
Design and Implementation of 
Signatures in Transactional 

Memory Systems

Daniel Sanchez

August 2007

University of Wisconsin-Madison



2

Outline

 Introduction and motivation

 Bloom filters

 Bloom signatures

 Area & performance evaluation

 Influence of system parameters

 Novel signature schemes (brief overview)

 Conclusions



Signature-based conflict detection

 Signatures:

• Represent an arbitrarily large set of elements in 
bounded amount of state (bits)

• Approximate representation, with false positives but no
false negatives

 Signature-based CD: Use signatures to track 
read/write sets of a transaction

• Pros: 

Ƒ Transactions can be unbounded in size

Ƒ Independence from caches, eases virtualization

• Cons:

Ƒ False conflicts -> Performance degradation

3



Motivation of this study

 Signatures play an important role in TM 
performance. Poor signatures cause lots of 
unnecessary stalls and aborts.

 Signatures can take significant amount of area

• Can we find area-efficient implementations?

• Adoption of TM much easier if the area requirements are 
small!

 Signature design space exploration incomplete in 
other TM proposals

4



Summary of results

 Previously proposed TM signatures are either true 
Bloom (1 filter, k hash functions) or parallel 
Bloom (k filters, 1 hash function each).

• Performance-wise, True Bloom = Parallel Bloom

• Parallel Bloom about 8x more area-efficient

 New Bloom signature designs that double the 
performance and are more robust

 Pressure on signatures greatly increases with the 
number of cores; directory can help

 Three novel signature designs

5



Outline

6

 Introduction and motivation

 Bloom filters

 Bloom signatures

 Area & performance evaluation

 Influence of system parameters

 Novel signature schemes (brief overview)

 Conclusions



Bloom filters

7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

h1 h2

Bit field (m bits)

Hash functions

Address

Hash values {0,…,m-1}



Bloom filters

8

0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0

Add 0x2a83ff00

h1 h2

3 8



Bloom filters

9

0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0

Add 0x2a8ab3f4

h1 h2

12 2



Bloom filters

10

0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0

Test 0x2a8a83f4

h1 h2

10 2

False



Bloom filters

11

0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0

h1 h2

3 8

True

Test 0x2a83ff00



Bloom filters

12

0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0

h1 h2

2 8

True (false positive!)

Test 0xff83ff48



Outline

13

 Introduction and motivation

 Bloom filters

 Bloom signatures

• True Bloom signatures

• Parallel Bloom signatures

 Area & performance evaluation

 Influence of system parameters

 Novel signature schemes (brief overview)

 Conclusions

Design
Implementation



True Bloom signature - Design

 True Bloom signature = Signature implemented 
with a single Bloom filter 

14

 Easy insertions and tests for membership

 Probability of false positives:

 Design dimensions

• Size of the bit field (m)

• Number of hash functions (k)

• Type of hash functions

k kn k n k

m

F P

1
P (n ) 1 1 1 e

m

    
             

k
(if 1 )

m
 



Number of hash functions

15



Types of hash functions

 Addresses neither independent nor uniformly 
distributed (key assumptions to derive PFP(n))

 But can generate hash values that are almost
uniformly distributed and uncorrelated with good 
(universal/almost universal) hash functions

 Hash functions considered:

16

Bit-selection H3

(inexpensive, low quality) (moderate, higher quality)



True Bloom signature – Implementation

 Divide bit field in words, store in small SRAM

• Insert: Raise wordline, drive appropriate bitline to 1, 
leave the rest floating

• Test: Raise wordline, check the value at bitline

 k hash functions => k read, k write ports

17

Problem
Size of SRAM cell

increases quadratically
with # ports!



Parallel Bloom signatures - Design

 Use k Bloom filters of size m/k, with independent 
hash functions

18

 Probability of false positives:

k kn n k

m

F P

1
P (n ) 1 1 1 e

m / k

    
             

Same as 
true Bloom!



Parallel Bloom signature - Implementation

19

 Highly area-efficient SRAMs

 Same performance as true Bloom! (in theory)



Outline

20

 Introduction and motivation

 Bloom filters

 Bloom signatures

 Area & performance evaluation

• Area evaluation

• True vs. Parallel Bloom in practice

• Type of hash functions

• Variability in hash functions

 Influence of system parameters

 Novel signature schemes (brief overview)

 Conclusions



Area evaluation

 SRAM: Area estimations using CACTI

• 4Kbit signature, 65nm

21

k=1 k=2 k=4

True Bloom 0.031 mm2 0.113 mm2 0.279 mm2

Parallel Bloom 0.031 mm2 0.032 mm2 0.035 mm2

 8x area savings for four hash functions!

 Hash functions:

 Bit selection has no extra cost

 Four hardwired H3 require ≈25% of SRAM area



Performance evaluation

 System organization:

• 32 in-order single-issue cores

• Private split 32KB, 4-way L1 caches

• Shared unified 8MB, 8-way L2 cache

• High-bandwidth crossbar

• Signature checks are broadcast (no directory)

• Base conflict resolution protocol with write-set prediction

 Benchmarks: btree, raytrace, vacation

• barnes, delaunay, and full set of results in report

22



True vs. Parallel Bloom signatures

 Bottom line: True ≈ parallel if we use good 
enough hash functions

23

vacation
bit-selection

vacation
H3

Graph format

Solid lines = Parallel Bloom

Dashed lines = True Bloom

Different colors = Different 
number of hash functions

Execution times are
always normalized



Bit-selection vs. fixed H3

 H3 clearly outperforms bit-selection for k≥2
 Only 2Kbit signatures with 4+ H3 functions cause 

no degradation over all the benchmarks 24

btree
bit-selection

btree
H3



The benefits of variability

 Variable H3: Reconfigure hash functions after 
each commit/abort

• Constant aliases -> Transient aliases

• Adds robustness

25

btree
fixed H3

btree
var. H3



The benefits of variability

 Variable H3: Reconfigure hash functions after 
each commit/abort

• Constant aliases -> Transient aliases

• Adds robustness

26

raytrace
fixed H3

raytrace
var. H3



Conclusions on Bloom signature evaluation

 Parallel Bloom enables high number of hash 
functions “for free”

 Type of hash functions used matters a lot (but 
was neglected in previous analysis)

 Variability adds robustness

 Should use:

• About four H3 or other high quality hash functions

• Variability if the TM system allows it

• Size… depends on system configuration

27



Outline

28

 Introduction and motivation

 Bloom filters

 Bloom signatures

 Area & performance evaluation

 Influence of system parameters

• Number of cores

• Conflict resolution protocol

 Novel signature schemes (brief overview)

 Conclusions



Number of cores & using a directory

 Pressure increases with #cores

 Directory helps, but still requires to scale the 
signatures with the number of cores 29

btree vacation

Constant signature size (256 bits)
Number of cores in the x-axis!



Effect of conflict resolution protocol

 Protocol choice fairly orthogonal to signatures

 False conflicts boost existing pathologies in 
btree/raytrace -> Hybrid policy helps even more 
than with perfect signatures 

30

btree raytrace vacation

(Parallel Bloom, fixed H3, k=2)

Constant signature type (H3, k=2)
Execution times not normalized!



Overview of novel signature schemes

 Cuckoo-Bloom signatures

• Adapts cuckoo hashing for HW implementation

• Keeps a hash table for small sets, morphs into a Bloom filter 
dynamically as the size grows

• Significant complexity, performance advantage not clear

 Hash-Bloom signatures

• Simpler hash-table based approach

• Morphs to a Bloom filter more gradually than Cuckoo-Bloom

• Outperforms Bloom signatures for both small and write sets, 
in theory and practice

 Adaptive Bloom signatures

• Bloom signatures + set size predictors + scheme to select 
the best number of hash functions

31



Conclusions

 Bloom signatures should always be implemented 
as parallel Bloom

• with ≈4 good hash functions, some variability if allowed
• Overall good performance, simple/inexpensive HW

 Increasing #cores makes signatures more critical

• Hinders scalability!

• Using directory helps, but doesn’t solve

 Hybrid conflict resolution helps with signatures

 There are alternative schemes that outperform 
Bloom signatures

32



Thanks

for your attention

Any questions?



Backup – Hash function analysis

34

 Hash value distributions for btree, 512-bit parallel 
Bloom with 2 hash functions

bit-selection fixed H3



Backup - Conflict resolution in LogTM-SE

 Base: Stall requester by default, abort if it is 
stalling an older Tx and stalled bt an older Tx

 Pathologies:

• DuelingUpgrades: Two Txs try to read-modify-update 
same block concurrently -> younger aborts

• StarvingWriter: Difficult for a Tx to write to a widely 
shared block

• FutileStall: Tx stalls waiting for other that later aborts

 Solutions:

• Write-set prediction: Predict read-modify-updates, get 
exclusive access directly (targets DuelingUpgrades)

• Hybrid conflict resolution: Older writer aborts younger 
readers (targets StarvingWriter, FutileStall)

35



Backup – Cuckoo-Bloom signatures

36

vacationbtree



Backup – Hash-Bloom signatures

37

vacation



Backup – Adaptive Bloom signatures

38

vacationraytrace


