Design and Implementation of
Signatures in Transactional
Memory Systems

Daniel Sanchez

August 2007

University of Wisconsin-Madison

.

Outline

= Introduction and motivation

= Bloom filters

= Bloom signatures

= Area & performance evaluation

= Influence of system parameters

= Novel signature schemes (brief overview)
= Conclusions

Signature-based conflict detection

= Signatures:

e Represent an arbitrarily large set of elements in
bounded amount of state (bits)

e Approximate representation, with false positives but no
false negatives

= Signature-based CD: Use signatures to track
read/write sets of a transaction

e Pros:
o Transactions can be unbounded in size

o Independence from caches, eases virtualization

e Cons:
o False conflicts -> Performance degradation

Motivation of this study “

= Signatures play an important role in TM
performance. Poor signatures cause lots of
unnecessary stalls and aborts.

= Signatures can take significant amount of area
e Can we find area-efficient implementations?

e Adoption of TM much easier if the area requirements are
small!

= Signature design space exploration incomplete in
other TM proposals

Summary of results— \ ‘

= Previously proposed TM signatures are either true
Bloom (1 filter, k hash functions) or parallel
Bloom (k filters, 1 hash function each).

e Performance-wise, True Bloom = Parallel Bloom
e Parallel Bloom about 8x more area-efficient

= New Bloom signature designs that double the
performance and are more robust

= Pressure on signatures greatly increases with the
number of cores; directory can help

= Three novel signature designs

Outline

= Introduction and motivation

= Bloom filters

= Bloom signatures

= Area & performance evaluation

= Influence of system parameters

= Novel signature schemes (brief overview)
= Conclusions

Bloom filters e R

Address
|

Hash functions

Hash values {0,...,m-1}

0|00 0/0O/0|0O|O/O0O|0O|0O|O0O|O0|O0|O0|O

Bit field (m bits)

Bloom filters

Add 0x2a83ff00
|

Bloom filters

Add 0x2a8ab3f4
|

12 2

Bloom filters

Test 0x2a8a83f4
|

h,

10 2

False 10

Bloom filters

Test 0x2a83ff00
|

True 11

Bloom filters a

Test Oxff83ff48
|

True (false positive!) 12

Outline

= Tntroduction and motivation
= Bloom filters
= Bloom signatures

« True Bloom signatures Design
Implementation

« Parallel Bloom signatures

= Area & performance evaluation

= Influence of system parameters

= Novel signature schemes (brief overview)
= Conclusions

13

True Bloom signature - Design ‘

= True Bloom signature = Signature implemented
with a single Bloom filter

= Easy insertions and tests for membership
= Probability of false positives:

= Design dimensions
e Size of the bit field (m)

e Number of hash functions (k)
e Type of hash functions

14

Number of hash functions

Bloom filters, m=1024 bits, k=[1,2,3,4]

--

--

--

T U SO TR SO TR RN SN T

__

,,

0 = L | S N S
0 2000 40 200 60 3080 400 12000 140600 160 70080 800
n (# addresses inserted)

15

Types of hash functions “

= Addresses neither independent nor uniformly
distributed (key assumptions to derive Pgy(n))

= But can generate hash values that are almost
uniformly distributed and uncorrelated with good
(universal/almost universal) hash functions

= Hash functions considered:

Address bits
HEEEEEEEEEEEEEEN

I

\ /N
Ho Hq

Hash bits
Bit-selection H,

(inexpensive, low quality) (moderate, higher quality) 16

True Bloom signature”—’ImpIemehta ‘

= Divide bit field in words, store in small SRAM

e Insert: Raise wordline, drive appropriate bitline to 1,
leave the rest floating

e Test: Raise wordline, check the value at bitline

= k hash functions => k read, k write ports

Address

Yy

i bitlines

wordlines

Problem
Size of SRAM cell

increases quadratically
with # ports!

17

= Use k Bloom filters of size m/k, with independent
hash functions

Address Add Test Address

operation operation g\
4 / \\
e ~
s | 4 >
0 Y ‘1 o(1|....(0]Jl1]0|....|0}]=--]O0O|O0]....|1

= Probability of false positives:

[RN SRy Same as
PFP(n)=L1—L1—m/kJJ Elkl—e }l true Bloom!

18

Parallel Bloom signature -

k single-ported SRAMSs of m/ k bits

= Highly area-efficient SRAMs
= Same performance as true Bloom! (in theory)

19

Outline

= Introduction and motivation

= Bloom filters

= Bloom signatures

= Area & performance evaluation

« Area evaluation

 True vs. Parallel Bloom in practice
« Type of hash functions

« Variability in hash functions

= Influence of system parameters
= Novel signature schemes (brief overview)
= Conclusions 20

Area evaluation . | “

= SRAM: Area estimations using CACTI
o 4Kbit signature, 65nm

0.031 mm2 0.113 mm2 0.279 mm?2
Parallel Bloom 0.031 mm? 0.032 mm? 0.035 mm?

= 8x area savings for four hash functions!

= Hash functions:
= Bit selection has no extra cost
= Four hardwired H; require =25% of SRAM area

21

Performance evaluation

= System organization: o | 7 L
e 32 in-order single-issue cores mn, :[Crossbar K comn,
controller | | controller
e Private split 32KB, 4-way L1 caches L2 Bank| L2 Bank

Shared unified 8MB, 8-way L2 cache

High-bandwidth crossbar

Signature checks are broadcast (no directory)

Base conflict resolution protocol with write-set prediction

= Benchmarks: btree, raytrace, vacation

barnes, delaunay, and full set of results in report

22

True vs. Parallel Bloom signatures ‘

—¥— BitSel, k=1 — H - BitSel, k=2, True —&— BitSel, k=2, Parallel — @ - BitSel, k=4, True —Q— BitSel, k=4, Parallel

—— Fixed H3, k=1 _ @ _ Fixed H3, k=2, True _e_ Fixed H3, k=2, Parallel Fixed H3, k=4, True Fixed H3, k=4, Parallel
8 1
vacation
7 . bit-selection Graph format

Solid lines = Parallel Bloom

[=2)
T

Dashed lines = True Bloom

(3,
T

Different colors = Different
number of hash functions

N

Execution time (normalized to Perfect)

N
T

Execution times are
always normalized

256 512 1024 2048
Signature size

= Bottom line: True = parallel if we use good
enough hash functions

23

Bit-selection vs. fixed H; ‘

—¥— BitSel, k=1 — H - BitSel, k=2, True —&— BitSel, k=2, Parallel — @ - BitSel, k=4, True —Q— BitSel, k=4, Parallel

—— Fixed H3, k=1 _ @ _ Fixed H3, k=2, True _e_ Fixed H3, k=2, Parallel Fixed H3, k=4, True Fixed H3, k=4, Parallel
3 T T T 3

N
™
T

280

N

o
N
o))

N

a
N
a

N

[N
N
(M)

18

Execution time (normalized to Perfect)
Execution time (normalized to Perfect)
N

256 512 1024 2048 256 512 1024 2048
Signature size Signature size

= H; clearly outperforms bit-selection for k=2

= Only 2Kbit signatures with 4+ H; functions cause
no degradation over all the benchmarks 24

The benefits of variability

= Variable Hs;: Reconfigure hash functions after

each commit/abort

e Constant aliases -> Transient aliases

e Adds robustness

3

w

n

o)
N
o

| DR btree
I ~ fixed Hj;

N
o

g

o

N
N

N
N

NG
N

180 e |

N
(2]

e fr)
82 3
‘£ =
[[3]
o 2. o
[e] o]
-t -
3 3
N N
‘® ®
g 2r E 2
[o] [=]
= c
N A
()] ()
£ E
it £
c c
=] <]
-+ =
=3 =3
g1 2
b b
L 11}

N
D
T

-
(o]
T

-
S
T

256 512 1024 2048
Signature size

—_— Fixed H3, k=1 _ e _ Fixed H3, k=2, True _e_ Fixed H3, k=2, Parallel

512 1024 2048
Signature size

Fixed H3, k=4, True Fixed H3, k=4, Parallel

—t Var. I-g k=1 _*_ Var. I-h k=2, True _,AhVar. I-l‘3 k=2, Parallel 'V' Var. I-g k=4, True _V_ Var. I-!3 k=4, Parallel

25

The benefits of variability

= Variable Hs;: Reconfigure hash functions after
each commit/abort

e Constant aliases -> Transient aliases
e Adds robustness

1.6— T T T 1.6
®\ ‘ ‘ ‘
1.5—71 ,\ S T~ 15¢ S
raytrace raytrace
14 fixed H; | 14r

- var. Hz |

-
N
N
N
T

-
-
T
—_
—
T

Execution time (normalized to Perfect)
P

Execution time (normalized to Perfect)
w

1 21 1t
256 512 1024 2048 256 512 1024 2048
Signature size Signature size
—_— Fixed H3, k=1 _ e _ Fixed H3, k=2, True _e_ Fixed H3, k=2, Parallel Fixed H3, k=4, True Fixed H3, k=4, Parallel

—t Var. I-g k=1 _*_ Var. I-h k=2, True _,AhVar. I-l‘3 k=2, Parallel 'V' Var. I-g k=4, True _V_ Var. I-!3 k=4, Parallel 26

Conclusions on Blooem sighature eva W‘

Parallel Bloom enables high number of hash
functions “for free”

= Type of hash functions used matters a lot (but
was neglected in previous analysis)

= Variability adds robustness

= Should use:
e About four Hs or other high quality hash functions
e Variability if the TM system allows it
e Sijze... depends on system configuration

27

Outline

= Introduction and motivation

= Bloom filters

= Bloom signatures

= Area & performance evaluation
= Influence of system parameters

« Number of cores
« Conflict resolution protocol

= Novel signature schemes (brief overview)
= Conclusions

28

—-o— Bloom H3, k=2, Broadcast

14— 4— ‘
135, btree . | ‘vacation
3 3 %\3,57 G
1.3 £
e
1.25 2 3

Bloom H3, k=4, Broadcast _ B - Bloom Ha, k=2, Directory _ e _ Bloom H3, k=4, Directory

Constant signature size (256 bits)

Number of cores in the x-axis

0.95—

Execution time (normalized to Perfect)

: /’/””‘D
G=======—@"~’—%— R RRRRREREE
8 16 32

Number of processors

Execution

8 16

Number of processors

» Pressure increases with #cores

= Directory helps, but still requires to scale the

signatures with the number of cores

32

29

—E— Base/NoPred —— Base/Pred Hybrid/Pred (Parallel Bloom, fixed Hj;, k=2)

75 ‘ ‘ 59X 10’ | x10°
btree | 2s
7 a2z

I
2]

Execution time

(<)
T

Constant signature type (H;, k=2)
Execution times not normalized

19f g 1

—

o
3,
T

(3]
T

o raytrace| & vacation |
| 260 N o5t NN\]
| o250 /z\g """"""" 0 - [\

256 512 1024 2048 Perfect 18 256 512 1024 2048 Perfect 256 512 1024

2048 Perfect

Signature size/type Signature size/type Signature size/type

= Protocol choice fairly orthogonal to signatures

= False conflicts boost existing pathologies in

btree/raytrace -> Hybrid policy helps even more

than with perfect signatures

30

= Cuckoo-Bloom signatures =
e Adapts cuckoo hashing for HW implementation

e Keeps a hash table for small sets, morphs into a Bloom filter
dynamically as the size grows

¢ Significant complexity, performance advantage not clear

= Hash-Bloom signatures =
e Simpler hash-table based approach
e Morphs to a Bloom filter more gradually than Cuckoo-Bloom

e QOutperforms Bloom signatures for both small and write sets,
in theory and practice

= Adaptive Bloom signatures =

e Bloom signatures + set size predictors + scheme to select

the best number of hash functions 31

Conclusions a0 ‘

= Bloom signhatures should always be implemented
as parallel Bloom

e with =4 good hash functions, some variability if allowed
e Overall good performance, simple/inexpensive HW

= Increasing #cores makes signatures more critical
e Hinders scalability!

e Using directory helps, but doesn’t solve

= Hybrid conflict resolution helps with signatures

= There are alternative schemes that outperform
Bloom signatures

32

e

Thanks

for your attention

Any questions?

.

Bloom with 2 hash functions

05—

045

Fraction of added addresses

o

w

4
T

0.3f

0.2

0 50 100 150 200 250
Hash value
bit-selection

ed addresses

]

Fraction of ad

Backup - Hash funection analysis

0.1

0.091

0.081

o

o

<
:

0.06

0.051

0.04

o

=}

=)
:

0.02

0.01r

0 50 100 150 200 250
Hash value

fixed H3

= Hash value distributions for btree, 512-bit parallel

34

Backup - Conflict resolution in Log ‘Yi‘

= Base: Stall requester by default, abort if it is
stalling an older Tx and stalled bt an older Tx

= Pathologies:

e DuelingUpgrades: Two Txs try to read-modify-update
same block concurrently -> younger aborts

e StarvingWriter: Difficult for a Tx to write to a widely
shared block

e FutileStall: Tx stalls waiting for other that later aborts

= Solutions:

o Write-set prediction: Predict read-modify-updates, get
exclusive access directly (targets DuelingUpgrades)

e Hybrid conflict resolution: Older writer aborts younger

readers (targets StarvingWriter, FutileStall) 35

Backup - Cuckoo-Bloom signatures

—— bucket0 —— |—— bucket1 —

WC| Hy | H, E Hy | Hy E
0 Hy |0 0| 4 562 set0
0
0 6 | 2 453
Address H,
0| 3|3 156 3|5 942
o]l 4]0 244 5 | 4 671
@ E 0 2 | 5 027
1
o 7 | 1 391 7|7 234 | set7
3 .k T I I 8 T T T T
. \\\) .
2o btree | | vacation
Taer S | 1 g | |
‘E ﬁl'\\ %
@ 24f BRI 1 aef 1
2 S e
© S
® 22 Sy 1 @
N N N gl |
e * s
E 20 \\\ 7 g
[=} ~ (<]
= ~ =
~18- Se o 4r 1
£ *OE
S 16 | S 3t 1
5 5
B14 18
i o._ ; | ol |
12 = 1
G
1< < G 4 L S AL U=y |
256 512 1024 2048 256 512 1024 2048

Signature size

Signature size

36

Backup - Hash-Blooem sighatures

Address

0.025

0.02

0.015

0.01

Probability of false positives

|| hash bits

use bits |:| row

format
1]ol1]11]0]o0]1 3
1011 1011
@ H, 0 0 1
ololo|o|o|o|o]oO 0
1/1|o0|0|lol1]|0]|o0 2
11|01 fof1]1]1 1
@ H, ol1|lofl1]|1|1|o0]1 0
ololo|o|o|o|o]o0O 0
1/1|o0|lo0flo]1]|0]1 2

Bloom and Parallel Hash-Bloom signatures of m=1Kbit

0.005f1) /&
I

1 B '
) o
)]
‘ -/
A Lo |
. i
’ =
]
R S R L R S S i
I
I .
S
. . 1 .
R R A0 AR R AR AR .

- + - Bloom, k=1
- © - Bloom, k=2
N Bloom, k=4
1 - 8 - Bloom, k=8
s | —6— Hash-Bloom 4b/row
—%— Hash-Bloom 8b/row

20 40 60 80 100 120 140 160 180
n (# addresses inserted)

wordlines

1-ported
Address Sﬂﬁi
of rc bi
A .
bitlines
Reduction / Test logic
8 7 7 7
vacation
T : R

w o [, (<)

Execution time (normalized to Perfect)

N

512 1024 2048

Signature size

37

Backup - Adaptive Bloom signature

Prediction table

PC RS size | WS size
0x12f74 25 7]
0x13410 138 2
0x104d8 4 1

4

)

(Update logic } 1 selection logic

Hash function

1.6

-
a

-
N

-
N

-
-

Execution time (normalized to Perfect)
w

256

512 1024 2048
Signature size

Address

Execution time (normalized to Perfect)

[22]
T

[S,]
T

N

N
T

~
T

w
T

= -
= - -
= A -

256

512 1024 2048
Signature size

38

