
Implementing Signatures for
Transactional Memory

Daniel Sanchez, Luke Yen,
Mark Hill, Karu Sankaralingam

University of Wisconsin-Madison

Executive summary

2

 Several TM systems use signatures:

Represent unbounded read/write sets in bounded state

 False positives => Performance degradation

• Use Bloom filters with bit-select hash functions

 We improve signature design:

1. Use k Bloom filters in parallel, with 1 hash function each

Ƒ Same performance for much less area (no multiported SRAM)

Ƒ Applies to Bloom filters in other areas (LSQs…)

2. Use high-quality hash functions (e.g. H3)

Ƒ Enables higher number of hash functions (4-8 vs. 2)

Ƒ Up to 100% performance improvement in our benchmarks

3. Beyond Bloom filters?

Ƒ Cuckoo-Bloom: Hash table-Bloom filter hybrid (but complex)

3

Outline

 Introduction and motivation

 True Bloom signatures

 Parallel Bloom signatures

 Beyond Bloom signatures

 Area evaluation

 Performance evaluation

• True vs. Parallel Bloom

• Number and type of hash functions

 Conclusions

Support for Transactional Memory

 TM systems implement conflict detection

• Find {read-write, write-read, write-write} conflicts
among concurrent transactions

• Need to track read/write sets (addresses read/written) of
a transaction

4

 Signatures are data structures that

• Represent an arbitrarily large set in bounded state

• Approximate representation, with false positives but no
false negatives

Signature Operation Example

6

Program:

xbegin

LD A

ST B

LD C

LD D

ST C

…

0000000000000100 000000100010010000100100 00100010

Hash function

00000000

Read-set sig Write-set sig

ABCDExternal ST E

00100100 00100010

ALIAS
(A-D)

FALSE POSITIVE:
CONFLICT!

External ST F

00100100 00100010

NO CONFLICT

Bit field

HF HF

Motivation

 Hardware signatures concisely summarize read & write sets of
transactions for conflict detection

 Stores unbounded number of addresses

 Correctness because no false negatives

 Decouples conflict detection from L1 cache designs, eases virtualization

 Lookups can indicate false positives, lead to unnecessary stalls/aborts
and degrade performance

 Several transactional memory systems use signatures:

• Illinois’ Bulk [Ceze, ISCA06]

• Wisconsin’s LogTM-SE [Yen, HPCA07]

• Stanford’s SigTM [Minh, ISCA07]

• Implemented using (true/parallel) Bloom sigs [Bloom, CACM70]

 Signatures have applications beyond TM (scalable LSQs, early
L2 miss detection)

7

Outline

8

 Introduction and motivation

 True Bloom signatures

 Parallel Bloom signatures

 Beyond Bloom signatures

 Area evaluation

 Performance evaluation

• True vs. Parallel Bloom

• Number and type of hash functions

 Conclusions

True Bloom signature - Design

 Single Bloom filter of k hash functions

9

True Bloom Signature - Design

10

 Design dimensions

• Size of the bit field (m)

• Number of hash functions (k)

• Type of hash functions

 Probability of false positives (with independent,
uniformly distributed memory accesses):

k
n k

F P

1
P (n) 1 1

m

 
        

Larger is better

Examine in
more detail

Number of hash functions

11

 High # elements => Fewer hash functions better

 Small # elements => More hash functions better

Types of hash functions

 Addresses not independent or uniformly
distributed

 But can generate almost uniformly distributed and
uncorrelated hashes with good hash functions

 Hash functions considered:

12

Bit-selection H3

(inexpensive, low quality) (moderate, high quality)

[Carter, CSS77]

True Bloom Signature – Implementation

 Divide bit field in words, store in small SRAM

• Insert: Raise wordline, drive appropriate bitline to 1,
leave rest floating

• Test: Raise wordline, check value at bitline

 k hash functions => k read, k write ports

13

Problem
Size of SRAM cell

increases quadratically
with # ports!

Outline

14

 Introduction and motivation

 True Bloom signatures

 Parallel Bloom signatures

 Beyond Bloom signatures

 Area evaluation

 Performance evaluation

• True vs. Parallel Bloom

• Number and type of hash functions

 Conclusions

Parallel Bloom Signatures

15

 To avoid multiported memories, we can use k
Bloom filters of size m/k in parallel

Parallel Bloom signatures - Design

 Probability of false positives:

• True:

• Parallel:

16

 Same performance as true Bloom!!

 Higher area efficiency

k
n k

F P

1
P (n) 1 1

m

 
        

k
n k

m1 e

 
  

 

k
n k

m1 e

 
  

 
k

(if 1)
m

 
k

n

F P

1
P (n) 1 1

m / k

 
        

Outline

17

 Introduction and motivation

 True Bloom signatures

 Parallel Bloom signatures

 Beyond Bloom signatures

 Area evaluation

 Performance evaluation

• True vs. Parallel Bloom

• Number and type of hash functions

 Conclusions

Beyond Bloom Signatures

 Bloom filters not space optimal => Opportunity
for increased efficiency

• Hash tables are, but limited insertions

 Our approach: New Cuckoo-Bloom signature

• Hash table (using Cuckoo hashing) to represent sets
when few insertions

• Progressively morph the table into a Bloom filter to allow
an unbounded number of insertions

• Higher space efficiency, but higher complexity

• In simulations, performance similar to good Bloom
signatures

• See paper for details

18

[Carter,CSS78]

Outline

19

 Introduction and motivation

 True Bloom signatures

 Parallel Bloom signatures

 Beyond Bloom signatures

 Area evaluation

 Performance evaluation

• True vs. Parallel Bloom

• Number and type of hash functions

 Conclusions

Area evaluation

 SRAM: Area estimations using CACTI

• 4Kbit signature, 65nm

20

k=1 k=2 k=4

True Bloom 0.031 mm2 0.113 mm2 0.279 mm2

Parallel Bloom 0.031 mm2 0.032 mm2 0.035 mm2

True/Parallel 1.0 3.5 8.0

 8x area savings for four hash functions!

 Hash functions:

• Bit selection has negligible extra cost

• Four hardwired H3 require ≈25% of SRAM area

Outline

21

 Introduction and motivation

 True Bloom signatures

 Parallel Bloom signatures

 Beyond Bloom signatures

 Area evaluation

 Performance evaluation

• True vs. Parallel Bloom

• Number and type of hash functions

 Conclusions

Performance evaluation

 Using LogTM-SE

 System organization:

• 32 in-order single-issue cores

• 32KB, 4-way private L1s, 8MB, 8-way shared L2

• High-bandwidth crossbar, snooping MESI protocol

• Signature checks are broadcast

• Base conflict resolution protocol with write-set prediction
[Bobba, ISCA07]

22

Methodology

 Virtutech Simics full-system simulation

 Wisconsin GEMS 2.0 timing modules:

www.cs.wisc.edu/gems

 SPARC ISA, running unmodified Solaris

 Benchmarks:

• Microbenchmark: Btree

• SPLASH-2: Raytrace, Barnes [Woo, ISCA95]

• STAMP: Vacation, Delaunay [Minh, ISCA07]

23

http://www.cs.wisc.edu/gems

True Versus Parallel Bloom

24

2048-bit Bloom Signatures, 4 hash functions

 Performance results normalized to
un-implementable Perfect signatures

 Higher bars are better

True Versus Parallel Bloom

25

 For Bit-selection, True & Parallel Bloom perform similarly

 Larger differences for Vacation, Delaunay – larger, more
frequent transactions

2048-bit Bloom Signatures, 4 hash functions

True Versus Parallel Bloom

26

 For H3, True & Parallel Bloom signatures also perform
similarly (less difference than bit-select)

 Implication 1: Parallel Bloom preferred over True Bloom:
similar performance, simpler implementation

2048-bit Bloom Signatures, 4 hash functions

Outline

27

 Introduction and motivation

 True Bloom signatures

 Parallel Bloom signatures

 Beyond Bloom signatures

 Area evaluation

 Performance evaluation

• True vs. Parallel Bloom

• Number and type of hash functions

 Conclusions

Number of Hash Functions (1/2)

28

 Implication 2a: For low-quality hashes (Bit-selection),
increasing number of hash functions beyond 2 does not help

 Bits set are not uniformly distributed, correlated

2048-bit Parallel Bloom Signatures

Number of Hash Functions (2/2)

29

 For high-quality hashes (H3), increasing number of hash
functions improves performance for most benchmarks

 Even k=8 works as well (not shown)

2048-bit Parallel Bloom Signatures

Type of Hash Functions (1/2)

30

2048-bit Parallel Bloom Signatures

 1 hash function => bit-selection and H3 achieve similar
performance

 Similar results for 2 hash functions

Type of Hash Functions (2/2)

31

2048-bit Parallel Bloom Signatures

 Implication 2b: For 4 and more hash functions, high-
quality hashes (H3) perform much better than low-quality
hashes (bit-selection)

Conclusions

32

 Detailed design space exploration of Bloom
signatures

• Use Parallel Bloom instead of True Bloom

Ƒ Same performance for much less area

• Use high-quality hash functions (e.g. H3)

Ƒ Enables higher number of hash functions (4+ vs. 2)

Ƒ Up to 100% performance improvement in our benchmarks

 Alternatives to Bloom signatures exist

• Complexity vs. space efficiency tradeoff

• Cuckoo-Bloom: Hash table-Bloom filter hybrid (but
complex)

• Room for future work

 Applicability of findings beyond TM

Thank you

for your attention

Questions?

Backup – Why same performance?

 True Bloom => Larger hash functions, but
uncertain who wrote what

 Parallel Bloom => Smaller hash functions, but
certain who wrote what

 These two effect compensate

 Example:

• Only bits {6,12} set in 16-bit 2 HF True Bloom =>
Candidates are (H1,H2)=(6,12) or (12,6)

• Only bits {6,12} set in 16-bit 2 HF Parallel Bloom =>
Only candidate is (H1,H2) = (6,4), but each HF has 1 bit
less

34

Backup - Number of cores & directory

 Pressure increases with #cores

 Directory helps, but still requires to scale the
signatures with the number of cores 35

btree vacation

Constant signature size (256 bits)
Number of cores in the x-axis!

Backup – Hash function analysis

36

 Hash value distributions for btree, 512-bit parallel
Bloom with 2 hash functions

bit-selection fixed H3

Backup - Conflict resolution in LogTM-SE

 Base: Stall requester by default, abort if it is
stalling an older Tx and stalled by an older Tx

 Pathologies:

• DuelingUpgrades: Two Txs try to read-modify-update
same block concurrently -> younger aborts

• StarvingWriter: Difficult for a Tx to write to a widely
shared block

• FutileStall: Tx stalls waiting for other that later aborts

 Solutions:

• Write-set prediction: Predict read-modify-updates, get
exclusive access directly (targets DuelingUpgrades)

• Hybrid conflict resolution: Older writer aborts younger
readers (targets StarvingWriter, FutileStall)

37

Backup – Cuckoo-Bloom signatures

38

vacationbtree

