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Executive summary
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 Several TM systems use signatures:

Represent unbounded read/write sets in bounded state

 False positives => Performance degradation

• Use Bloom filters with bit-select hash functions

 We improve signature design:

1. Use k Bloom filters in parallel, with 1 hash function each

Ƒ Same performance for much less area (no multiported SRAM)

Ƒ Applies to Bloom filters in other areas (LSQs…)

2. Use high-quality hash functions (e.g. H3)

Ƒ Enables higher number of hash functions (4-8 vs. 2)

Ƒ Up to 100% performance improvement in our benchmarks

3. Beyond Bloom filters?

Ƒ Cuckoo-Bloom: Hash table-Bloom filter hybrid (but complex)
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Support for Transactional Memory

 TM systems implement conflict detection

• Find {read-write, write-read, write-write} conflicts
among concurrent transactions

• Need to track read/write sets (addresses read/written) of 
a transaction
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 Signatures are data structures that

• Represent an arbitrarily large set in bounded state

• Approximate representation, with false positives but no
false negatives



Signature Operation Example
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Program:

xbegin

LD A

ST B

LD C

LD D

ST C

…

0000000000000100 000000100010010000100100 00100010

Hash function

00000000

Read-set sig Write-set sig

ABCDExternal ST E

00100100 00100010

ALIAS
(A-D)

FALSE POSITIVE:
CONFLICT!

External ST F

00100100 00100010

NO CONFLICT

Bit field

HF HF



Motivation

 Hardware signatures concisely summarize read & write sets of 
transactions for conflict detection

 Stores unbounded number of addresses

 Correctness because no false negatives

 Decouples conflict detection from L1 cache designs, eases virtualization

 Lookups can indicate false positives, lead to unnecessary stalls/aborts 
and degrade performance

 Several transactional memory systems use signatures:

• Illinois’ Bulk                   [Ceze, ISCA06]

• Wisconsin’s LogTM-SE           [Yen, HPCA07]

• Stanford’s SigTM                         [Minh, ISCA07]

• Implemented using (true/parallel) Bloom sigs        [Bloom, CACM70]

 Signatures have applications beyond TM (scalable LSQs, early 
L2 miss detection)
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True Bloom signature - Design

 Single Bloom filter of k hash functions
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True Bloom Signature - Design
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 Design dimensions

• Size of the bit field (m)

• Number of hash functions (k)

• Type of hash functions

 Probability of false positives (with independent, 
uniformly distributed memory accesses):

k
n k

F P

1
P (n ) 1 1

m

 
        

Larger is better

Examine in 
more detail



Number of hash functions
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 High # elements => Fewer hash functions better

 Small # elements => More hash functions better



Types of hash functions

 Addresses not independent or uniformly 
distributed

 But can generate almost uniformly distributed and 
uncorrelated hashes with good hash functions

 Hash functions considered:
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Bit-selection H3

(inexpensive, low quality) (moderate, high quality)

[Carter, CSS77]



True Bloom Signature – Implementation

 Divide bit field in words, store in small SRAM

• Insert: Raise wordline, drive appropriate bitline to 1, 
leave rest floating

• Test: Raise wordline, check value at bitline

 k hash functions => k read, k write ports
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Problem
Size of SRAM cell

increases quadratically
with # ports!
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Parallel Bloom Signatures
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 To avoid multiported memories, we can use k
Bloom filters of size m/k in parallel



Parallel Bloom signatures - Design

 Probability of false positives:

• True:

• Parallel:
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 Same performance as true Bloom!!

 Higher area efficiency

k
n k
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1
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Beyond Bloom Signatures

 Bloom filters not space optimal => Opportunity 
for increased efficiency

• Hash tables are, but limited insertions

 Our approach: New Cuckoo-Bloom signature

• Hash table (using Cuckoo hashing) to represent sets 
when few insertions

• Progressively morph the table into a Bloom filter to allow 
an unbounded number of insertions

• Higher space efficiency, but higher complexity

• In simulations, performance similar to good Bloom 
signatures

• See paper for details
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[Carter,CSS78]
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Area evaluation

 SRAM: Area estimations using CACTI

• 4Kbit signature, 65nm
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k=1 k=2 k=4

True Bloom 0.031 mm2 0.113 mm2 0.279 mm2

Parallel Bloom 0.031 mm2 0.032 mm2 0.035 mm2

True/Parallel 1.0 3.5 8.0

 8x area savings for four hash functions!

 Hash functions:

• Bit selection has negligible extra cost

• Four hardwired H3 require ≈25% of SRAM area



Outline
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Performance evaluation

 Using LogTM-SE

 System organization:

• 32 in-order single-issue cores

• 32KB, 4-way private L1s, 8MB, 8-way shared L2 

• High-bandwidth crossbar, snooping MESI protocol

• Signature checks are broadcast

• Base conflict resolution protocol with write-set prediction 
[Bobba, ISCA07]
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Methodology

 Virtutech Simics full-system simulation

 Wisconsin GEMS 2.0 timing modules:

www.cs.wisc.edu/gems

 SPARC ISA, running unmodified Solaris

 Benchmarks:

• Microbenchmark:  Btree

• SPLASH-2:           Raytrace, Barnes [Woo, ISCA95]

• STAMP:                Vacation, Delaunay   [Minh, ISCA07]
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http://www.cs.wisc.edu/gems


True Versus Parallel Bloom
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2048-bit Bloom Signatures, 4 hash functions

 Performance results normalized to
un-implementable Perfect signatures

 Higher bars are better



True Versus Parallel Bloom
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 For Bit-selection, True & Parallel Bloom perform similarly

 Larger differences for Vacation, Delaunay – larger, more 
frequent transactions

2048-bit Bloom Signatures, 4 hash functions



True Versus Parallel Bloom
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 For H3, True & Parallel Bloom signatures also perform 
similarly (less difference than bit-select)

 Implication 1: Parallel Bloom preferred over True Bloom: 
similar performance, simpler implementation

2048-bit Bloom Signatures, 4 hash functions
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Number of Hash Functions (1/2)
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 Implication 2a: For low-quality hashes (Bit-selection), 
increasing number of hash functions beyond 2 does not help

 Bits set are not uniformly distributed, correlated

2048-bit Parallel Bloom Signatures



Number of Hash Functions (2/2)
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 For high-quality hashes (H3), increasing number of hash 
functions improves performance for most benchmarks 

 Even k=8 works as well (not shown)

2048-bit Parallel Bloom Signatures



Type of Hash Functions (1/2)
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2048-bit Parallel Bloom Signatures

 1 hash function => bit-selection and H3 achieve similar 
performance

 Similar results for 2 hash functions



Type of Hash Functions (2/2)
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2048-bit Parallel Bloom Signatures

 Implication 2b: For 4 and more hash functions, high-
quality hashes (H3) perform much better than low-quality 
hashes (bit-selection)



Conclusions
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 Detailed design space exploration of Bloom 
signatures

• Use Parallel Bloom instead of True Bloom

Ƒ Same performance for much less area

• Use high-quality hash functions (e.g. H3)

Ƒ Enables higher number of hash functions (4+ vs. 2)

Ƒ Up to 100% performance improvement in our benchmarks

 Alternatives to Bloom signatures exist

• Complexity vs. space efficiency tradeoff

• Cuckoo-Bloom: Hash table-Bloom filter hybrid (but 
complex)

• Room for future work

 Applicability of findings beyond TM



Thank you

for your attention

Questions?



Backup – Why same performance?

 True Bloom => Larger hash functions, but 
uncertain who wrote what

 Parallel Bloom => Smaller hash functions, but 
certain who wrote what

 These two effect compensate

 Example:

• Only bits {6,12} set in 16-bit 2 HF True Bloom => 
Candidates are (H1,H2)=(6,12) or (12,6)

• Only bits {6,12} set in 16-bit 2 HF Parallel Bloom => 
Only candidate is (H1,H2) = (6,4), but each HF has 1 bit 
less
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Backup - Number of cores & directory

 Pressure increases with #cores

 Directory helps, but still requires to scale the 
signatures with the number of cores 35

btree vacation

Constant signature size (256 bits)
Number of cores in the x-axis!



Backup – Hash function analysis
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 Hash value distributions for btree, 512-bit parallel 
Bloom with 2 hash functions

bit-selection fixed H3



Backup - Conflict resolution in LogTM-SE

 Base: Stall requester by default, abort if it is 
stalling an older Tx and stalled by an older Tx

 Pathologies:

• DuelingUpgrades: Two Txs try to read-modify-update 
same block concurrently -> younger aborts

• StarvingWriter: Difficult for a Tx to write to a widely 
shared block

• FutileStall: Tx stalls waiting for other that later aborts

 Solutions:

• Write-set prediction: Predict read-modify-updates, get 
exclusive access directly (targets DuelingUpgrades)

• Hybrid conflict resolution: Older writer aborts younger 
readers (targets StarvingWriter, FutileStall)
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Backup – Cuckoo-Bloom signatures
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vacationbtree


