2 0.113 mm2 0.279 mm2

Parallel Bloom 0.031 mm2 0.032 mm2 0.035 mm2

True/Parallel 1.0 3.5 8.0

 8x area savings for four hash functions!

 Hash functions:

• Bit selection has negligible extra cost

• Four hardwired H3 require ≈25% of SRAM area

Outline

21

 Introduction and motivation

 True Bloom signatures

 Parallel Bloom signatures

 Beyond Bloom signatures

 Area evaluation

 Performance evaluation

• True vs. Parallel Bloom

• Number and type of hash functions

 Conclusions

Performance evaluation

 Using LogTM-SE

 System organization:

• 32 in-order single-issue cores

• 32KB, 4-way private L1s, 8MB, 8-way shared L2

• High-bandwidth crossbar, snooping MESI protocol

• Signature checks are broadcast

• Base conflict resolution protocol with write-set prediction
[Bobba, ISCA07]

22

Methodology

 Virtutech Simics full-system simulation

 Wisconsin GEMS 2.0 timing modules:

www.cs.wisc.edu/gems

 SPARC ISA, running unmodified Solaris

 Benchmarks:

• Microbenchmark: Btree

• SPLASH-2: Raytrace, Barnes [Woo, ISCA95]

• STAMP: Vacation, Delaunay [Minh, ISCA07]

23

http://www.cs.wisc.edu/gems

True Versus Parallel Bloom

24

2048-bit Bloom Signatures, 4 hash functions

 Performance results normalized to
un-implementable Perfect signatures

 Higher bars are better

True Versus Parallel Bloom

25

 For Bit-selection, True & Parallel Bloom perform similarly

 Larger differences for Vacation, Delaunay – larger, more
frequent transactions

2048-bit Bloom Signatures, 4 hash functions

True Versus Parallel Bloom

26

 For H3, True & Parallel Bloom signatures also perform
similarly (less difference than bit-select)

 Implication 1: Parallel Bloom preferred over True Bloom:
similar performance, simpler implementation

2048-bit Bloom Signatures, 4 hash functions

Outline

27

 Introduction and motivation

 True Bloom signatures

 Parallel Bloom signatures

 Beyond Bloom signatures

 Area evaluation

 Performance evaluation

• True vs. Parallel Bloom

• Number and type of hash functions

 Conclusions

Number of Hash Functions (1/2)

28

 Implication 2a: For low-quality hashes (Bit-selection),
increasing number of hash functions beyond 2 does not help

 Bits set are not uniformly distributed, correlated

2048-bit Parallel Bloom Signatures

Number of Hash Functions (2/2)

29

 For high-quality hashes (H3), increasing number of hash
functions improves performance for most benchmarks

 Even k=8 works as well (not shown)

2048-bit Parallel Bloom Signatures

Type of Hash Functions (1/2)

30

2048-bit Parallel Bloom Signatures

 1 hash function => bit-selection and H3 achieve similar
performance

 Similar results for 2 hash functions

Type of Hash Functions (2/2)

31

2048-bit Parallel Bloom Signatures

 Implication 2b: For 4 and more hash functions, high-
quality hashes (H3) perform much better than low-quality
hashes (bit-selection)

Conclusions

32

 Detailed design space exploration of Bloom
signatures

• Use Parallel Bloom instead of True Bloom

Ƒ Same performance for much less area

• Use high-quality hash functions (e.g. H3)

Ƒ Enables higher number of hash functions (4+ vs. 2)

Ƒ Up to 100% performance improvement in our benchmarks

 Alternatives to Bloom signatures exist

• Complexity vs. space efficiency tradeoff

• Cuckoo-Bloom: Hash table-Bloom filter hybrid (but
complex)

• Room for future work

 Applicability of findings beyond TM

Thank you

for your attention

Questions?

Backup – Why same performance?

 True Bloom => Larger hash functions, but
uncertain who wrote what

 Parallel Bloom => Smaller hash functions, but
certain who wrote what

 These two effect compensate

 Example:

• Only bits {6,12} set in 16-bit 2 HF True Bloom =>
Candidates are (H1,H2)=(6,12) or (12,6)

• Only bits {6,12} set in 16-bit 2 HF Parallel Bloom =>
Only candidate is (H1,H2) = (6,4), but each HF has 1 bit
less

34

Backup - Number of cores & directory

 Pressure increases with #cores

 Directory helps, but still requires to scale the
signatures with the number of cores 35

btree vacation

Constant signature size (256 bits)
Number of cores in the x-axis!

Backup – Hash function analysis

36

 Hash value distributions for btree, 512-bit parallel
Bloom with 2 hash functions

bit-selection fixed H3

Backup - Conflict resolution in LogTM-SE

 Base: Stall requester by default, abort if it is
stalling an older Tx and stalled by an older Tx

 Pathologies:

• DuelingUpgrades: Two Txs try to read-modify-update
same block concurrently -> younger aborts

• StarvingWriter: Difficult for a Tx to write to a widely
shared block

• FutileStall: Tx stalls waiting for other that later aborts

 Solutions:

• Write-set prediction: Predict read-modify-updates, get
exclusive access directly (targets DuelingUpgrades)

• Hybrid conflict resolution: Older writer aborts younger
readers (targets StarvingWriter, FutileStall)

37

Backup – Cuckoo-Bloom signatures

38

vacationbtree

