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Signature-based conflict detection

= Signatures:

e Represent an arbitrarily large set of elements in
bounded amount of state (bits)

e Approximate representation, with false positives but no
false negatives

= Signature-based CD: Use signatures to track
read/write sets of a transaction

e Pros:
o Transactions can be unbounded in size

o Independence from caches, eases virtualization

e Cons:
o False conflicts -> Performance degradation



Motivation of this study “

= Signatures play an important role in TM
performance. Poor signatures cause lots of
unnecessary stalls and aborts.

= Signatures can take significant amount of area
e Can we find area-efficient implementations?

e Adoption of TM much easier if the area requirements are
small!

= Signature design space exploration incomplete in
other TM proposals



Summary of results— \ ‘

= Previously proposed TM signatures are either true
Bloom (1 filter, k hash functions) or parallel
Bloom (k filters, 1 hash function each).

e Performance-wise, True Bloom = Parallel Bloom
e Parallel Bloom about 8x more area-efficient

= New Bloom signature designs that double the
performance and are more robust

= Pressure on signatures greatly increases with the
number of cores; directory can help

= Three novel signature designs
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Bloom filters e R
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True Bloom signature - Design ‘

= True Bloom signature = Signature implemented
with a single Bloom filter

= Easy insertions and tests for membership
= Probability of false positives:

= Design dimensions
e Size of the bit field (m)

e Number of hash functions (k)
e Type of hash functions
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Number of hash functions

Bloom filters, m=1024 bits, k=[1,2,3,4]
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Types of hash functions “

= Addresses neither independent nor uniformly
distributed (key assumptions to derive Pgy(n))

= But can generate hash values that are almost
uniformly distributed and uncorrelated with good
(universal/almost universal) hash functions

= Hash functions considered:
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True Bloom signature”—’ImpIemehta ‘

= Divide bit field in words, store in small SRAM

e Insert: Raise wordline, drive appropriate bitline to 1,
leave the rest floating

e Test: Raise wordline, check the value at bitline

= k hash functions => k read, k write ports
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Problem
Size of SRAM cell

increases quadratically
with # ports!
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= Use k Bloom filters of size m/k, with independent
hash functions
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Parallel Bloom signature -

k single-ported SRAMSs of m/ k bits

= Highly area-efficient SRAMs
= Same performance as true Bloom! (in theory)
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Area evaluation . | “

= SRAM: Area estimations using CACTI
o 4Kbit signature, 65nm

0.031 mm2  0.113 mm2  0.279 mm?2
Parallel Bloom 0.031 mm? 0.032 mm? 0.035 mm?

= 8x area savings for four hash functions!

= Hash functions:
= Bit selection has no extra cost
= Four hardwired H; require =25% of SRAM area
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Performance evaluation

= System organization: o | 7 L
e 32 in-order single-issue cores mn, :[ Crossbar K comn,
controller | | controller
e Private split 32KB, 4-way L1 caches L2 Bank| L2 Bank

Shared unified 8MB, 8-way L2 cache

High-bandwidth crossbar

Signature checks are broadcast (no directory)

Base conflict resolution protocol with write-set prediction

= Benchmarks: btree, raytrace, vacation

barnes, delaunay, and full set of results in report
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True vs. Parallel Bloom signatures ‘
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= Bottom line: True = parallel if we use good
enough hash functions
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Bit-selection vs. fixed H; ‘

—¥— BitSel, k=1 — H - BitSel, k=2, True —&— BitSel, k=2, Parallel — @ - BitSel, k=4, True —Q— BitSel, k=4, Parallel

—— Fixed H3, k=1 _ @ _ Fixed H3, k=2, True _e_ Fixed H3, k=2, Parallel Fixed H3, k=4, True Fixed H3, k=4, Parallel
3 T T T 3

N
™
T

280

N

o
N
o))

N

a
N
a

N

[N
N
(M)

18

Execution time (normalized to Perfect)
Execution time (normalized to Perfect)
N

256 512 1024 2048 256 512 1024 2048
Signature size Signature size

= H; clearly outperforms bit-selection for k=2

= Only 2Kbit signatures with 4+ H; functions cause
no degradation over all the benchmarks 24



The benefits of variability

= Variable Hs;: Reconfigure hash functions after

each commit/abort

e Constant aliases -> Transient aliases

e Adds robustness
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The benefits of variability

= Variable Hs;: Reconfigure hash functions after
each commit/abort

e Constant aliases -> Transient aliases
e Adds robustness
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Conclusions on Blooem sighature eva W‘

Parallel Bloom enables high number of hash
functions “for free”

= Type of hash functions used matters a lot (but
was neglected in previous analysis)

= Variability adds robustness

= Should use:
e About four Hs or other high quality hash functions
e Variability if the TM system allows it
e Sijze... depends on system configuration
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—-o— Bloom H3, k=2, Broadcast
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» Pressure increases with #cores

= Directory helps, but still requires to scale the

signatures with the number of cores
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= Protocol choice fairly orthogonal to signatures

= False conflicts boost existing pathologies in

btree/raytrace -> Hybrid policy helps even more

than with perfect signatures
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= Cuckoo-Bloom signatures =
e Adapts cuckoo hashing for HW implementation

e Keeps a hash table for small sets, morphs into a Bloom filter
dynamically as the size grows

¢ Significant complexity, performance advantage not clear

= Hash-Bloom signatures =
e Simpler hash-table based approach
e Morphs to a Bloom filter more gradually than Cuckoo-Bloom

e QOutperforms Bloom signatures for both small and write sets,
in theory and practice

= Adaptive Bloom signatures =

e Bloom signatures + set size predictors + scheme to select

the best number of hash functions 31




Conclusions a0 ‘

= Bloom signhatures should always be implemented
as parallel Bloom

e with =4 good hash functions, some variability if allowed
e Overall good performance, simple/inexpensive HW

= Increasing #cores makes signatures more critical
e Hinders scalability!

e Using directory helps, but doesn’t solve

= Hybrid conflict resolution helps with signatures

= There are alternative schemes that outperform
Bloom signatures
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Bloom with 2 hash functions
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= Hash value distributions for btree, 512-bit parallel
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Backup - Conflict resolution in Log ‘Yi‘

= Base: Stall requester by default, abort if it is
stalling an older Tx and stalled bt an older Tx

= Pathologies:

e DuelingUpgrades: Two Txs try to read-modify-update
same block concurrently -> younger aborts

e StarvingWriter: Difficult for a Tx to write to a widely
shared block

e FutileStall: Tx stalls waiting for other that later aborts

= Solutions:

o Write-set prediction: Predict read-modify-updates, get
exclusive access directly (targets DuelingUpgrades)

e Hybrid conflict resolution: Older writer aborts younger

readers (targets StarvingWriter, FutileStall) 35



Backup - Cuckoo-Bloom signatures
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Backup - Hash-Blooem sighatures

Address

0.025

0.02

0.015

0.01

Probability of false positives

|| hash bits

use bits |:| row

format
1]ol1]11]0]o0]1 3
1011 1011
@ H, 0 0 1
ololo|o|o|o|o]oO 0
1/1|o0|0|lol1]|0]|o0 2
11|01 fof1]1]1 1
@ H, ol1|lofl1]|1|1|o0]1 0
ololo|o|o|o|o]o0O 0
1/1|o0|lo0flo]1]|0]1 2

Bloom and Parallel Hash-Bloom signatures of m=1Kbit

0.005f1) /&
I

1 B '
) o
) ]
‘ -/
A Lo |
. i
’ =
]
R S R L R S S i
I
I .
S
. . 1 .
R R A0 AR R AR AR .

- + - Bloom, k=1
- © - Bloom, k=2
N Bloom, k=4
1 - 8 - Bloom, k=8
s | —6— Hash-Bloom 4b/row
—%— Hash-Bloom 8b/row

20 40 60 80 100 120 140 160 180
n (# addresses inserted)

wordlines

1-ported
Address Sﬂﬁi
of rc bi
A .
bitlines
Reduction / Test logic
8 7 7 7
vacation
T : R

w o [, (<)

Execution time (normalized to Perfect)

N

512 1024 2048

Signature size

37



Backup - Adaptive Bloom signature
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