
Flexible Architectural Support for Fine-Grain Scheduling

Daniel Sanchez, Richard M. Yoo, Christos Kozyrakis

Electrical Engineering Department
Stanford University

{sanchezd,rmyoo,kozyraki}@stanford.edu

Abstract

To make efficient use of CMPs with tens to hundreds of cores, it
is often necessary to exploit fine-grain parallelism. However, man-
aging tasks of a few thousand instructions is particularly challeng-
ing, as the runtime must ensure load balance without compromis-
ing locality and introducing small overheads. Software-only sched-
ulers can implement various scheduling algorithms that match the
characteristics of different applications and programming models,
but suffer significant overheads as they synchronize and communi-
cate task information over the deep cache hierarchy of a large-scale
CMP. To reduce these costs, hardware-only schedulers like Car-
bon, which implement task queuing and scheduling in hardware,
have been proposed. However, a hardware-only solution fixes the
scheduling algorithm and leaves no room for other uses of the cus-
tom hardware.

This paper presents a combined hardware-software approach
to build fine-grain schedulers that retain the flexibility of soft-
ware schedulers while being as fast and scalable as hardware ones.
We propose asynchronous direct messages (ADM), a simple archi-
tectural extension that provides direct exchange of asynchronous,
short messages between threads in the CMP without going through
the memory hierarchy. ADM is sufficient to implement a family of
novel, software-mostly schedulers that rely on low-overhead mes-
saging to efficiently coordinate scheduling and transfer task infor-
mation. These schedulers match and often exceed the performance
and scalability of Carbon when using the same scheduling algo-
rithm. When the ADM runtime tailors its scheduling algorithm to
application characteristics, it outperforms Carbon by up to 70%.

Categories and Subject Descriptors C.1.2 [Processor Archi-
tectures]: Multiple Data Stream Architectures (Multiprocessors);
D.3.4 [Programming Languages]: Processors—Run-time environ-
ments

General Terms Design, Performance, Algorithms

1. Introduction

Chip-multiprocessors (CMPs) are now the mainstream approach
to turn the increasing transistor budgets provided by Moore’s Law
into performance improvements. General-purpose CMPs with tens
of cores are already available [9, 43], and chips with hundreds of
cores will be available in the near future [30].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’10, March 13–17, 2010, Pittsburgh, Pennsylvania, USA.
Copyright c© 2010 ACM 978-1-60558-839-1/10/03. . . $10.00

To use these large-scale CMPs efficiently, a program needs
to explicitly divide its work in concurrent tasks and distribute
them for execution across the available cores. A key issue is the
granularity of this partitioning. This work focuses on programs that
use fine-grain parallelism, with tasks as small as a thousand cycles.
Fine-grain parallelism has several advantages. First, it can expose
more parallelism in many applications, and for some applications
parallelism is more easily expressed under this model [33]. This is
particularly important for CMPs with hundreds of cores, for which
parallelism becomes a precious resource [26]. Second, it gives the
underlying runtime system much more freedom in distributing and
reassigning work among cores in order to avoid load imbalance in
irregular computations, to exploit constructive cache interference
among certain tasks [18], or to adapt to environment changes such
as cores becoming unavailable due to faults, thermal emergencies,
or multiprogramming. On the other hand, fine-grain parallelism
may introduce large overheads for representing and distributing
small amounts of work, and if tasks are not assigned judiciously,
locality across different tasks may be destroyed.

Fine-grain parallelism is already supported by several parallel
programming models [16, 23, 29]. Their runtime systems typi-
cally implement task distribution through work-stealing [13]: each
worker thread has a queue of ready to execute tasks, from which
it can enqueue or dequeue work. When a thread runs out of tasks,
it tries to steal tasks from another thread’s queue. Although this
technique works well in general, multiple studies have shown that
many applications benefit from different algorithms in terms of the
structure of queues, the order of scheduling and stealing, or the
granularity of stealing [12, 21, 25]. In short, there is no single best
fine-grain scheduler for all applications.

Software-only implementations of fine-grain schedulers for such
programming models are flexible in terms of the algorithm used.
However, they entail high overheads with fine-grain tasks, as queue
operations, task stealing, and synchronization introduce commu-
nication and contention through the cache hierarchy of the CMP.
The latency of a cache line transfer in CMPs with 64 or 128 cores
is close to a hundred cycles, so a few such transfers can negate
the benefits of parallel execution of fine-grain tasks. Such laten-
cies will increase in large-scale CMPs, making fine-grain paral-
lelism impractical. To mitigate this problem, Carbon [34] proposes
a hardware-only alternative, with specialized hardware queues and
a custom messaging protocol for enqueuing, dequeuing and dis-
tributing tasks across cores. Hardware implements task stealing
and distribution in the background and enables applications with
fine-grain parallelism to perform well on large-scale CMPs. A dis-
advantage of Carbon is that it introduces a non-trivial amount of
custom hardware for the sole purpose of work-stealing. Ideally, we
would like to minimize custom hardware structures and implement
general primitives that have other uses. Moreover, Carbon fixes the
scheduling algorithm in hardware, making it difficult to accelerate
an application or programming model that requires a different algo-



rithm. While supporting some variations is feasible, implementing
all the possible algorithms and options in hardware is prohibitively
expensive in terms of design and verification complexity.

This paper advocates hardware that provides simple and flexible
support to accelerate software schedulers for fine-grain parallelism
on large-scale CMPs. We introduce asynchronous direct messages
(ADM), a general-purpose hardware primitive that supports send-
ing and asynchronously receiving short messages between cores at
low overhead without additional synchronization or going through
the coherence protocol. ADM is tailored to integrate with cache-
coherent CMPs and the shared-memory programming models for
such systems, and is inspired by previous efforts in integrating
message-passing in distributed shared memory machines [1, 36].
ADM provides user-level support for relatively infrequent mes-
sages for control purposes, while data accesses and communication
occur as usual through the cache hierarchy.

ADM enables software-mostly schedulers that maintain the flex-
ibility but match or exceed the performance and scalability of Car-
bon when using the same scheduling algorithm. Task queues are
kept exclusively in software and each queue is accessed by a single
thread. ADM messages are used to implement task-stealing in an
asynchronous manner, without additional coherence traffic or syn-
chronization overheads. Since software determines the scheduling
algorithm, we can easily tailor it to the application characteristics.
For example, we can adjust the stealing policy to improve local-
ity, track dataflow dependencies between tasks, implement fast re-
duction and barrier operations, and use hierarchical scheduling ap-
proaches that scale better with the size of the CMP. Such optimiza-
tions allow ADM-based schedulers to match or outperform Carbon,
sometimes by by large margins, despite using simpler hardware.
Our main contributions are:

• We introduce ADM, a simple but general hardware mechanism
to send messages between cores. ADM allows user-level code
to send short messages (0-6 words) directly from registers, and
to receive them, either synchronously or asynchronously via
a user-level interrupt handler. The hardware is virtualizable,
preserves message ordering, provides guaranteed delivery, and
is independent of the cache hierarchy.

• We develop and present a set of novel schedulers that lever-
age the messaging hardware to manage fine-grain parallelism.
Specifically, we use a subset of worker threads to coordinate
task stealing in a distributed and scalable fashion. ADM allows
threads to maintain task queues in thread-local storage, even
when stealing occurs, and to overlap communication with useful
computation.

• We evaluate ADM for multithreaded CMPs with up to 128
cores (256 threads) using challenging fine-grain applications.
We find that our approach clearly outperforms software-only
schedulers by up to a factor of 3.8× and matches or exceeds
the performance of Carbon. When we tailor the ADM scheduler
to the application, it outperforms Carbon by up to 70%.

2. Background & Motivation

2.1 Fine-grain Parallelism

Fine-grain parallelism is already supported by several parallel pro-
gramming models [16, 21, 23, 29, 33, 46]. In a general task-parallel
application, work is divided into tasks and dynamically assigned
across worker threads for execution. Threads can dynamically gen-
erate and enqueue new tasks. The parallel phase ends when all the
threads have run out of tasks to execute. To provide load balancing,
the number of tasks should be significantly larger than the amount
of worker threads used. Some languages restrict or adapt this model

in certain ways. For example, Cilk [23] uses spawn-sync paral-
lelism, in which tasks can generate children tasks that can only
synchronize with their parents. This model works well for recur-
sive, divide-and-conquer algorithms. OpenMP 2 [41] and HPF [28]
focus on loop-level parallelism, grouping a few iterations of a par-
allel loop into each task. Such assumptions directly influence the
design of the underlying scheduler.

The most popular fine-grain scheduling technique is work-
stealing [13]. Each thread has a queue of ready tasks, to which
it enqueues and dequeues work. When a thread runs out of work,
it tries to steal tasks from another thread’s queue. There are sev-
eral algorithmic options to consider, such as the organization of
the queues (distributed or hierarchical), the policy when locally en-
queuing and dequeuing work (LIFO, FIFO, or priority-based), the
queuing policy when stealing work, the choice of queue to steal
from (from a neighbor to preserve locality or randomized stealing
for more effective rebalancing), the number of tasks to steal each
time, or whether a thread actively pushes work to starving threads.
Several studies have shown that no single algorithm works best
for all cases and that some workloads are particularly sensitive to
scheduling options [21, 25, 27, 33]. Nevertheless, LIFO local en-
queuing/dequeuing tends to be a default choice as it often leads to
better locality and helps some models establish time and memory
bounds [13].

Although work-stealing lies at the heart of many runtimes, there
are other alternatives and extensions. X10 introduces the concept
of places, which allow scheduling computation to a specific set
of cores to improve locality [2]. Galois manages applications with
hard to schedule, conflicting tasks by exposing a varied set of poli-
cies for task grouping, assignment to threads, and execution or-
der enforcement [33]. GRAMPS supports pipeline-style workloads
by exposing producer-consumer constructs that allow a multi-level
scheduler to minimize the amount of on-chip storage needed for
intermediate results in the pipeline [46]. Overall, there are several
scheduling considerations, many of them specific to the program-
ming model and application domain.

2.2 Current Scheduling Approaches

To implement fine-grain schedulers on a cache-coherent CMP, we
can either use a software-only solution in which threads communi-
cate through shared memory, or leverage special-purpose hardware.
In large-scale CMPs, both approaches have serious disadvantages.

Software-only schedulers maintain queues in software, and
threads communicate and exchange work implicitly through shared
memory. Several optimized algorithms have been proposed to avoid
the use of locks in most local enqueue/dequeue operations [23] or
to use non-blocking stealing protocols [6, 17]. Still, stealers need
to perform multiple remote cache accesses to find and obtain new
work, which will take hundreds of cycles through the cache hier-
archy of a large-scale CMP. If stealing is infrequent or tasks are
large, stealing overheads can be amortized. However, irregular or
fine-grain workloads with frequent steals suffer from large penal-
ties even with the most optimized protocols, due to memory la-
tency, synchronization, or contention. These overheads will only
become worse as we increase the number of cores on a CMP, be-
cause 1) the latency of a remote or a shared cache access increases,
and 2) the amount of work per thread decreases, leading to shorter
phases and more frequent steals.

Hardware-only schedulers, such as Carbon [34], introduce
specialized hardware that handles all aspects of work-stealing. Car-
bon uses a centralized global task unit (GTU), which contains one
hardware LIFO queue per thread. Software uses special instructions
to enqueue and dequeue task descriptors directly to/from registers.
Task descriptors have a fixed size of 4 64-bit words. A small local
task unit (LTU) per core is used as a task buffer to hide enqueue and



SW
32c2t

Carbon
32c2t

SW
64c2t

Carbon
64c2t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
x
e
cu

ti
o
n
 t

im
e
 b

re
a
kd

o
w

n
 (

cy
cl

e
s) 1e7 cg

SW
32c2t

Carbon
32c2t

SW
64c2t

Carbon
64c2t

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
x
e
cu

ti
o
n
 t

im
e
 b

re
a
kd

o
w

n
 (

cy
cl

e
s) 1e8 gtfold

Figure 1: Execution time of cg and gtfold using Carbon and soft-
ware schedulers, on CMPs with 32 and 64 dual-threaded cores (for
a total of 64 and 128 threads).

dequeue latencies from the GTU. Work-stealing is implemented in
hardware in the GTU by moving tasks between queues. Since the
queues in the GTU are bounded, the runtime system cannot rely ex-
clusively on Carbon for task buffering. Each worker thread main-
tains an unbounded task queue in software, where it can enqueue
and dequeue new tasks locally. A portion of these tasks are en-
queued in the corresponding hardware queue in the GTU to allow
for work-stealing. Trying to dequeue a task when the GTU is empty
blocks the thread. When all threads are blocked, the GTU sends a
special task to every thread to signal the end of the parallel phase.
The GTU generates an user-level interrupt when the capacity of a
hardware queue reaches an upper or lower threshold to allow each
thread to overflow to or refill tasks from the software queue.

Carbon addresses the performance issues of software-only
scheduling, but hardwires the scheduling policies, such as the struc-
ture of queues and the order or granularity of stealing. Hence, it is
difficult to use with applications or programming models that re-
quire alternative algorithms. Figure 1 illustrates this issue. It shows
the execution time breakdown between software-only scheduling
and Carbon (see Section 5 for the experimental methodology),
for two applications. The first one, cg, is fine-grain, irregular, and
has short phases. Carbon can do load-balancing very efficiently,
thus outperforming the software scheduler by 2.2× at 128 threads.
This reduction comes both from eliminating the stealing and en-
queuing/dequeuing overheads of software, and performing better
balancing (as threads spend less time starved, i.e. without work to
execute). The second one, gtfold, is also fine-grain but can benefit
from a FIFO scheduling algorithm (details in Section 6). The soft-
ware FIFO scheduler, as shown, outperforms Carbon by 40% at 128
threads by reducing the starvation time. While it is possible to ex-
tend Carbon to capture a few scheduling variations, implementing
all possible scheduling algorithms in hardware can be prohibitively
expensive.

2.3 Fast & Flexible Fine-grain Scheduling

In this paper, we strive to find a balance between speed and flexi-
bility for fine-grain scheduling. We also want to minimize the re-
quired hardware by introducing simple primitives that have multi-
ple uses rather than fixed-function hardware. We note that Carbon
can be deconstructed in three elements: hardware task queues, logic
for stealing across these queues, and messaging hardware for fast
communication of tasks. As we will see, implementing queues and
policies in software is not much slower than using hardware, as
long as all the scheduler state is kept thread-local, avoiding remote

memory accesses. To allow this, we advocate keeping a fast mes-
saging component in hardware and exposing it directly as a general-
purpose mechanism. This avoids the high penalties of communi-
cating and synchronizing through the memory hierarchy when task
stealing or coordination among software schedulers is needed, and
allows to overlap communication with useful computation. More-
over, scheduling in software with fast messaging for communicat-
ing control information allows us to create runtime systems tailored
to the characteristics and requirements of specific applications or
programming models.

3. Asynchronous Direct Messages

We now describe Asynchronous Direct Messages (ADM), the flex-
ible messaging mechanism that we propose to accelerate fine-grain
schedulers. ADM adds an extra messaging unit per core that works
with any cache hierarchy or coherence protocol. To focus the dis-
cussion, we consider cache-coherent, tiled CMPs with a packet-
switched interconnect, as the one shown in Figure 2a.

To provide low-overhead messaging with small payloads, mes-
sages are sent and received directly through registers instead of us-
ing memory-mapped buffers. Software threads initiate a send with
a single instruction. Reception can be synchronous, using a receive
instruction, or asynchronous, via a user-level message handler. To
enforce atomicity of accesses to data structures shared by handler
and non-handler code (e.g. the task queue), messaging interrupts
can be disabled or enabled by non-handler code. The microarchi-
tecture has limited message buffers, which are backed by software
buffering if needed. Normal operation happens fully at user-level,
but the architecture is virtualizable, and minimal OS support is re-
quired. The system preserves message ordering between sender and
receiver and guarantees message delivery because these features
greatly simplify writing ADM-based schedulers.

3.1 Microarchitecture and ISA

Wemodify a baseline CMP in two ways. First, we add an ADM unit
to each core, shown in Figure 2b. This unit buffers received mes-
sages, translates thread IDs to physical cores on message sending,
and interfaces to the register file (to transfer message payloads),
the core’s interrupt unit (to deliver message reception interrupts),
and the interconnect. Second, we use an extra virtual network [20]
in the packet-switched interconnect to route message packets. This
only requires a moderate amount of extra buffering in the routers
(e.g. 9KB of SRAM space in a 64-node CMP), and avoids dead-
locks due to interference with the coherence protocol traffic.

The ADM unit includes one receive buffer per hardware thread
context, implemented as a small circular buffer using SRAMmem-
ory. Thread ID to core translation is performed by the Thread ID
Translation Buffer (TTB), a small associative memory that caches
(TID, core) pairs. The TTB is software-managed; if it cannot
translate a destination’s thread ID when sending, it triggers a privi-
leged interrupt handler that refills it with the appropriate translation.
Our hierarchical runtimes do not use all-to-all communication, but
instead each thread communicates with a fixed-size subset of the
threads. Thus, we only require small receive buffers (that can hold
around 16 4-word messages) and TTBs (of 16∼32 entries) for full
performance. Furthermore, these per-core structures do not need to
grow with the size of the CMP.

Table 1 summarizes the hardware-software interface, including
the extra instructions to send/receive messages and the new inter-
rupts and exceptions introduced by ADM. The send instruction is
blocking, and the instruction is considered completed when the
message is copied to the send buffer. Each message is transmitted
in the interconnect in a single packet, but using multiple flits [20].



(a) Target CMP, shown in a 64-core configuration with
16 tiles.

(b) The microarchitecture of the ADM unit added to each core.

Figure 2: Target CMP architecture and modifications needed to implement ADM.

Instruction Description

adm_send r1, r2 Sends message of (r1) words to thread with ID (r2). The
payload can have 0–6 words, taken from registers %o0-%o5

adm_peek r1, r2 Returns the source and message length at the head of the
receive buffer, or a -1 length if the buffer is empty.

adm_rx r1, r2 Returns the source and message length at the head of the
receive buffer, and writes its payload to registers %o0-%o5.
Blocks on an empty buffer.

adm_ei/di Enables or disables ADM receive handler interrupts.

Event Type Privileged

Receive Interrupt No
Receive buffer

Interrupt Yes
under/overflow

TTB miss Exception Yes
TTB remote

Interrupt Yes
invalidate

Table 1: ISA extensions and new events introduced by ADM, assuming a SPARCv9 ISA.

3.2 Guaranteed Delivery and Ordering

To simplify software schedulers, our hardware design preserves
message ordering for each source-destination pair and provides
guaranteed delivery. We first focus on how to implement guaran-
teed delivery. Suppose there are no send buffers in the ADM units.
This implies that neither the interconnect nor the receiving buffer
can drop messages and that all messages should eventually be de-
queued by the receiving core. These requirements can lead to dead-
lock scenarios. For example, if two threads send messages to each
other and neither is dequeuing them, the receive buffers will be-
come full as well as any interconnect buffers between the two cores.
Further send attempts will be blocked and the two threads will
deadlock. To guarantee the absence of deadlock, we must ensure
that threads will eventually dequeue any message they receive. One
option is to prohibit reception handlers from blocking (e.g. by dis-
allowing sending messages or acquiring locks) [48], but this is too
restrictive for software. Instead, we include a second, privileged in-
terrupt handler, which is triggered when the thread’s receive buffer
becomes full and dequeues half of the messages from the back of
the buffer. To preserve ordering, the privileged handler marks the
first non-dequeued message. When that message is dequeued by
the thread, the privileged handler triggers again, refilling the buffer
with the dequeued messages. Using the privileged handler, we pro-
vide unbounded receive buffers in software.

We structured our runtimes to almost never exceed the size of
the receive buffers, avoiding the performance penalty of the second
interrupt handler. However, bad-behaving user-level software (e.g.
a buggy or malicious program) may cause serious interference with
other programs that use ADM by quickly filling up the virtual
network buffers with messages before the privileged handler can
free space in the receive buffer. To avoid this, we have a send buffer
per thread and use a simple ACK/NACK flow control scheme.
Note that although this avoids clogging the network with messages,
the privileged interrupt handler is still needed to prevent deadlock.
Small send buffers suffice, since ADM is not continuously used. In
our runtimes, send buffers that hold 16 messages are sufficient to

cover message bursts. Send buffers also make it easier to preserve
message ordering under virtualization (Section 3.3).

The flow control protocol between sender and receiver must
preserve message ordering between each source-destination pair.
In general, we can either use deterministic routing in the intercon-
nect or implement a flow control protocol with reordering at the
endpoints. We opt for deterministic routing in our evaluation, since
networks in cache-coherent CMPs are often lightly loaded. Since
the interconnect does not reorder messages, all we need to ensure
is that, when the receiver R issues a NACK to sender S, all the mes-
sages in flight from S to R are discarded. To do this, every receiver
keeps one bit per sender BR←S, and every sender keeps one bit per
receiver BS→R. All the bits are initially 0. S stamps all its mes-
sages to R with BS→R. When R NACKs a message, it flips BR←S.
When S receives the NACK, it flips BS→R and tries retransmission
of the messages to the receiver. Finally, R ignores all packets arriv-
ing from S with bit stamp not matching BR←S.

3.3 Virtualization

The OS needs to be aware of ADM, and perform some extra tasks
to interact with it. First, it needs to assign a unique thread ID to
each thread in the system, and maintain a mapping between thread
IDs and physical cores for scheduled threads that the TTB refill
handler can use. Since the TTB is software-managed, the OS can
decide which thread pairs can communicate with ADM. For exam-
ple, threads from multiple processes could be allowed to commu-
nicate to implement fast user-level IPC. Second, to support thread
migration and descheduling, we introduce a lazy TTB invalidation
mechanism. When a core receives a message intended for another
thread context, it sends a NACK back to the sender, indicating that
the TTB entry is stale. This NACK triggers a privileged interrupt in
the sender, which either refills the TTB with the correct mapping
and resends the messages for this destination in the send buffer if
the thread was migrated, or saves them in a software queue and in-
validates the stale TTB entry if the thread is switched out. Finally,
the OS should ensure that a thread’s send buffer is empty before
migrating it to avoid losing message ordering under migrations.



Name Type Description Format

UPDATE ↑ Inform manager of task count <level, numTasks>
STEAL ↓ Notify victim to perform a steal <level, tasksToTransfer, stealerId>
TASK → Transfer one task to stealer <taskDescriptor, isLastTaskInSteal>

VICTIM_UPDATE ↑ Victim notifies manager of steal outcome & new task count <level, tasksTransferred, tasksLeft>
STEALER_UPDATE ↑ Stealer notifies manager that steal is over & new task count <level, numTasks>

UNBLOCK ↓ Notify end of phase <level>

Table 2: Messages in the ADM runtime protocols. The type column indicates how the message flows in the hierarchy of workers and
managers: down (↓), up (↑), or between workers (→). The level field indicates the tree level of the manager in the hierarchical runtime, and
is not used in the centralized runtime.

4. Runtime Systems

We now present our baseline software-only runtime and the run-
times that utilize the hardware features of Carbon and ADM. In all
cases, the application code is the same. The application program-
mer writes code for a shared-memory CMP and is oblivious of the
use of Carbon or ADM. Only the low-level runtime code interacts
with additional hardware features.

4.1 Task-parallel Runtimes

API: All the task-parallel runtimes implement the same simple
interface, consisting of two functions:

• void enqueue(Task t): Enqueues the task identifier t for ex-
ecution in the current parallel phase. Task identifiers consist of
four 64-bit words.

• bool dequeue(Task& t): Tries to dequeue a task identifier
from the current parallel phase. If successful, returns true and
copies the task to t. Otherwise, returns false, signaling the end
of the parallel phase.

Software-only runtime: Our baseline runtime is a highly opti-
mized work-stealing scheduler. It uses Chase-Lev circular work-
stealing deques [17], which require an atomic operation per steal,
but not in local enqueues or most local dequeues. Local enqueues
and dequeues are done in LIFO order. The stealing protocol is
fully non-blocking: local enqueues/dequeues and steals to the same
queue can happen concurrently, and a stealing thread never blocks
waiting on other stealer to finish. The phase termination protocol
is as in the X10 work-stealing scheduler [19]. We carefully control
memory layout to avoid false sharing and maximize spatial locality.

We explored tuning the stealing policy in two dimensions: vic-
tim selection (random, round robin or nearest neighbor) and tasks to
grab per steal (one or half of the queue). In our experiments, we find
that trying to steal from nearest neighbors first outperforms random
or round-robin stealing due to improved locality, and stealing half
of the victim’s queue is preferable to stealing one task to amortize
software overheads and preserve inter-task locality. Therefore, the
software runtime uses these policies in the evaluation.

Carbon runtime: The Carbon runtime operates as outlined in
Section 2. Each worker has a private and unbounded LIFO task
queue in software that is used when its hardware queue fills up.
Work-stealing is enabled by maintaining at least a portion of the
task queues in the hardware LIFO queues. The GTU hardware
performs work-stealing in the background, and the LTUs fetch
and prefetch tasks from the GTU. When the GTU needs to send
a task to the LTU of a specific thread, it first attempts a dequeue
from its corresponding hardware queue. If the queue is empty, it
steals from a non-empty victim queue in a single cycle. As long
as there are tasks in the hardware queues, the latencies of work-
stealing and the communication between the GTU and the LTUs
are hidden from the worker threads. Since the GTU cannot reclaim
tasks from the LTUs, it does not serve prefetches when there are

Figure 3: Messages involved in a steal in the centralized ADM
runtime. The number in each worker indicates the tasks in its queue.

few tasks in the GTU to avoid load imbalance [34]. We optimized
the runtime to minimize overflows and underflows of the hardware
queues. As with the software runtime, we have explored different
stealing policies in the GTU, and choose to steal half of the tasks
from the nearest-neighbor queue, both for performance reasons and
for consistency with the software runtime policy.

ADM runtimes: In ADM runtimes, threads can adopt the roles of
workers or managers. A worker executes the program, enqueuing
and dequeuing tasks in thread-local software queues. A manager
handles task distribution, load balancing, and parallel phase ter-
mination by exchanging messages with workers. Managers do not
maintain task queues themselves. A thread can act as a dedicated
worker, as a dedicated manager, or as both worker and manager,
switching between the two roles as messages arrive and the inter-
rupt handler is triggered.

A simple ADM-based runtime can be centralized, using a single
manager to coordinate all the threads, or distributed if it uses mul-
tiple managers. Our centralized runtime operates with four kinds of
messages: updates, steal requests, task transfers, and unblocks. The
details of each message are shown in Table 2. Workers send update
messages to notify the manager about changes in the number of lo-
cally queued tasks, using the adm_send instruction in the functions
for task enqueuing and dequeuing. To avoid saturating the manager,
workers send updates only when their queues exceed exponentially
varying thresholds. When an update message arrives, the interrupt
handler invokes the manager code. The manager initiates and coor-
dinates steals among workers based on its approximate knowledge
of the number of tasks in each worker, as shown in Figure 3. If the
number of tasks of a worker S (stealer) goes below an underflow
threshold, the manager sends a steal request message to notify the
worker V (victim) with the most tasks that it should send a por-
tion of its queue to worker S. Worker V sends tasks to S, using one
task message per task descriptor. When the steal is finished, S and



(a) Workers and managers

(b) Level 1 steal

Figure 4: Organization and operation of the hierarchical ADM
runtime. An 8-thread, radix-4 runtime is shown. (a) indicates which
threads perform the roles of workers and managers. Note how the
manager threads are also workers. (b) shows the messages involved
in a multi-level steal. In (b), the numbers indicate tasks left in each
worker, or task aggregates in managers. The update messages sent
after the steal are omitted for clarity.

V send updates to the manager. These updates may trigger further
rebalances. A worker that tries to dequeue from an empty queue
blocks and sends an update to its manager. When all the workers
block, the manager sends an unblock message to every worker to
signal the end of the parallel phase.

The centralized runtime is simple, but does not scale to large
thread counts (e.g. 64 or 128), even when using a dedicated thread
for the manager. If frequent stealing is needed, the manager quickly
saturates when matching stealers and victims. Additionally, if the
program has short phases, the single manager takes a long time to
detect and signal phase termination.

To improve scalability, we implemented a hierarchical ADM-
based runtime, with multiple levels of managers organized in a
tree, as shown in Figure 4a. A level-0 manager directly coordinates
a sub-group of workers, while managers at higher levels coordi-
nate groups of managers down below. The hierarchical scheduler
uses the same set of messages as in the centralized implementa-
tion, detailed in Table 2: updates flow up the tree, steal requests
and unblocks flow down the tree, and task transfers happen be-
tween workers. Each manager keeps an approximate count of the
aggregate number of tasks in its child partitions, and initiates steals
within its partition when needed to counter imbalance. Hence, there
can be steals spanning multiple levels, as Figure 4b shows. In these
multi-level steals, managers distribute the steal request among its
children, so a single steal request can rebalance two whole parti-

tions. The ith worker of the victim partition always transfers tasks
to the ith stealer worker. This may require additional rebalances in
the stealer partition, but enables managers to keep only aggregate
task counts. This implementation provides global load balancing,
but at the same time improves locality by first solving local imbal-
ances with steals from nearby threads. Compared to a centralized
runtime, this approach amplifies stealing bandwidth, allowing for
frequent steals. We observe that radix-4 to radix-16 configurations
perform best for our workloads, with marginal performance differ-
ences between them. Larger radices exhibit reduced performance
due to manager saturation. Our evaluation uses a radix-8 tree.

Finally, the scheduler needs to be aware of the limitations of
ADM. As explained in Section 3, ADM operates very efficiently
as long as the TTB and receive buffer capacities are not exceeded.
TTB overflow is avoided with a relatively small radix, since the
number of threads that a thread can communicate with grows loga-
rithmically with system size (e.g. to avoid overflows completely, a
radix-8 tree of 512 threads needs at most 31 TTB entries). Receive
buffer overflow is avoided by limiting the number of tasks that a
victim can send in a burst. Setting this limit to half of the receive
buffer size makes overflows rare.

4.2 Loop-parallel runtimes

We adapt the task-parallel runtimes to improve performance with
loop-parallel applications. The API is slightly different: Instead of
enqueuing and dequeuing tasks, the application enqueues a whole
loop and dequeues its iterations. The Carbon runtime uses special
support for loop tasks [34]: a loop is enqueued to the GTU in a
single enqueue, and loop tasks are partitioned in the GTU. In the
software and ADM runtimes, a single task represents a range of
loop iterations. Thus, a task can be efficiently split when steal-
ing. Additionally, the runtimes support loops with reductions. The
software and Carbon runtimes implement tree-based reductions
through shared memory, and in ADM reductions are piggybacked
on top of the unblock messages used to signal phase termination,
incurring practically zero overhead.

4.3 Discussion

Even though our exploration was not exhaustive and better ADM-
based managers may be possible, we draw some important in-
sights about software scheduling for fine-grain parallelism. First,
for large-scale CMPs, distributed runtimes are necessary even when
ADM is available. Second, the availability of ADM allows all task
queues to be kept thread-local. Each queue is accessed by only one
thread, either to retrieve its own work or to serve steals. Hence,
there is no need for locks or a few expensive misses when stealing
occurs between remote threads. For reference, a single remote L2
miss takes around 90 cycles on average in the large-scale CMPs we
explored. Third, the overhead of exchanging tasks or other schedul-
ing information through ADM is significantly lower. The latency
through the interconnect (25 cycles on average) is typically hidden
as the messages are asynchronous. The message handlers in our
runtimes typically run in about 50 cycles (including interrupt over-
head). Finally, asynchronous messages allow us to overlap schedul-
ing with useful computation.

Since ADM is a general messaging primitive, it could be used to
implement other synchronization or communication mechanisms,
such as barriers, locks or fast IPC. We leave these further uses to
future work.

5. Experimental Methodology

5.1 Simulation Setup

We perform execution-driven simulation of large-scale CMPs using
the M5 simulator [11] coupled with the Wisconsin GEMS toolset



Cores 32–128 cores, 1/2/4 threads per core, in-order, 2-way issue SMT, SPARCv9 ISA, 2 GHz

Coherence Directory-based, MOESI among L1s-L2s and L2-directories, sequential consistency
L1 caches 32KB, 4-way set associative, split D/I, 1-cycle latency, private per-core
L2 caches 1MB per bank, 4 banks/tile, 16-way set associative, non-inclusive, 5-cycle tag / 10-cycle data latencies

pipelined, shared by the L1s of the 4 cores in a tile, crossbar interconnect to L1s
L3 cache 3D-stacked, 16MB per bank, 1 bank/tile, 16-way set associative, shared across the whole CMP,

acts as victim cache for L2s, 10-cycle tag / 21-cycle data latencies, pipelined
Directory 1 bank/tile, idealized 6-cycle latency
MCU 1 memory controller/tile, single DDR-3 channel

Interconnect 2D flattened butterfly, connects tiles of 4 cores
Routers 3-stage pipeline (look-ahead RC and VA, SA, ST [20]), 4 VCs/virtual network, buffering of 8 flits/VC

3 virtual networks (1 for coherence requests, 1 for ADM/Carbon requests, 1 for replies)
Links 18B flits, repeated and pipelined; 1 cycle latency in local interconnect, 2–11 cycles in global interconnect

Carbon 4-task LTUs, 32 tasks per GTU queue, pipelined GTU
ADM 64-word receive and send buffers (16 4-word messages), 32-entry TTBs

Table 3: Main characteristics of the simulated CMPs. The latencies assume a 32 nm process at 2GHz.

Input
Type Instrs

Task Phase Pha- Stolen L1D L1 misses served by

set length length ses tasks hits Loc L2 RemL2 L3 Mem

canneal native Loop 2.1B 4.9K 657K 100 2.4% 94.3% 14.8% 34.4% 36.5% 14.3%
mergesort 1M keys Task 346M 3.9K 4.6M 1 9.8% 97.3% 18.5% 66.1% 0.0% 15.4%
maxflow 4K RLG Task 1.5B 674 99M 1 8.5% 90.0% 22.3% 77.5% 0.0% 0.2%

ced nyc Task 381M 419 3.7M 2 13.1% 96.0% 37.6% 23.4% 6.5% 32.6%
cg bcsstk16 Loop 465M 976 21.8K 601 7.5% 90.9% 77.9% 20.0% 0.0% 2.1%

gtfold x54252 Loop 4.3B 14.8K 143K 693 22.2% 98.3% 87.1% 12.3% 0.0% 0.6%
hashjoin 100td3 Task 166M 1.6K 3.8M 1 75.3% 95.8% 24.1% 49.8% 0.0% 26.1%

Table 4: Main workload characteristics, using a 64-core CMP with Carbon. The type column indicates whether the application is task or
loop-parallel. The average task and parallel phase lengths are in cycles. In loop-parallel applications, task length means iteration length.

for memory hierarchy modeling [37]. We simulate user-level appli-
cation and library code, using detailed microarchitectural models
for both the memory hierarchy and the interconnect. All the sim-
ulations are performed with warmed-up caches, and we introduce
a small random perturbation in the main memory latency and do
multiple runs per workload to obtain stable averages [4].

We model tiled CMPs with directory-based cache coherence,
focusing on large-scale designs with 32 to 128 cores and a 3-level
cache hierarchy, with the parameters shown in Table 3. The cores
are 2-way in-order similar to the Niagara-2 pipeline [24]. They
are also multithreaded to reduce the effect of memory latency.
All components are sized to fit under reasonable area and power
budgets at 32 nm for the 64-core configuration (360mm2 and 55W).
Area, latency and power of caches and interconnect are estimated
using CACTI 5.3 [47], ITRS 2007 predictions, and the models
in [8]. The L2s are sized to take 40% of the chip area. We include
a 3D-stacked L3, implemented in a 32 nm DRAM process.

Our Carbon model follows the original ISA and microarchitec-
ture [34]. The local task units (LTUs) buffer up to 4 tasks per thread,
and can have one task prefetched from the global task unit (GTU).
The GTU is located in the center of the CMP, can serve one re-
quest per cycle, and holds 32 4-word tasks per thread queue (2KB
per thread). The per-core ADM unit uses 64-word send and receive
buffers per thread (same size as a Carbon queue) and a 32-entry
TTB. All other queues for ADM-based runtimes are in software.

5.2 Applications

Our evaluation has three main goals. For balanced applications or
codes with sufficiently large tasks, we want to show that the ADM
runtime does not introduce any overheads and performs as well
as an optimized software-only scheduler. For irregular applications
with small tasks that match the scheduling algorithm of Carbon,
we want to show that ADM performs and scales as well as Carbon
despite using less hardware (queue management and algorithm

control in software). Finally, for applications that perform best with
other scheduling algorithms, we want to show that the software-
mostly nature of ADM runtimes allows us to match the application
characteristics and significantly outperform Carbon.

We have selected seven parallel workloads, summarized in Ta-
ble 4. They cover a wide set of domains, use programming models,
and exhibit a varied behavior in terms of miss rates, task granulari-
ties, available parallelism, and imbalance. They are:
canneal: A loop-parallel circuit routing algorithm using simulated
annealing, refactored from the PARSEC suite [10].
mergesort: A parallel implementation of the mergesort algorithm
using spawn-sync Cilk-style parallelism. It applies a divide-and-
conquer strategy, resorting to serial mergesort when the subarray
fits in the L1 cache. Merging two subarrays is parallelized as well.
maxflow: Computes the maximum flow of a graph using the push-
relabel algorithm. This graph problem is computationally intensive
and has many applications in networking, computer vision, etc.,
but is hard to scale [7, 33]. It has very short tasks and cores often
exhaust their task queues, resulting in frequent stealing.
ced: Performs canny edge detection, a widely used algorithm in
image processing and computer vision [15]. Refactored from the
OpenCV library.
cg:An iterative solver for sparse linear systems using the conjugate
gradient method. Includes different types of phases: sparse matrix-
vector multiplications (long but irregular), scaled vector additions
(short and regular), and dot products with frequent reductions.
gtfold: A bioinformatics application that predicts the secondary
structure of large RNA molecules [38]. It has dependencies be-
tween loop iterations and an irregular iteration length, which results
in short, imbalanced phases. Tuning the scheduler to the character-
istics of this application can yield large benefits.
hashjoin: A hash-join algorithm implementation, common in
database workloads [18].



32c2t 64c2t 128c2t
0

50

100

150

200

S
p
e
e
d
u
p
 v

s 
1
 t

h
re

a
d

canneal

32c2t 64c2t 128c2t
0

20

40

60

80

100

120

140

160

180

S
p
e
e
d
u
p
 v

s 
1
 t

h
re

a
d

mergesort

32c2t 64c2t 128c2t
0

5

10

15

20

25

S
p
e
e
d
u
p
 v

s 
1
 t

h
re

a
d

maxflow

32c2t 64c2t 128c2t
0

50

100

150

200

250

S
p
e
e
d
u
p
 v

s 
1
 t

h
re

a
d

ced

32c2t 64c2t 128c2t
0

50

100

150

200

S
p
e
e
d
u
p
 v

s 
1
 t

h
re

a
d

cg

32c2t 64c2t 128c2t
0

20

40

60

80

100

S
p
e
e
d
u
p
 v

s 
1
 t

h
re

a
d

gtfold

32c2t 64c2t 128c2t
0

20

40

60

80

100

120

140

160

180

S
p
e
e
d
u
p
 v

s 
1
 t

h
re

a
d

hashjoin

Figure 5: Performance of the different fine-grain schedulers, software, Carbon, and ADM, using CMPs with 32, 64 and 128 dual-threaded
cores (64–256 threads). Speedups are normalized to the single-thread software version. Higher numbers are better.

s c
32c2t

a s c
64c2t

a s c
128c2t

a
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 e

x
e
c.

 t
im

e

canneal

s c
32c2t

a s c
64c2t

a s c
128c2t

a
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 e

x
e
c.

 t
im

e

mergesort

s c
32c2t

a s c
64c2t

a s c
128c2t

a
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 e

x
e
c.

 t
im

e

maxflow

s c
32c2t

a s c
64c2t

a s c
128c2t

a
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 e

x
e
c.

 t
im

e

ced

s c
32c2t

a s c
64c2t

a s c
128c2t

a
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 e

x
e
c.

 t
im

e

cg

s c
32c2t

a s c
64c2t

a s c
128c2t

a
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 e

x
e
c.

 t
im

e

gtfold

s c
32c2t

a s c
64c2t

a s c
128c2t

a
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 e

x
e
c.

 t
im

e

hashjoin

Figure 6: Execution time breakdown for software (s) Carbon (c) and ADM (a), using CMPs with 32, 64 and 128 dual-threaded cores (64–256
threads). Each result is normalized to the execution time of the software version with the same number of cores. Lower numbers are better.

6. Evaluation

6.1 Software, Carbon and ADM Schedulers

Figure 5 shows the performance of software, Carbon and ADM
schedulers. Each graph shows the speedup of a single applica-
tion on CMPs with 32, 64, and 128 dual-threaded cores (64–
256 threads). Speedups are normalized to the single-thread soft-
ware version. This experiment uses the regular software and ADM
schedulers explained in Section 4 (we only alter the scheduling al-
gorithms in Section 6.4). There are several things to observe. First,
all applications except maxflow can scale reasonably well. Second,
five of the seven benchmarks show large performance differences
across the schedulers. Third, there is no single best scheduler across
all applications, but ADM performs best on average, being slower
than Carbon only on mergesort.

To gain further insight into these results, Figure 6 breaks down
execution time into different components on 32–128 dual-threaded
cores. Execution time is normalized to the total running time of the
software-scheduled version with the same number of cores. There
are four components common to all runtimes: running (executing
non-scheduler application code), enqueuing and dequeuing (from
the thread’s own queue), and starved (waiting for tasks to become
available). For the software scheduler, we also provide the time
spent in steals, classified into successful steals (i.e. yielding one
or more tasks) and failed steals. For Carbon, we show the amount
of time spent in the underflow handler. For ADM, we show the
time spent in interrupt handlers, broken down in the worker and
manager portions. We can see some general trends: for Carbon and
ADM, most of the scheduling overhead comes from starvation. The
ADM overheads from handler code and local enqueues/dequeues

are comparatively small, and ADM often beats Carbon by reduc-
ing starvation time. For the software scheduler, however, local en-
queue/dequeue and stealing overheads can be major, due to loss of
locality in the task queues (the software scheduler is non-blocking,
so there is no lock contention). We now explain the behavior of
each application in detail:

canneal is fairly balanced and coarse-grained, and shows mini-
mal differences between the runtimes.

mergesort, due to its tree-style parallelization, has regions with
scarce parallelism, with only a few threads generating new tasks
that need to be redistributed as quickly as possible. Thus, merge-
sort is latency-sensitive, i.e. it significantly benefits from reducing
the time that the scheduler takes to distribute work. ADM’s fast
directed stealing is able to perform within 5% of Carbon in these
critical portions, while the software runtime is up to 24% slower.

maxflow does not scale beyond 64 threads, but it is a good
example of how efficient scheduling can aid the performance of
parallelism-constrained codes. Its tasks are very small (a graph
node traversal, ∼600 cycles) and steals are common. ADM and
Carbon achieve the same performance. The software runtime is
90% slower at 256 threads, due to enqueue/dequeue and stealing
overheads, which become large due to cache misses on queue
accesses. Maxflow shows that software queues are inexpensive if
kept thread-local: even with 600-cycle tasks, at 64 threads the
enqueue/dequeue overheads are 5% in ADM and 4% in Carbon,
but 20% in software.

ced has very small tasks (400 cycles), long phases with deep
queues and a mild imbalance. ADM and Carbon have similar over-
heads, both for queuing (because Carbon often reverts to software
queues) and load-balancing.



cg combines long (65K cycles at 128 threads), imbalanced
phases, followed by short (4K cycles at 128 threads), balanced
phases, and reductions. ADM matches the performance of Carbon
in the short and long phases, but provides tree reductions that are
an order of magnitude faster (390 vs 4K cycles for 128 threads).
Reductions become more important as we increase the number of
cores (they are the portion of running time over that of ADM).
Additionally, the GTU saturates in the short phases with small
tasks, as we will see in Section 6.2. These issues cause ADM to
outperform Carbon by 70% at 256 threads.

gtfold has relatively large loop iterations: 15K cycles on aver-
age, with a bimodal distribution (either 1K or 40K cycles), and
has many short, imbalanced parallel phases. Carbon performs sen-
sibly worse than ADM because, even with the GTU disallowing
prefetches when there are few tasks, an LTU sometimes prefetches
a long task while executing another long task, leading to imbal-
ance since tasks cannot be reclaimed from LTUs. The software and
ADM schedulers do not have this problem, but ADM scales better
than software.

hashjoin has a large load imbalance (about half of the threads
enqueue most of the tasks), causing frequent steals from the empty
threads. This frequent stealing saturates the GTU at 256 threads
(note the increased overheads due to starvation and overflow han-
dler). Hashjoin also has significant inter-task locality, and since the
GTU only steals a small number of tasks per steal (half of the hard-
ware queue size), it produces larger fragmentation, degrading lo-
cality and increasing the time spent per task by up to 20%.

To conclude, we discuss the effects of having different stealing
policies. In theory, since we use nearest-neighbor stealing in Car-
bon and software, but hierarchical stealing in ADM, there could be
differences in the application locality seen with each runtime. How-
ever, excluding hashjoin, the stealing policy has a negligible ef-
fect on the execution time of our applications. The only other cases
in Figure 6 with significant differences in running (non-scheduler)
time are maxflow and cg. For maxflow, this is due to algorithmic ef-
fects as the amount of work depends on the amount of parallelism.
Carbon and ADM can keep more threads busy and end up with
more running time on average. For cg, it is due to the faster re-
ductions with ADM. In the remaining applications, the maximum
difference between non-scheduler times is 4% (ced), where ADM
is slightly faster.

6.2 Sensitivity to Hardware Parameters

Multithreading: Figure 7 shows the performance of mergesort,
maxflow, and cg using a 64-core CMP with 1, 2 or 4 threads/core
(other applications behave similarly). In general, the relative per-
formance differences between software, Carbon, and ADM sched-
ulers remain the same, despite the better latency tolerance with
more threads. In mergesort, we note a slight performance reduction
for ADM with 4 threads per core. This happens because mergesort
is particularly latency-sensitive. With 4 threads, interrupt handlers
take more time to execute due to contention in the core’s pipeline.
This could be addressed by scheduling less threads on cores with
ADM managers, or prioritizing interrupt handler execution.

Idealized interconnect: Figure 8 shows the performance of Car-
bon and ADM when their traffic is not routed through the conven-
tional interconnect, but through an idealized interconnect with a
fixed 25-cycle latency between any source-destination pair and in-
finite bandwidth. Coherence traffic still uses the conventional in-
terconnect. Additionally, the ideal Carbon GTU serves any number
of requests in a single cycle. This allows us to evaluate the effect
of contention in the GTU. Differences between ideal and non-ideal
configurations are marginal on all applications except hashjoin and
cg, where Carbon improves its speed by up to 25% and 55%, re-
spectively, at 256 threads. hashjoin requires very frequent stealing,

64c1t 64c2t 64c4t
0

20

40

60

80

100

120

140

S
p
e
e
d
u
p
 v

s 
1

 t
h
re

a
d

mergesort

64c1t 64c2t 64c4t
0

5

10

15

20

25

S
p
e
e
d
u
p
 v

s 
1

 t
h
re

a
d

maxflow

64c1t 64c2t 64c4t
0

20

40

60

80

100

120

140

S
p
e
e
d
u
p
 v

s 
1

 t
h
re

a
d

cg

Figure 7: Performance of software, Carbon and ADM schedulers
on a 64-core CMP with 1, 2 and 4 threads/core.

32c2t 64c2t 128c2t
0

20

40

60

80

100

120

140

160

180

S
p
e
e
d
u
p
 v

s 
1
 t

h
re

a
d

hashjoin

32c2t 64c2t 128c2t
0

50

100

150

200

S
p
e
e
d
u
p
 v

s 
1
 t

h
re

a
d

cg

Figure 8: Performance of software, Carbon and ADM schedulers
when the Carbon/ADM traffic is routed through an idealized net-
work, eliminating contention in the GTU.

and the GTU cannot keep up distributing tasks at the required rate.
cg has short phases, and the termination messages that the GTU
sends at the end of each phase become the bottleneck. Due to its
distributed nature, the ADM scheduler is insensitive to these is-
sues. These results indicate that, even with fast hardware, having
centralized queues leads to contention with small tasks.

6.3 Analysis of ADM Benefits

Since the software and ADM schedulers are fundamentally differ-
ent, it is hard to understand whether the benefits of ADM come
from being able to implement a better scheduling algorithm or
from bypassing the memory hierarchy. However, the software run-
time cannot be structured in an asynchronous worker/manager or-
ganization without some hardware support. The minimal hard-
ware required is to have user-level interrupts (ULI), supported in
several recent proposals by monitoring updates to specific cache
lines [14, 39, 45]. ULI allows an asynchronous worker/manager
scheduler, where one thread can cheaply interrupt another to in-
dicate the availability of a message that includes a task or infor-
mation on the load of a worker. However, the actual message pay-
load goes through the cache hierarchy. ADM provides both asyn-
chronous user-level interrupts and register-to-register messaging.

To understand the benefits of ADM, we implement the same
ADM task-parallel scheduler using ULI: threads communicate
scheduling events through previously-known cache lines, and no-
tify each other that a message is available using an ULI. Fig-



32c2t 64c2t 128c2t
0

5

10

15

20

25

S
p
e
e
d
u
p
 v

s 
1
 t

h
re

a
d

maxflow

32c2t 64c2t 128c2t
0

20

40

60

80

100

120

140

160

S
p
e
e
d
u
p
 v

s 
1
 t

h
re

a
d

mergesort

32c2t 64c2t 128c2t
0

20

40

60

80

100

120

140

160

180

S
p
e
e
d
u
p
 v

s 
1
 t

h
re

a
d

hashjoin

s u
32c2t

a s u
64c2t

a s u
128c2t

a
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 e

x
e
c.

 t
im

e

maxflow

s u
32c2t

a s u
64c2t

a s u
128c2t

a
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 e

x
e
c.

 t
im

e

mergesort

s u
32c2t

a s u
64c2t

a s u
128c2t

a
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d
 e

x
e
c.

 t
im

e

hashjoin

Figure 9: Speedup and execution time breakdowns of software (s), ULI (u) and ADM (a) runtimes, with 32–128 cores (64–256 threads).

Operation
ULI ADM

Best Avg Worst Best Avg Worst

Enqueue 41 66 84 34 57 72
Dequeue 39 60 94 32 37 44

Recv. update (mgr) 240 263 278 49 52 55
Steal match (mgr) 589 630 703 262 310 365
Send task (victim) 256 403 549 50 76 96
Recv. task (stealer) 259 300 326 40 47 56

Table 5: Cost breakdown for ULI and ADM schedulers using a
64-core, 128-thread CMP. The cost for each scheduler operation
is given in cycles. Each cost is the average of a specific work-
load, and includes interrupt overheads for operations triggered by a
ULI/message reception. The table includes the best and worst ap-
plication’s costs, and the average cost across all workloads.

ure 9 shows the speedups and execution time breakdowns of the
software, ULI and ADM schedulers for maxflow, mergesort, and
hashjoin. ADM always outperforms ULI, since communicating
through registers entails lower overheads than through the cache
hierarchy. Table 5 provides further detail with a cost breakdown
of ULI and ADM schedulers. We observe that in ADM schedulers
all common operations are fast, taking 37 to 72 cycles on average
(matching two threads for a steal takes longer, but occurs relatively
rarely). With ULI, the costs for enqueuing and dequeuing are only
slightly higher than in ADM, since task queues are thread-local
and update messages are sent only at specific thresholds. However,
costs for the other operations, which always involve sending or
receiving messages, are two to six times larger than with ADM.
Sending or receiving a message with ULIs requires at least two
cache-to-cache transfers (one for the data and one for the ULI),
taking up to 200 cycles (the penalty is lower if sender and receiver
share the L2). Moreover, if the application is sensitive to scheduler
latency, these higher overheads will increase starvation. The results
in Figure 9 illustrate how these issues affect each application. In
maxflow, which is somewhat latency-sensitive, ULI is only 18%
slower than ADM. In mergesort, ADM achieves higher scalability
than ULI because it can perform steals faster, reducing starvation.
Finally, in hashjoin the ADM/ULI schedulers typically steal sev-
eral tasks at once, causing multiple messages to be sent per handler
execution. As a result, the handler overhead increases by up to 4×
in ULI, being even slower than the software scheduler.

In conclusion, while ULI can be a useful mechanism for sched-
ulers, ADM outperforms ULI by large margins. Moreover, the ben-
efits of ADM versus a normal, synchronous software scheduler
come from both being able to implement an asynchronous sched-

32c2t 64c2t 128c2t
0

20

40

60

80

100

120

140

S
p
e
e
d
u
p
 v

s 
1
 t

h
re

a
d

gtfold-tp

s c
32c2t

a s c
64c2t

a s c
128c2t

a
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 e

x
e
c.

 t
im

e

19 22 31

gtfold-tp

Figure 10: Speedup and execution time breakdowns of software (s),
Carbon (c) and ADM (a) runtimes for the task-parallel version of
gtfold, with 32–128 dual-thread CPUs (64–256 threads). Software
and ADM schedulers are modified to use FIFO queues.

uler and bypassing the cache hierarchy, with the relative importance
of each cause being application-dependent.

6.4 Using Custom Scheduling Algorithms

We now use gtfold to illustrate the potential of adapting the
scheduling algorithm to the application. This application operates
over an upper triangular matrix, and has non-trivial dependencies:
task (i, j) depends on (i, j− 1) and (i+ 1, j). The original appli-
cation is loop-parallel, scheduling one diagonal per phase to avoid
these dependencies. Since tasks also have a bimodal distribution
(being either 1K or 38K cycles), this leads to short, imbalanced
phases. However, we can avoid having multiple parallel phases by
refactoring gtfold as a task-parallel application: each task works on
a single element of the matrix, and every time a task completes, it
checks if it is the last dependent task to complete for each of its
successors, and enqueues them if so. This can be done at low over-
head with counters and atomic operations through shared memory,
since tasks are 15K cycles on average. Ideally, we want to execute
the tasks that have a longer dependence chain first, which roughly
corresponds to a FIFO enqueuing policy. LIFO will do poorly,
since it keeps older tasks (with higher potential to clear critical
dependencies) at the bottom of the queue.



Figure 10 shows the speedups and execution time breakdowns
for the refactored gtfold. The software and ADM schedulers are
modified to perform FIFO enqueues and dequeues, while Carbon
retains its LIFO policy. Software and ADM achieve significant per-
formance improvements over the loop-parallel versions in Figure 5
(35% for ADM at 256 threads). ADM still outperforms software by
40%. In contrast, Carbon achieves a maximum speedup of only 3×
over the sequential version, being 40× slower than ADM. With 256
threads, the task-parallel version of gtfold on ADM outperforms the
loop-parallel version on Carbon by 50%.

This example demonstrates the benefits of being able to imple-
ment scheduling algorithms in software. While Carbon could also
implement FIFO queues in hardware, this would increase its design
and verification complexity. Given the large number of schedul-
ing algorithms that can be useful, supporting them all in hardware
is infeasible. For instance, hashjoin benefits from directed hierar-
chical stealing, cg requires fast reductions, and other applications
need more complex queuing policies (e.g. a priority queue). Our re-
sults show that supporting a simple, yet flexible primitive like ADM
and leaving algorithmic decisions to software is more practical and
leads to better performance than implementing them in hardware.

7. Related work

ADM is inspired by previous efforts in architectures that inte-
grate shared memory and message passing. UDM [36], the mes-
saging system in Alewife/FUGU [1], implements a model simi-
lar to ADM in some aspects. UDM supports low-overhead short
messages, which can be received synchronously or asynchronously
via user-level interrupts (with around a 100-cycle interrupt over-
head). User-level code can disable these user-level interrupts, and
threads transparently buffer received messages in memory with a
privileged interrupt that triggers when a handler or atomic section
takes too long. Like UDM, ADM includes asynchronous message
receive through user-level interrupts, but at a lower overhead since
no privileged interrupt handling code needs to run. ADM uses a
similar mechanism to UDM to back the limited receive-side buffers
with unbounded queues in software, but it is based on receiver-
side buffer occupancy, not on timeouts. Finally, in ADM messages
are sent to virtual threads, not physical thread contexts, allowing
the OS to perform thread migration and more flexible scheduling.
StarT-Voyager [5] implements user-level message passing by ex-
posing memory-mapped send and receive queues that can overflow
to main memory, but these memory-mapped queues entail addi-
tional overheads. The J-Machine [40] and M-Machine [35] also in-
clude a set of flexible messaging mechanisms suitable for fine-grain
asynchronous communication, but unlike these message-driven ar-
chitectures, for which messaging is the main means of commu-
nication, we advocate introducing messaging support in a shared-
memory CMP.

Several recent architecture proposals target scheduling issues.
Apart from Carbon, researchers have proposed several hardware
schedulers that are tailored to specific applications or hardware [3,
44]. Rigel [32] is a large-scale accelerator CMP design with inco-
herent shared memory that includes a globally shared cache and
special support for atomic operations to improve the efficiency of
task-parallel software runtimes. However, Rigel targets task sizes
one to two orders of magnitude larger than we do (100 K cycles
per task). Pangaea [14, 49] is a tightly integrated small scale CPU-
GPU design in which a CPU core dispatches work to GPU cores
using user-level interrupts (ULIs). As we have shown, ULI-based
schedulers can suffer large performance penalties because commu-
nication still happens through shared memory.

In the context of shared memory multiprocessors and CMPs,
there have been several proposals to accelerate synchronization
primitives using message-like constructs. Decoupled software

pipelining [42] uses synchronous producer-consumer queues be-
tween processors for fine-grain parallelization of sequential pro-
grams. QOLB [31] focuses on reducing locking overhead, with
hardware that maintains a distributed queue and performs direct
node-to-node lock transfers. Active Memory Operations [22] use
messages between cores and memory controllers, which are aug-
mented with some extra logic, to implement fast locks and barriers.
We note that ADM could also be used to implement these primi-
tives, and leave the detailed evaluation to future work.

8. Conclusions

This paper has presented a hardware-software approach to build
efficient fine-grain schedulers on large-scale CMPs. We propose
asynchronous direct messages (ADM), a flexible and practical mes-
saging mechanism that allows threads to communicate scheduling
information without going through the memory hierarchy. Using
ADM, we develop scalable schedulers that keep all scheduling data
structures, such as task queues, thread-local, even when stealing
occurs, and overlap most communication with useful computation.
We show that ADM-based schedulers clearly outperform software-
only schedulers and match or exceed the performance of hardware-
only Carbon. When the ADM scheduler tailors its scheduling algo-
rithm to the application characteristics, it exceeds Carbon’s perfor-
mance by up to 70%. Our results show that supporting a simple, yet
flexible primitive like ADM and leaving the algorithmic decisions
to software is more practical and leads to better performance than
implementing scheduling in hardware.

Acknowledgements

We sincerely thank Woongki Baek, Jacob Leverich, Anthony Ro-
mano and the anonymous reviewers for their useful feedback on
earlier versions of this manuscript; the development teams of the
M5 and GEMS simulators for their collaboration in integrating
them; and Shimin Chen for providing the mergesort and hashjoin
workloads. This work was supported in part by the Stanford Per-
vasive Parallelism Lab and the Gigascale Systems Research Cen-
ter (FCRP/GSRC). Daniel Sanchez was supported by a Fundacion
Caja Madrid Fellowship and a Hewlett-Packard Stanford School of
Engineering Fellowship.

References

[1] A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson, D. Kranz,
J. Kubiatowicz, B.-H. Lim, K. Mackenzie, and D. Yeung. The MIT
Alewife machine: architecture and performance. Proc. of the 22nd

annual International Symposium on Computer Architecture, 1995.

[2] S. Agarwal, R. Barik, D. Bonachea, V. Sarkar, R. K. Shyamasundar,
and K. Yelick. Deadlock-free scheduling of X10 computations with
bounded resources. In Proc. of the 19th annual ACM Symposium on

Parallel Algorithms and Architectures, 2007.

[3] G. Al-Kadi and A. S. Terechko. A hardware task scheduler for embed-
ded video processing. In Proc. of the 4th International Conference on

High Performance and Embedded Architectures and Compilers, 2009.

[4] A. R. Alameldeen and D. A. Wood. Variability in architectural simu-
lations of multi-threaded workloads. In Proc. of the 9th International

Symposium on High-Performance Computer Architecture, 2003.

[5] B. Ang, D. Chiou, L. Rudolf, and Arvind. Message passing support on
StarT-Voyager. In Proc. of the 5th International Conference on High
Performance Computing, 1998.

[6] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread scheduling for
multiprogrammed multiprocessors. In Proc. of the 10th annual ACM

Symposium on Parallel Algorithms and Architectures, 1998.

[7] D. A. Bader and V. Sachdeva. A cache-aware parallel implementation
of the push-relabel network flow algorithm and experimental evalua-
tion of the gap relabeling heuristic. In Proc. 18th International Con-

ference on Parallel and Distributed Computing Systems, 2005.



[8] J. Balfour and W. J. Dally. Design tradeoffs for tiled CMP on-chip
networks. In Proc. of the 20th annual International Conference on

Supercomputing, 2006.

[9] S. Bell et al. TILE64 processor: A 64-core SoC with mesh intercon-
nect. In International Solid-State Circuits Conference, 2008.

[10] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC bench-
mark suite: Characterization and architectural implications. Technical
Report TR-811-08, Princeton University, 2008.

[11] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and
S. K. Reinhardt. The M5 simulator: Modeling networked systems.
IEEE Micro, 26(4), 2006.

[12] G. E. Blelloch, P. B. Gibbons, and Y. Matias. Provably efficient
scheduling for languages with fine-grained parallelism. J. ACM, 46(2),
1999.

[13] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded com-
putations by work stealing. In Proc. of the 35th Annual Symposium on
Foundations of Computer Science, 1994.

[14] A. Bracy, K. Doshi, and Q. Jacobson. Disintermediated active com-
munication. IEEE Comput. Archit. Lett., 5(2), 2006.

[15] J. Canny. A computational approach to edge detection. IEEE Trans.

Pattern Anal. Mach. Intell., 8(6), 1986.

[16] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an object-oriented
approach to non-uniform cluster computing. In Proc. of the 20th an-

nual ACM SIGPLAN Conference on Object-Oriented Programming,

Systems, Languages, and Applications, 2005.

[17] D. Chase and Y. Lev. Dynamic circular work-stealing deque. In
Proc. of the 17th annual ACM Symposium on Parallel Algorithms and

Architectures, 2005.

[18] S. Chen, P. B. Gibbons, M. Kozuch, V. Liaskovitis, A. Ailamaki,
G. E. Blelloch, B. Falsafi, L. Fix, N. Hardavellas, T. C. Mowry, and
C. Wilkerson. Scheduling threads for constructive cache sharing on
CMPs. In Proc. of the 19th annual ACM Symposium on Parallel

Algorithms and Architectures, 2007.

[19] G. Cong, S. Kodali, S. Krishnamoorthy, D. Lea, V. Saraswat, and
T. Wen. Solving large, irregular graph problems using adaptive work-
stealing. In Proc. of the 37th International Conference on Parallel

Processing, 2008.

[20] W. Dally and B. Towles. Principles and Practices of Interconnection

Networks. Morgan Kaufmann Publishers Inc., 2003.

[21] A. Duran, J. Corbalán, and E. Ayguadé. Evaluation of OpenMP task
scheduling strategies. In 4th International Workshop in OpenMP,
2008.

[22] Z. Fang, L. Zhang, J. B. Carter, A. Ibrahim, and M. A. Parker. Active
memory operations. In Proc. of the 21st annual International Confer-
ence on Supercomputing, 2007.

[23] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation
of the Cilk-5 multithreaded language. In Proc. of the ACM SIGPLAN
1998 Conference on Programming Language Design and Implemen-

tation, 1998.

[24] G. Grohoski. Niagara2: A highly-threaded server-on-a-chip. In 18th
Hot Chips Symposium, 2006.

[25] Y. Guo, R. Barik, R. Raman, and V. Sarkar. Work-first and help-first
scheduling policies for terminally strict parallel programs. In Proc.
of the 23rd IEEE International Parallel and Distributed Processing

Symposium, 2009.

[26] M. D. Hill and M. R. Marty. Amdahl’s law in the multicore era.
Computer, 41(7), 2008.

[27] R. Hoffmann, M. Korch, and T. Rauber. Performance evaluation of
task pools based on hardware synchronization. In Proc. of the 2004
ACM/IEEE Conference on Supercomputing, 2004.

[28] HPF Language Specification. Version 2.0, 1997.

[29] Intel TBB. http://www.threadingbuildingblocks.org.

[30] Intel Tera-scale Computing Research Program. http://www.intel.
com/research/platform/terascale.

[31] A. Kägi, D. Burger, and J. R. Goodman. Efficient synchronization: let
them eat QOLB. In Proc. of the 24th annual International Symposium
on Computer Architecture, 1997.

[32] J. H. Kelm, D. R. Johnson, M. R. Johnson, N. C. Crago, B. Tuohy,
A. Mahesri, S. Lumetta, M. Frank, and S. J. Patel. Rigel: An architec-
ture and scalable programming interface for a 1000-core accelerator.
In Proc. of the 36th International Symposium on Computer Architec-

ture, 2009.

[33] M. Kulkarni, P. Carribault, K. Pingali, G. Ramanarayanan, B. Walter,
K. Bala, and L. P. Chew. Scheduling strategies for optimistic parallel
execution of irregular programs. In Proc. of the 20th annual Sympo-

sium on Parallelism in Algorithms and Architectures, 2008.

[34] S. Kumar, C. J. Hughes, and A. Nguyen. Carbon: architectural support
for fine-grained parallelism on chip multiprocessors. In Proc. of

the 34th annual International Symposium on Computer Architecture,
2007.

[35] W. S. Lee, W. Dally, S. Keckler, N. Carter, and A. Chang. An efficient,
protected message interface. IEEE Computer, 31(11), 1998.

[36] K. Mackenzie, J. Kubiatowicz, M. Frank, W. Lee, V. Lee, A. Agarwal,
and M. Kaashoek. Exploiting two-case delivery for fast protected
messaging. In Proc. of the 4th International Symposium on High-

Performance Computer Architecture, 1998.

[37] M. M. Martin et al. Multifacet’s general execution-driven multipro-
cessor simulator (GEMS) toolset. Computer Architecture News, 2005.

[38] A. Mathuriya, D. A. Bader, C. E. Heitsch, and S. C. Harvey. GTfold:
a scalable multicore code for RNA secondary structure prediction. In
Proc. of the 2009 ACM Symposium on Applied Computing, 2009.

[39] V. Nagarajan and R. Gupta. ECMon: exposing cache events for
monitoring. In Proc. of the 36th annual International Symposium on

Computer Architecture, 2009.

[40] M. D. Noakes, D. A. Wallach, and W. J. Dally. The J-machine
multicomputer: an architectural evaluation. In Proc. of the 20th annual
International Symposium on Computer Architecture, 1993.

[41] OpenMP Application Program Interface. Version 2.5, 2005.

[42] R. Rangan, N. Vachharajani, M. Vachharajani, and D. I. August. De-
coupled software pipelining with the synchronization array. In Proc. of
the 13th International Conference on Parallel Architectures and Com-
pilation Techniques, 2004.

[43] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, and P. Hanrahan. Larrabee: a many-core x86 architecture for
visual computing. ACM Trans. Graph., 27(3), 2008.

[44] M. Själander, A. Terechko, and M. Duranton. A look-ahead task man-
agement unit for embedded multi-core architectures. In Proc. of the
11th EUROMICRO Conference on Digital System Design Architec-

tures, Methods and Tools, 2008.

[45] M. F. Spear, A. Shriraman, H. Hossain, S. Dwarkadas, and M. L.
Scott. Alert-on-update: a communication aid for shared memory
multiprocessors. In Proc. of the 12th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, 2007.

[46] J. Sugerman, K. Fatahalian, S. Boulos, K. Akeley, and P. Hanrahan.
GRAMPS: A programming model for graphics pipelines. ACM Trans.

Graph., 28(1), 2009.

[47] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi. CACTI
5.1. Technical Report HPL-2008-20, HP Labs, 2008.

[48] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser.
Active messages: a mechanism for integrated communication and
computation. In Proc. of the 19th annual International Symposium

on Computer Architecture, 1992.

[49] H. Wong, A. Bracy, E. Schuchman, T. M. Aamodt, J. D. Collins, P. H.
Wang, G. Chinya, A. K. Groen, H. Jiang, and H. Wang. Pangaea:
a tightly-coupled IA32 heterogeneous chip multiprocessor. In Proc.

of the 17th International Conference on Parallel Architectures and

Compilation Techniques, 2008.


