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Abstract

Computer architecture is at a critical juncture. Single-thread performance has stopped

scaling due to technology limitations and complexity constraints. Manufacturers now

rely on multicore processors to scale performance efficiently, and parallel architec-

tures, once rare, are now pervasive across all domains. To keep performance on an

exponential curve, the number of cores is expected to increase exponentially, reaching

thousands of cores in the next decade. However, achieving efficient thousand-core

systems will require significant innovation across the software-hardware stack.

At a high level, two main issues hinder multicore scalability. First, hardware

resources must scale efficiently, even as some of them are shared among thousands of

threads. In particular, the memory hierarchy is hard to scale in several ways: caches

spend considerable energy and latency to implement associative lookups, making

them inefficient; conventional cache coherence techniques are prohibitively expensive

beyond a few tens of cores; and caches cannot be easily shared among multiple threads

or processes. Ideally, software should be able to configure these shared resources to

provide good overall performance and quality of service (QoS) guarantees under all

possible sharing scenarios. Second, software needs to use these parallel architectures

efficiently without burdening the programmer with the complexities of large-scale

parallelism. To expose ample parallelism, applications will need to be divided in

fine-grain tasks of a few thousand instructions each, and scheduled dynamically in a

manner that addresses the three major difficulties of fine-grain parallelism: locality,

load imbalance, and excessive overheads.

The focus of this dissertation is to enable efficient, scalable and easy-to-use mul-

ticore systems with thousands of cores. To this end, we present contributions that
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address both hardware and software scalability bottlenecks. While the overarching

goal of these techniques is to enable thousands-core systems, they also improve current

systems with tens of cores.

On the hardware side, we present three techniques that, together, enable scalable

cache hierarchies that can be shared efficiently. First, ZCache is a cache design that

provides high associativity at low cost (e.g., 64-way associativity with the latency,

energy and area of a 4-way cache) and is characterized with simple and accurate

workload-independent analytical models. We use the high associativity and analyti-

cal models of ZCache to develop two techniques that address the scalability problems

of shared resources in the cache hierarchy. Vantage implements scalable and efficient

fine-grain cache partitioning, which enables hundreds of threads to share caches in a

controlled fashion, providing configurability, isolation and QoS guarantees. SCD is

a coherence directory that scales to thousands of cores efficiently and causes negligi-

ble directory-induced invalidations with minimal overprovisioning, enabling efficient

cache coherence with QoS guarantees in large-scale multicores.

On the software side, our contributions enable efficient and scalable dynamic run-

times and schedulers for a wide range of applications and programming models. First,

we develop a runtime system that uses high-level information from the programming

model about parallelism, locality, and heterogeneity to perform scheduling dynam-

ically and at fine granularity to avoid load imbalance. This runtime can schedule

applications with complex dependencies (such as streaming workloads) efficiently and

with bounded memory footprint, and outperforms previous schedulers (both static

and dynamic) on a wide variety of applications. Unfortunately, dynamic fine-grain

runtimes and schedulers are hard to scale beyond tens of threads due to commu-

nication and synchronization overheads. We present a combined hardware-software

approach to scale these schedulers efficiently. We design ADM, a hardware messaging

technique tailored to the needs of scheduling and control applications, and use it to

build scalable and efficient hardware-accelerated schedulers that match or outperform

hardware-only schedulers and retain the flexibility of software schedulers.
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Chapter 1

Introduction

The microprocessor industry is at a critical juncture. For decades, continuous im-

provements in device technology have enabled microprocessors to improve single-

thread performance exponentially by increasing clock frequency and exploiting in-

struction-level parallelism. However, both power and design complexity limit further

improvements in single-thread performance [5]. As a result, the microprocessor in-

dustry has shifted to multicore processors (or chip-multiprocessors, CMPs), which

include multiple simpler cores per chip and leverage thread-level parallelism to im-

prove performance efficiently.

The multicore era is now in full swing, and parallel architectures, once exotic and

aimed at niche markets, are now pervasive across all domains. All current server, mo-

bile and desktop processors are CMPs [49, 159, 165], and chips with tens of cores are

already on the market [79, 141, 153]. To keep system performance on an exponential

curve, the number of cores is expected to increase exponentially, reaching a thousand

cores in the next decade [22, 102, 136]. However, several issues limit CMP scalabil-

ity, and addressing them is fundamental to achieve efficient CMPs with thousands of

cores and beyond.
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1.1 Scalability Challenges

At a high level, two main issues hinder CMP scalability. First, hardware resources

must scale efficiently, even as some of them are shared among thousands of threads.

Second, software needs to use these parallel architectures efficiently without burdening

the programmer with the complexities of large-scale parallelism.

The main hardware scalability bottleneck is the memory hierarchy. CMPs rely

on large, multi-level cache hierarchies to mitigate the high cost, high latency and

limited bandwidth of main memory. Caches commonly use 50% of chip area and

a significant fraction of system energy. Three main problems limit the scalability

of these cache hierarchies. First, caches currently spend considerable energy and

latency to implement associative lookups, making them inefficient. As we move to

more efficient cores and place more pressure on the cache hierarchy, these inefficiencies

have a significant impact on system performance. Second, caches are often shared

among many threads. This improves utilization, but causes interference and precludes

quality of service (QoS) guarantees, and existing techniques to control how sharing

is done do not scale beyond a few threads. Third, caches must be kept coherent to

make them transparent to software, but traditional coherence schemes do not scale

beyond a few tens of cores.

Once we solve all the hardware scalability bottlenecks, we still face the problem

of using large-scale CMPs efficiently. To achieve this, software needs to become

pervasively parallel without burdening the programmer with the complexities of large-

scale parallelism. To expose ample parallelism for hundreds of cores, applications will

need to be expressed using fine-grain tasks of a few thousand instructions each, and

to be scheduled dynamically in a manner that addresses the three major difficulties of

fine-grain parallelism: excessive overheads, load imbalance, and locality. The latter

is particularly critical, as communication costs increase with the number of cores and

locality optimizations conventionally target coarse-grain tasks.
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1.2 Contributions

The focus of this dissertation is to enable efficient, scalable and easy-to-use CMPs with

thousands of cores. To this end, our contributions address both hardware and software

scalability bottlenecks. On the hardware side, we develop techniques that enable

scalable cache hierarchies that can be shared efficiently. On the software side, we

present contributions that enable scalable and efficient dynamic fine-grain scheduling

for a large class of applications. While the overarching goal of these contributions

is to enable CMPs with thousands of cores, they also improve the performance and

efficiency of current CMPs with tens of cores.

Scalable Memory Hierarchies: We present a set of contributions that, together,

enable cache hierarchies to scale to thousands of cores efficiently. First, we design a

cache that provides high associativity at low cost and is characterized by workload-

independent analytical models. We the then use it to implement a scalable cache

partitioning technique that enables hundreds of threads to share the cache in a con-

trolled fashion, providing configurability, strict isolation and QoS guarantees, and a

coherence directory that scaled to thousands of cores.

Caches implement high associativity to reduce conflict misses. Improving asso-

ciativity is achieved by increasing the number of ways or positions where each cache

line can reside. However, this hurts latency and energy: compared to a 4-way cache,

a 32-way cache (used in current CMPs with 6-12 cores) is 30% slower and uses twice

the energy per lookup. We have developed ZCache [134], a novel cache design that al-

lows much higher associativity than the number of physical ways (e.g., a 64-associative

cache with 4 ways). Hits, the common case, require a single lookup, incurring the la-

tency and energy of a cache with a small number of ways. On a miss, additional tag

lookups are performed off the critical path, yielding an arbitrarily large number of

replacement candidates for the incoming line. Using analytical models and extensive

simulation, we show that ZCache has two surprising properties. First, associativity

depends only on the number of replacement candidates, not the number of ways. Sec-

ond, simple, workload-independent analytical models fully characterize the behavior

of ZCache. When used as the last-level cache in a 32-core CMP, a 4-way ZCache
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improves performance by 7% and full-system energy efficiency by 10% over a 32-way

set-associative cache on memory-intensive workloads.

We leverage the analytical guarantees of ZCache to provide efficient controlled

sharing in the memory hierarchy. Shared caches introduce interference among the

threads sharing the CMP and degrade performance, as infrequently reused data from

one thread may displace critical data from another. Cache partitioning can be used

to solve interference issues, but prior partitioning schemes are limited to a few coarse-

grain partitions and reduce associativity, so they do not scale beyond a few cores and

degrade performance. We have developed Vantage [135], a novel cache partitioning

technique that leverages the analytical guarantees of ZCache. Vantage allows hun-

dreds of fine-grain partitions with capacities defined at line granularity. Partitions can

be dynamically created, deleted and resized efficiently. Vantage is simple to imple-

ment, and does not degrade cache performance. It works by partitioning most of the

cache (e.g., 90%), and controls partition sizes simply by modifying the replacement

process. Vantage uses the workload-independent behavior of ZCache and extensive

analytical modeling to provide strict guarantees on partition sizes and interference,

even though it does not physically partition the cache. Therefore, Vantage enables

configurability and QoS guarantees in large-scale CMPs. For example, when parti-

tioning the last-level cache in a 32-core CMP (32 partitions), conventional techniques

degrade performance by up to 25% using a barely-implementable 64-way cache, while

Vantage improves performance by up to 20% using a 4-way ZCache.

Finally, CMPs implement a coherence protocol to provide the illusion of a single

level of shared memory, making caches transparent to software. Coherence protocols

require a coherence directory to scale beyond a few cores. Directories keep track of

cache line sharers, and act as an ordering point for conflicting requests. However,

previous directory implementations are not scalable, as they require too much space,

excessive bandwidth, or complex changes to the coherence protocol. We leverage

ZCache to implement SCD, a scalable coherence directory [136]. SCD achieves its

scalability by using a variable amount of space in the directory to represent the set

of sharers of each line. Lines with one or few sharers use a single tag, and widely

shared lines use multiple tags, allowing tags to remain small as the system scales
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up. It is area-efficient, fast, simple to implement, and requires no modifications to

the coherence protocol. SCD can be characterized with analytical models, and its

worst-case energy and performance overheads are bounded, and negligible if sized

correctly. Therefore, SCD performs like an ideal directory, providing QoS guarantees

regardless of the workload. On a 1024-core CMP, SCD is 13× smaller than a sparse

directory; it is also 2× smaller, 20% faster and simpler than a hierarchical directory,

the previously known most scalable implementation.

Scalable Dynamic Fine-Grain Scheduling: To achieve load balancing for ir-

regular applications with fine-grain parallelism while maintaining locality and low

overheads, we need dynamic schedulers that take advantage of the high-level infor-

mation about locality and parallelism available in emerging programming models. We

have developed such a dynamic scheduling framework for GRAMPS, a programming

model that expresses applications as a graph of stages that communicate through

queues [137]. GRAMPS has similarities to streaming programming models, but in-

cludes mechanisms that allow expressing irregular applications with heterogeneous

parallelism. Our runtime leverages programming model information about paral-

lelism, task dependencies and priorities, and producer-consumer communication to

improve scheduling. It uses task-stealing with per-stage queues and policies to maxi-

mize locality and schedule fine-grain tasks efficiently, even with complex dependencies.

Moreover, it is the first dynamic scheduler for such programming models that guar-

antees bounded memory usage. It outperforms previous schedulers on a wide range

of applications. In a 24-thread system, it is up to 70% faster than a task-stealing

dynamic scheduler (used in multi-core programming models such as Cilk, X10, or

OpenMP), up to 17× faster than a GPGPU scheduler (used in models such as CUDA

or OpenCL), and up to 5.3× faster than static scheduling (used in streaming models

such as StreamIt) because it avoids load imbalance.

Nevertheless, communication and synchronization overheads make fine-grain sched-

ulers hard to scale beyond tens of threads. Prior work proposes to address this

problem by implementing the scheduler in hardware, but this leads to hard-wired, in-

flexible scheduling policies. Instead, we propose a hybrid solution that uses hardware
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to reduce critical overheads and leaves scheduling policies to software [139]. We have

developed Asynchronous Direct Messages (ADM), a communication scheme tailored

to the needs of scheduling and resource management. ADM enables threads to send

and receive asynchronous, short messages efficiently, bypassing the memory hierarchy.

Low-overhead messaging allows us to implement a family of software-mostly fine-grain

schedulers. At 512 threads, they are up to 6.4× faster than software schedulers, and

as fast and scalable as a hardware-only scheduler with the same policies. Addition-

ally, the policies of ADM-accelerated schedulers can be tailored to the application,

outperforming hardware solutions by up to 70%. ADM is not exposed to the pro-

grammer, increasing performance transparently, and is flexible enough to accelerate

other primitives (e.g., barriers and interprocess communication).

1.3 Thesis Organization

The rest of this dissertation is organized as follows. Chapter 2 provides relevant

background and motivation. Chapter 3 describes ZCache, an efficient highly asso-

ciative cache that can be characterized using analytical models. In Chapter 4 we

present Vantage, a scalable cache partitioning technique. In Chapter 5 we describe

SCD, a scalable coherence directory that provides performance guarantees. Chapter 6

presents our dynamic fine-grain scheduler and runtime for GRAMPS, and Chapter 7

presents ADM, a general-purpose hardware mechanism to accelerate scheduling. Fi-

nally, Chapter 8 concludes this dissertation.



Chapter 2

Background and Motivation

2.1 Scalable Chip-Multiprocessors

For decades, microprocessor performance has leveraged continuous improvements in

CMOS scaling. These improvements can be summarized by Moore’s law [115] and the

Dennard scaling rules [52]. Moore’s law observes that the number of transistors that

can be integrated economically on a chip doubles every 24 months. Under classic

Dennard scaling, decreasing feature size yields transistors that are smaller, faster,

and require lower supply voltage. Therefore, every two years, we could produce chips

that had twice the amount of transistors, were clocked 40% faster, and consumed the

same amount of power. These chips were area-constrained: the main limitation for

performance was the number of transistors and how well they were utilized, not the

power consumed.

Architects leveraged CMOS scaling to design increasingly complex uniprocessors

that improved single-thread performance exponentially. These processors featured

deeper pipelines to increase frequency at an even faster rate than what Dennard scal-

ing provided, and implemented a wide array of techniques to exploit instruction-level

parallelism (ILP), such as wide-issue superscalar pipelines, out-of-order execution,

and aggressive branch prediction. Many of these features improve performance sub-

linearly with respect to area and power. For example, superscalar processors need

multi-ported register files, whose cost increases quadratically with the number of

7
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Figure 2.1: Transistors per chip (thousands), relative core performance (normalized
SPECint base scores), core frequency (MHz), chip power (W), and cores per chip
from 1985 to 2010 [61].

ports, and deep pipelining increases pipeline overheads significantly. Nevertheless,

the simultaneous improvements in transistor speed and density provided by Dennard

scaling made it possible to deliver microprocessors with twice the performance every

two years.

However, multiple trends have progressively made it harder to scale uniprocessors.

First, technology scaling is reaching fundamental limits. On one hand, wire delay

scales poorly with feature size, so even with faster transistors, building large unipro-

cessors with tightly-synchronized pipelines becomes harder [5, 21]. On the other hand,

supply voltage cannot be scaled anymore because of leakage limitations [55, 150]. Un-

der this scaling regime, we can still produce smaller, faster and more efficient transis-

tors, but doubling the number of transistors at the same frequency requires 40% more

power, so designs are now power-constrained, not area-constrained. Second, ILP is

limited, and all ILP-exploiting techniques provide diminishing returns after a certain

point. In 1996, Olukotun et al. [123] already observed that it would be far more

efficient to build a chip-multiprocessor (CMP) with several simpler cores, provided

the application has enough thread-level parallelism.

In response to these trends, the microprocessor industry has fully shifted to CMPs.

As Figure 2.1 shows, single-thread performance is barely scaling anymore, and all
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current server, mobile and desktop processors are CMPs [49, 159, 165]. For appli-

cations with ample parallelism, chips with a larger number of simple cores are sig-

nificantly more energy-efficient, so a few CMPs already support hundreds of threads

and cores [141, 153]. To keep system performance on an exponential curve, the num-

ber of cores is expected to increase exponentially, reaching a thousand cores in the

next decade [22, 102, 136]. However, such large-scale CMPs face two main challenges.

First, moving to a larger number of simpler core imposes more stringent requirements

on the performance and energy efficiency of the memory hierarchy, which is hard to

scale beyond a few cores using conventional techniques. Second, software needs to

expose massive amounts of parallelism to exploit the large core counts, and maximize

locality to use the memory hierarchy efficiently, without burdening the programmer

with the complexities of large-scale parallelism. These challenges alone can stop per-

formance scaling of CMPs beyond a few tens of cores, leaving no clear path to future

performance increases.

Additionally, in the current power-constrained scaling regime, moving towards

simpler cores will eventually not be enough to improve energy efficiency, and the

additional efficiency increases required for further performance gains will need other

techniques, such as heterogeneous architectures that specialize different resources to

specific kinds of computations. In this dissertation, we focus on realizing scalable

memory hierarchies and pervasive parallelism on homogeneous CMPs, but these will

be needed by heterogeneous architectures just as much (or arguably more, since in-

creasing the efficiency of compute places more stringent demands on the memory

hierarchy). Fortunately, the techniques we develop can also apply to heterogeneous

architectures. Moreover, scalable memory hierarchies and pervasive parallelism are

a more pressing need even under power-constrained scaling, as shown by two recent

studies. Esmaeilzadeh et al. [55] consider performance scaling of optimal multicore

designs up to 8 nm using conventional PARSEC workloads [16], and conclude that

insufficient parallelism, not power constraints, is the main limitation for performance

scaling. Hardavellas et al. [72] consider performance scaling assuming almost un-

bounded parallelism, and find the memory hierarchy to be the main performance

bottleneck instead.
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Figure 2.2: Sandy Bridge memory hierarchy, including the size, latency, and band-
width of each level [168]. Numbers assume an i5-2320 at 3GHz.

2.2 Memory Hierarchies

Programs often use large amounts of memory, and for performance reasons, memory

accesses should be fast. However, cost and physical constraints limit the amount

of fast memory. To sidestep with issue, computers rely on a multi-level memory

hierarchy, with each level providing a larger amount of slower, cheaper, and denser

storage. For example, Figure 2.2 shows the memory hierarchy of a 4-core Nehalem

system, with each level providing decreasing bandwidth, and increasing latency and

energy per access. Memory hierarchies work because programs exhibit locality of

reference: although programs use large amounts of memory, most accesses either

re-reference data that was accessed recently (temporal locality), or data in nearby

locations (spatial locality).

Current general-purpose, small-scale CMPs are commonly built using caches.

Caches are associative arrays that store not only raw data but (address, data) pairs.

At each level, a memory access first performs a cache lookup. If the data block is not

present, it is fetched from the next level of the hierarchy, until it is retrieved, either

from an intermediate cache, or from main memory. Caches capture locality implicitly

and transparently to software, so they are easier to use than explicitly-addressed,

software-managed local stores.

In current small-scale CMPs with tens of cores, the cache hierarchy is organized
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as shown in Figure 2.2. First, each core has one or more levels of private caches,

which provide fast and energy-efficient access to the critical working set of the run-

ning thread. Second, CMPs also include a large, fully shared last-level cache (LLC).

A single shared LLC has several advantages over multiple, private LLCs, increas-

ing cache utilization, and providing faster inter-core communication (which happens

through the shared cache instead of main memory). Finally, to keep the multiple

transfers transparent to software, CMPs implement a coherence protocol that arbi-

trates communication between the different caches (allowing either multiple read-only

copies or a single read-write copy of each cache line).

While the current setup works in CMPs with few cores, several aspects are hard

to scale to CMPs with hundreds or thousands of cores. First, large-scale CMPs

require caches with high associativity, which is expensive to implement using current

techniques. Second, concurrent threads increasingly suffer from interference in the

shared LLC, which causes large performance variations, precludes quality-of-service

(QoS) guarantees, and degrades shared cache utilization. Current techniques that

address interference do not scale beyond few cores. Third, current implementations

of cache coherence protocols are hard to scale beyond a few tens of cores, requiring

too much area, energy, or complexity. In the rest of this section, we present each of

these issues in more detail.

2.2.1 Scalable Cache Associativity

Both caches and coherence directories are commonly built using set-associative arrays.

In these arrays, cache associativity, that is, the ability to select a good replacement

candidate, is determined by the number of ways. To reduce the number of misses, we

would like caches to be highly associative. However, increasing the number of ways

also increases cache latency and energy, placing a stringent trade-off on cache design.

Figure 2.3 illustrates the costs of associativity, showing the area, hit latency and

hit energy of a set-associative cache as we scale the number of ways from 1 to 32. This

cache is optimized for latency× area× energy using CACTI 6.5 [116], and consists of a

set-associative tag array with 64-bit tags and a data array with 64-byte lines. Lookups
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Figure 2.3: Area, hit latency and hit energy of an 8MB set-associative cache array
with 1 to 32 ways.

are sequential: first, all the tags in the set are read, and compared with the lookup

address; if one of them matches, the line is retrieved from the data array. As we

can see, highly associative caches carry a steep cost. Multiple reasons contribute to

this: as we increase the number of ways, we need to read and compare more tags in

parallel, which requires wider ports, additional logic, and extra latency and energy.

While the difference is small with a few ways, it becomes much larger beyond 8 ways.

For example, with 32 ways, each hit needs to read 256 bytes of tags — four times the

amount of data read (the cache line size).

Unfortunately, as we scale up our systems, two trends make the associativity vs

efficiency trade-off much worse. On one hand, the limited bandwidth, high latency,

and high energy of memory accesses increasingly demands high associativity to min-

imize the amount of off-chip accesses. On the other hand, the shift towards a large

number of simpler, highly energy-efficient cores means a relatively higher amount of

on-chip energy will be consumed in the memory hierarchy, and make cache energy

efficiency increasingly important.

Prior research strives to fix the poor efficiency of set-associative arrays with al-

ternative implementations of highly associative arrays. However, most alternative

approaches rely on increasing the number of locations where a block can be placed

(e.g., with multiple locations per way [2, 27, 133], victim caches [14, 86] or extra levels
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of indirection [70, 129]). Increasing the number of possible locations of a block ulti-

mately increases the energy and latency of cache hits, and many of these schemes are

more complex than conventional cache arrays (requiring e.g., heaps [14], hash-table-

like arrays [70] or predictors [27]). Alternatively, good hash can be used to index the

cache, spreading out accesses and avoiding worst-case access patterns [93, 140]. While

hashing-based schemes improve performance, they are still limited by the number of

locations that a block can be in.

Since implementing associative lookups is expensive, we could take a more radical

approach and implement the on-chip memory hierarchy explicitly addressed, software-

managed local stores. Local stores are not associative, so they are are simpler, faster,

and more energy-efficient than caches, but must be managed explicitly, either by

the programmer or the compiler, This is hard to do efficiently (especially for large

memories), makes software composability harder, and requires additional instructions

or DMAs to move or copy local store contents. While specialized architectures tar-

geting well-structured programs, such as streaming processors, can work well with a

software-managed hierarchy [90, 92, 157], caches are a much better fit for general-

purpose CMPs. In fact, in small-scale CMPs, prior research has shown that cache

hierarchies achieve similar or better performance and energy efficiency than local

stores when using well-known optimizations like prefetching [107].

In Chapter 3, we present ZCache, a cache array that implements high associativity

with a small number of physical ways (e.g., achieving 64-way associativity with 4

ways), breaking the trade-off between associativity and access latency or energy.

2.2.2 Scalable Cache Partitioning

While the hardware-managed, software-transparent nature of caches is one of its

main advantages, it also comes with a significant drawback: software cannot control

how cache space is used, and is at the mercy of the hardware replacement policy.

In short, caches are a best-effort optimization, providing no QoS guarantees. This

problem is intrinsic to all caches, but it is especially insidious in shared caches. While

private caches offer predictable and repeatable behavior, when multiple applications
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run concurrently on the CMP, they suffer from interference in shared caches. This

causes large performance variations, precluding QoS guarantees, and can degrade

cache utilization, hurting overall throughput. Interference can cause performance

variations of over 3× in systems with few cores [80], and is a growing concern due

to the increasing number of cores per chip and the emergence of shared compute

substrates where this situation is common (e.g., cloud computing).

We can eliminate interference by using cache partitioning to divide the cache

explicitly among smaller “virtual caches”. Partitioning enables software control of on-

chip space without reverting to explicitly-managed local stores. Additionally, cache

partitioning has several important uses beyond enforcing isolation and QoS in systems

with shared caches. For example, in CMPs with private caches, capacity sharing

schemes also need to partition each cache [127]. Several software-controlled memory

features like virtual local stores [45] or line pinning [117] can be implemented through

partitioning. Architectural proposals such as transactional memory and thread-level

speculation [32, 71] use caches to store speculative data, and can use partitioning to

avoid having that data evicted by non-speculative accesses. Finally, security schemes

can use the isolation provided by partitioning to prevent timing side-channel attacks

that exploit the shared cache [126].

A cache partitioning solution has two components: an allocation policy that de-

cides the size of each partition to achieve a specific objective (e.g., maximize through-

put, improve fairness, meet QoS requirements, pin specific data on-chip, etc.), and

a partitioning scheme that enforces those sizes. While allocation policies are gen-

erally simple and efficient [80, 128, 147], current partitioning schemes have serious

drawbacks. In this thesis, we focus on the partitioning scheme.

Ideally, a partitioning scheme should satisfy several desirable properties. First, it

should be scalable and fine-grain, capable of maintaining a large number of fine-grain

partitions (e.g., hundreds of partitions of tens or hundreds of lines each). It should

maintain strict isolation among partitions, with no reduction of cache performance

(i.e., without hurting associativity or replacement policy performance). It should be

dynamic, allowing to quickly create, delete or resize partitions. Finally, it should be

simple to implement.
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Unfortunately, prior partitioning schemes fail to meet these properties. Way-

partitioning [42] is limited to few coarse-grain partitions (at most, as many partitions

as ways) and drastically reduces the associativity of each partition. Other schemes

partition the cache by sets instead of ways, either in hardware [132] or software [109],

maintaining associativity. However, these methods also lead to coarse-grain parti-

tions, require costly changes to cache arrays and expensive data copying or flushing

when partitions are resized, and often do not work with shared address spaces. Fi-

nally, proposals such as decay-based replacement [162] or PIPP [163] modify the re-

placement policy to provide some control over allocations. However, they lack strict

control and guarantees over partition sizes and interference, preclude the use of a

specific replacement policy within each partition, and are often co-designed to work

with a specific allocation policy. Most importantly, current partitioning schemes are

not scalable or fine-grain. Fully shared LLCs are already used in commercial large-

scale CMPs with hundreds of threads and cores [141, 153], and prior research has

shown they are desirable in thousand-core CMPs [90], stressing the need for scalable

partitioning.

In Chapter 4 we present Vantage, a partitioning scheme that overcomes the draw-

backs of prior techniques. Vantage can maintain hundreds of partitions defined at

cache line granularity, provides strict isolation among partitions, maintains high cache

performance, and is simple to implement, working with conventional cache arrays and

requiring minimal overheads. Thanks to these features, Vantage enables performance

isolation and quality of service in current and future large-scale CMPs, and can be

used for several other purposes, such as cache-pinning critical data, or implementing

flexible local stores through application-controlled partitions.

2.2.3 Scalable Cache Coherence

Cache coherence is needed to maintain the illusion of a single shared memory on a

system with multiple private caches. A coherence protocol arbitrates communication

between the private caches and the next level in the memory hierarchy, typically a

shared cache (e.g., in a CMP with per-core L2s and a shared last-level cache) or
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Figure 2.4: Examples of (a) a typical directory operation, and (b) directory-induced
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main memory (e.g., in multi-socket systems with per-die private last-level caches).

Implementing coherent cache hierarchies becomes increasingly difficult as the system

scales up. Broadcast-based snooping coherence protocols work well in small-scale

systems, but do not scale beyond a handful of cores due to their large bandwidth

overheads, even with optimizations like snoop filters [91]. Large-scale CMPs require

a directory-based protocol, which introduces a coherence directory between the private

and shared cache levels to track and control which caches share a line and serve as

an ordering point for concurrent requests. Figure 2.4a illustrates this setup, showing

how directories introduce an extra level of indirection. Unfortunately, while directory-

based protocols scale to hundreds of cores and beyond, implementing directories that

can track hundreds of sharers efficiently has been problematic.

Ideally, a directory should satisfy four basic requirements. First, it should main-

tain sharer information while imposing small area, energy and latency overheads

that scale well with the number of cores. Second, it should be simple to implement,

requiring no changes to the coherence protocol. Third, it should represent sharer

information accurately — it is possible to improve directory efficiency by allowing in-

exact sharer information, but this causes additional traffic and complicates the coher-

ence protocol. Fourth, it should introduce a negligible amount of directory-induced
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invalidations (those due to limited directory capacity or associativity, as shown in

Figure 2.4b), as they can significantly degrade performance.

Proposed directory organizations make different trade-offs in meeting these prop-

erties, but no scheme satisfies all of them. Traditional schemes scale poorly with core

count: Duplicate-tag directories [13, 149] maintain a copy of all tags in the tracked

caches. They incur reasonable area overheads and do not produce directory-induced

invalidations, but their highly-associative lookups make them very energy-inefficient

with a large number of cores. Sparse directories [69] are associative, address-indexed

arrays, where each entry encodes the set of sharers, typically using a bit-vector.

However, sharer bit-vectors grow linearly with the number of cores, making them

area-inefficient in large systems, and their limited size and associativity can produce

significant directory-induced invalidations. For this reason, set-associative directories

tend to be significantly oversized [59]. There are two main alternatives to improve

sparse directory scalability. Hierarchical directories [158, 164] implement multiple

levels of sparse directories, with each level tracking the lower-level sharers. This way,

area and energy grow logarithmically with the number of cores. However, hierar-

chical organizations impose additional lookups on the critical path, hurting latency,

and more importantly, require a more complex hierarchical coherence protocol [158].

Alternatively, many techniques have been explored to represent sharer sets inexactly

through coarse-grain bit-vectors [69], limited pointers [3, 33], Tagless directories [170]

and SPACE [172]. Unfortunately, these methods introduce additional traffic in the

form of spurious invalidations and often increase coherence protocol complexity [170].

Since cache coherence is hard to scale using conventional techniques, we could sim-

ply not implement it. However, this complicates software, which must either manage

the private caches explicitly (e.g., flushing lines or the whole cache to make updates

globally visible) or explicitly access the shared cache (bypassing the private caches)

to implement communication and synchronization. While this model may work for

special-purpose accelerators with restricted programming models and applications

with highly structured communication and synchronization [], prior work shows that

hardware cache coherence is required in practice in general-purpose CMPs [91, 102].
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Hundred-core CMPs are already on the market, stressing the need for scalable coher-

ence.

In Chapter 5 we present the Scalable Coherence Directory (SCD), a novel direc-

tory scheme that scales to thousands of cores efficiently, while incurring negligible

invalidations and keeping an exact sharer representation.

2.2.4 Analytical Design

Finally, the conventional design approach in computer architecture has several draw-

backs for large-scale CMPs. The primary goal of computer architects is to improve

performance by focusing on common-case behavior. Architects implement a wide ar-

ray of empirical best-effort techniques (such as caching and branch prediction) and

provision them by looking at patterns from past and current workloads. To provi-

sion for future workloads, or to mitigate performance cliffs and worst-case behavior,

resources are often overprovisioned (e.g., implementing a cache with slightly more

capacity or associativity).

While this approach worked well for uniprocessors, multicores have a fundamental

problem with it: because many resources are shared, we need to provide guarantees

on all sharing scenarios if we want to provide a certain level of performance for a

specific application. Overprovisioning alone is insufficient and wasteful to guarantee

good performance: although some overprovisioning simplifies system design, we need

techniques that provide guarantees with minimal overprovisioning.

The root cause of this issue is that computer architecture design is mostly done

empirically: system components are assumed to be too complex to be described with

useful analytical models, and design mainly relies on simulation to show whether a

technique works. Analytical models, if ever, are derived a posteriori.

A major result of this thesis is to show that, against conventional wisdom, an

analytical design approach is both practical and highly beneficial. Instead of assum-

ing that components are too complex to be modeled correctly, we design them so

that they can be described using simple and accurate analytical models, and then

use these models to build techniques that guarantee scalability and QoS under all
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scenarios while also outperforming conventional techniques in the common case. In

particular, we design ZCache so that its associativity is characterized by simple,

workload-independent models, and leverage this property in Vantage and SCD to

provide QoS guarantees. For example, Vantage gives strong guarantees on parti-

tion sizes, isolation and associativity regardless of partition behavior, even though it

does not physically partition the cache, and SCD provides guarantees on performance

and negligible invalidations regardless of the workload with minimal overprovision-

ing. While Vantage and SCD can be implemented using set-associative arrays, using

ZCache enables them to provide performance guarantees.

2.3 Parallel Runtimes

Even with scalable parallel architectures, we are still faced with the problem of uti-

lizing them efficiently. This requires making software pervasively parallel without

imposing too much complexity on the programmer. To this end, applications should

be written in high-level parallel programming models such as Cilk [60], TBB [81],

CUDA [122], OpenCL [94], StreamIt [151], and Delite [26]. These models provide

constructs to express parallelism and synchronization in a manageable way, and take

care of resource management and scheduling for the programmer.

While high-level programming models simplify parallel programming, they require

a parallel runtime that implements scheduling and resource management. In this

thesis, we focus on developing techniques to scale these runtimes efficiently.

2.3.1 Efficient Parallel Runtimes

A runtime should satisfy four desirable properties. First, it should keep the execution

units well utilized, performing load balancing if needed. Second, it should keep the

memory hierarchy well utilized, producing schedules that exploit application locality

and minimize remote or off-chip memory accesses. Third, it should guarantee bounds

on the resources consumed. In particular, bounding memory footprint is especially

important, as this enables allocating off-chip and on-chip memory resources, avoids
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thrashing and out-of-memory conditions, and reduces cache misses (in cache-based

systems) or spills to main memory (in systems with explicitly managed local stores).

Fourth, it should impose small scheduling overheads.

The ability of the scheduler to realize these properties is constrained by the infor-

mation available from the programming model (e.g., locality hints, task dependencies,

types of parallelism exploited). Consequently, schedulers are often tailored to a spe-

cific programming model. Unfortunately, schedulers that satisfy these properties are

only available for limited programming models.

Most scheduling approaches can be broadly grouped into three categories. First,

Task-Stealing is popular in general-purpose multi-cores, and is used in Cilk, TBB,

X10 [34], OpenMP [53], among others. It imposes small overheads, and some pro-

gramming models, such as Cilk and X10, can bound memory footprint by tailoring its

scheduling policies [4, 19]. However, it does not leverage program structure and does

not work well when tasks have complex dependencies, so it has difficulties schedul-

ing complex pipeline-parallel applications. Second, Breadth-First is used in GPGPU

models such as CUDA and OpenCL, and focuses on extracting data parallelism, but

cannot exploit task and pipeline parallelism and does not bound memory footprint.

Third, Static is common in streaming architectures and stream programming models

like StreamIt and StreamC/KernelC [50]. It relies on a priori knowledge of the appli-

cation graph to statically generate an optimized schedule that uses bounded memory

footprint [104]. Unfortunately, Static schedulers forgo run-time load balancing, and

work poorly when the application is irregular or the architecture has dynamic vari-

ability, thus limiting their utility.

As we can see, none of these scheduling techniques satisfies the desirable properties

for a wide range of programming models. Programming models with simple or no

dependencies can use dynamic schedulers (Task-Stealing or Breadth-First), but as

soon as the model has richer semantics and allows for involved dependencies (e.g.,

pipelines or ordered streams), we are constrained to a static scheduler.

In Chapter 6 we develop a series of techniques to solve this problem, enabling

schedulers that satisfy all the desirable properties for richer programming models with

complex dependencies. We demonstrate these techniques by implementing a runtime
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for GRAMPS [146], a programming model designed to support dynamic scheduling

of pipeline and data parallelism. Similar to streaming models, GRAMPS applications

are expressed as a graph of stages that communicate either explicitly through data

queues or implicitly through memory buffers. However, GRAMPS introduces several

enhancements that allow dynamic scheduling and applications with irregular paral-

lelism. Compared to Task-Stealing models, knowing the application graph gives two

main benefits. First, the graph contains all the producer-consumer relationships, en-

abling locality optimizations. Second, memory footprint is easily bounded by limiting

the size of queues and memory buffers. However, prior work [146] was based on an

idealized simulator with no scheduling overheads, making it an open question whether

a practical GRAMPS runtime could be designed. We show that our GRAMPS sched-

uler achieves significant benefits over existing scheduling techniques on applications

from a variety of domains, enabling dynamic scheduling of pipeline-parallel programs

with non-trivial dependencies. While our implementation and evaluation focuses on

GRAMPS, the techniques developed are directly applicable to other programming

models with streaming characteristics, like StreamIt [151] and Delite [26].

2.3.2 Scalable Fine-Grain Scheduling

As we will see in Chapter 6, efficient dynamic schedulers have significant advantages

over static schedulers. However, as the number of cores scales up, these schedulers

need finer-grain tasks to expose enough parallelism, and scheduling overheads often

become a significant bottleneck. We can address this by implementing the scheduler

in hardware. GPUs already implement hardware schedulers [130], and Carbon [101]

proposes to implement task-stealing in hardware using specialized queues and a cus-

tom messaging protocol for enqueuing, dequeuing and distributing tasks. While this

solves the performance bottleneck, it introduces two significant problems. First, hard-

ware schedulers fix the scheduling algorithm at design time, making it difficult to

accelerate an application or programming model that requires a different algorithm.

While supporting some variations is feasible, implementing all the possible algorithms

and options in hardware is prohibitively expensive in terms of design and verification
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complexity. Second, hardware schedulers introduce a significant amount of custom

hardware that cannot be used for other purposes. Ideally, we would like to accelerate

scheduling using general primitives that can be leveraged by different algorithms and

have other uses beyond scheduling.

In Chapter 7 we present a combined hardware-software approach to build fine-

grain schedulers that retain the flexibility of software schedulers while being as fast

and scalable as hardware ones. We find that software schedulers are limited by com-

munication and synchronization overheads, not computation. Therefore, we introduce

communication support tailored to the needs of scheduling and control applications.

We propose asynchronous direct messages (ADM), a simple architectural extension

that provides direct exchange of asynchronous, short messages between threads in the

CMP without going through the memory hierarchy. ADM is sufficient to implement

a family of novel, software-mostly schedulers that rely on low-overhead messaging

to efficiently coordinate scheduling and transfer task information. These schedulers

match and often exceed the performance and scalability of hardware schedulers when

using the same scheduling algorithm, but can tailor their scheduling algorithm to

application characteristics or different programming models.



Chapter 3

ZCache: Decoupling Ways and

Associativity

3.1 Introduction

As we discussed in Section 2.2, conventional cache implementations suffer from two

significant problems. First, highly-associative caches are inefficient, as previously pro-

posed implementations rely on increasing the number of ways or locations where a

line can be placed. This reduces conflict misses, but increases hit latency and energy,

placing a stringent trade-off on cache design. Second, cache associativity is highly

workload-dependent, and designers have no analytical tools to reason about associa-

tivity, so caches are provisioned empirically, by extensive simulation, and provide no

associativity guarantees.

In this chapter we present zcache, a cache design with two crucial properties.

First, zcaches achieve arbitrarily high associativity with a small number of physical

ways, breaking the trade-off between associativity and access latency or energy. Sec-

ond, zcache’s associativity is fully characterized using simple, accurate and workload-

independent analytical models, enabling designers to provision the cache analytically

and providing the foundation for techniques that implement QoS guarantees efficiently

through analytical design, such as Vantage (Chapter 4) and SCD (Chapter 5). This

chapter presents three main contributions:

23



CHAPTER 3. ZCACHE 24

1. We describe the zcache design. ZCache improves associativity while keeping the

number of possible locations of each block small. ZCache’s design is motivated

by the insight that associativity is the ability of a cache to select a good block to

evict on a replacement. For instance, given an access pattern with high temporal

locality, the best block to evict is the least recently used one in the entire cache. A

cache that provides a high-quality stream of evicted blocks essentially has higher

associativity, regardless of the number of locations each block can be placed in.

Like a skew-associative cache [140], a zcache accesses each way using a different

hash function. A block can be in only one location per way, so hits, the common

case, require only a single lookup. On a replacement, ZCache exploits that with

different hash functions, a block that conflicts with the incoming block can be

moved to a non-conflicting location in another way instead of being evicted to

accommodate the new block. This is similar to cuckoo hashing [124], a technique

to build space-efficient hash tables. On a miss, the zcache walks the tag array to

obtain additional replacement candidates, evicts the best one, and performs a few

moves to accommodate the incoming block. This happens off the critical path,

concurrently with the miss and other lookups, so it has no effect on access latency.

2. We develop an analytical framework to understand associativity and compare the

associativities of different cache designs independently of the replacement policy.

We define associativity as a probability distribution and show that, under a set of

conditions, which are met by zcaches, associativity depends only on the number of

replacement candidates. Therefore, we prove that zcache decouples associativity

from the number of ways (or locations that a block can be in).

3. We evaluate using zcaches at the last-level cache of the CMP’s memory hier-

archy. Using our analytical framework we show that, for the same number of

ways, zcaches provide higher associativity than set-associative caches for most

workloads. We also simulate a variety of multithreaded and multiprogrammed

workloads on a large-scale CMP, and show that zcaches achieve the benefits of

highly-associative caches without increasing access latency or energy. For exam-

ple, over a set of 10 miss-intensive workloads, a 4-way zcache provides 7% higher

IPC and 10% better energy efficiency than a 32-way set-associative cache.
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3.2 Background on Cache Associativity

Apart from simply increasing the number of ways in a cache and checking them in

parallel, there is abundant prior work on alternative schemes to improve associativity.

They mainly rely on either using hash functions to spread out cache accesses, or

increasing the number of locations that a block can be in.

3.2.1 Hashing-based Approaches

Hash block address: Instead of using a subset of the block address bits as the

cache index, we can use a better hash function on the address to compute the index.

Hashing spreads out access patterns that are otherwise pathological, such as strided

accesses that always map to the same set. Hashing slightly increases access latency

as well as area and power overheads due to this additional circuitry. It also adds tag

store overheads, since the full block address needs to be stored in the tag. Simple

hash functions have been shown to perform well [93], and commercial processors often

implement this technique in their last-level cache [149].

Skew-associative caches: Skew-associative caches [140] index each way with a

different hash function. A specific block address conflicts with a fixed set of blocks,

but those blocks conflict with other addresses on other ways, further spreading out

conflicts. Skew-associative caches typically exhibit lower conflict misses and higher

utilization than a set-associative cache with the same number of ways [20]. However,

they have no sets, so they cannot use replacement policy implementations that rely

on set ordering (e.g., using pseudo-LRU to approximate LRU).

3.2.2 Approaches that Increase the Number of Locations

Allow multiple locations per way: Column-associative caches [2] extend direct-

mapped caches to allow a block to reside in two locations based on two (primary

and secondary) hash functions. Lookups check the second location if the first is a

miss and a rehash bit indicates that a block in the set is in its secondary location.

To improve access latency, a hit in a secondary location causes the primary and
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secondary locations to be swapped. This scheme has been extended with better

ways to predict which location to probe first [27], higher associativities [171], and

schemes that explicitly identify the less used sets and use them to store the more used

ones [133]. The drawbacks of allowing multiple locations per way are the variable hit

latency and reduced cache bandwidth due to multiple lookups, and the additional

energy required to do swaps on hits.

Use a victim cache: A victim cache is a highly or fully-associative small cache

that stores blocks evicted from the main cache until they are either evicted or re-

referenced [86]. It avoids conflict misses that are re-referenced after a short period,

but works poorly with a sizable amount of conflict misses in several hot ways [25].

Scavenger [14] divides cache space into two equally large parts, a conventional set-

associative cache and a fully-associative victim cache organized as a heap. Victim

cache designs work well as long as misses in the main cache are rare. On a miss in

the main cache, they introduce additional latency and energy consumption to check

the victim cache, regardless of whether the victim cache holds the block.

Use indirection in the tag array: An alternative strategy is to implement tag

and data arrays separately, making the tag array highly associative, and having it

contain pointers to a non-associative data array. The Indirect Index Cache (IIC) [70]

implements the tag array as a hash table using open-chained hashing for high asso-

ciativity. The V-Way cache [129] implements a conventional set-associative tag array,

but makes it larger than the data array to make conflict misses rare. Tag indirection

schemes suffer from extra hit latency, as they are forced to serialize accesses to the

tag and data arrays. Both the IIC and the V-Way cache have tag array overheads of

around 2×, and the IIC has a variable hit latency.

Several of these designs both increase cache associativity and propose a new re-

placement policy, sometimes tailored to the proposed design [14, 70, 129, 140]. This

makes it difficult to elucidate how much improvement is due to the higher associativity

and how much depends on the better replacement policy. Instead, we consider that

associativity and replacement policy are separate issues, and focus on associativity.
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3.3 ZCache Design

Structurally, zcaches share many common elements with skew-associative caches.

Each way is indexed by a different hash function, and a cache block can only re-

side in a single position on each way. That position is given by the hash value of the

block’s address. Hits happen exactly as in skew-associative caches, requiring a single

lookup to a small number of ways. On a miss, however, zcache exploits the fact that

two blocks that conflict on a way often do not conflict on the other ways to increase

the number of replacement candidates. ZCache performs a replacement over multiple

steps. First, it walks the tag array to identify the set of replacement candidates. It

then picks the candidate preferred by the replacement policy (e.g., least recently used

block for LRU), and evicts it. Finally, it performs a series of relocations to be able

to accommodate the incoming block at the right location.

The multi-step replacement process happens while fetching the incoming block

from the memory hierarchy, and does not affect the time required to serve the miss.

In non-blocking caches, simultaneous lookups happen concurrently with this process.

The downside is that the replacement process requires extra bandwidth, especially on

the tag array, and needs extra energy. However, should bandwidth or energy become

an issue, the replacement process can be stopped early, simply resulting in a worse

replacement candidate.

3.3.1 Operation

We explain the operation of the replacement process in detail using the example in

Figure 3.1. The example uses a small 3-way cache with 8 lines per way. Letters A-Z

denote cache blocks, and numbers denote hash values. Figure 3.1g shows the timeline

of accesses to the tag and data arrays, and the memory bus. Throughout Figure 3.1,

addresses and hash values obtained in the same access are shown in the same color.

Walk: Figure 3.1a shows the initial contents of the cache and the miss for address

Y that triggers the replacement process. Initially, the addresses returned by the tag

lookup for Y are our only replacement candidates for the incoming block (addresses
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A, D and M). These are the first-level candidates. A skew-associative cache would

only consider these candidates. In a zcache, the controller starts the walk to expand

the number of candidates by computing the hash values of these addresses, shown in

Figure 3.1b. One of the hash values always matches the hash value of the incoming

block. The others denote the positions in the array where we could move each of our

current replacement candidates to accommodate the incoming block. For example,

as column A in Figure 3.1b shows, we could move block A to line 2 in way 1 (evicting

K) or line 1 in way 2 (evicting X) and write incoming block Y in line 5 of way 0.

We take the six non-matching hash values in Figure 3.1b and perform two accesses,

giving us an additional set of six second-level replacement candidates, as shown in

Figure 3.1c (addresses B, K, X, P, Z, and S). We can repeat this process (which, at its

core, is a breadth-first graph walk) indefinitely, getting more and more replacement

candidates. In practice, we eventually need to stop the walk and select the best

candidate found so far. In this example, we expand up to a third level, reaching 21

(3+6+12) replacement candidates. In general, it is not necessary to obtain full levels.

Figure 3.1d shows a tree with the three levels of candidates. Note how, in expanding

the second level, some hash values are repeated and lead to the same address. These

repeats are bound to happen in this small example, but are very rare in larger caches

with hundreds to thousands of blocks per way. For example, on a 3MB, 3-way, 21-

candidate zcache as in the example, using 64-byte lines (16384 lines/way), only 0.4%

of walks have one or more repeats.

Relocations: Once the walk finishes, the replacement policy chooses the best re-

placement candidate. We discuss the implementation of replacement policies in Sec-

tion 3.3.5. In our example, block N is the best candidate, as shown in Figure 3.1d.

To accommodate the incoming block Y, the zcache evicts N and relocates its ances-

tors in the tree (both data and tags), as shown in Figure 3.1e. This involves reading

and writing the tags and data to their new locations, as the timeline in Figure 3.1g

indicates. Figure 3.1f shows the cache contents after the replacement process is fin-

ished, with N evicted and Y in the cache. Note how N and Y both used way 0, but

completely different locations.
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3.3.2 General Figures of Merit

A zcache with W ways where the walk is limited to L levels has the following figures

of merit:

• Replacement candidates (R): Assuming no repeats when expanding the tree, R =

W
∑L−1

l=0 (W − 1)l.

• Replacement process energy (Emiss): If the energies to read/write tag or data in

a single way are denoted Ert, Ewt, Erd and Ewd, then Emiss = Ewalk + Erelocs =

R×Ert +m× (Ert +Erd +Ewt +Ewd), where m ∈ {0, .., L− 1} is the number of

relocations. Note that reads and writes to the data array, which consume most of

the energy, grow with L, i.e., logarithmically with R.

• Replacement process latency: Because accesses in a walk can be pipelined, the

latency of a walk grows with the number of levels, unless there are so many

accesses on each level that they fully cover the latency of a tag array read: Twalk =
∑L−1

l=0 max(Ttag, (W − 1)l). This means that, for W > 2, we can get tens of

candidates in a small amount of delay. For example, Figure 3.1g assumes a tag

read delay of 4 cycles, and shows how the walk process for 21 candidates (3 levels)

completes in 4×3 = 12 cycles. The whole process finishes in 20 cycles, much earlier

than the 100 cycles used to retrieve the incoming block from main memory.

3.3.3 Implementation

To implement the replacement process, the cache controller needs some modifica-

tions involving hash functions, some additional state and, for non-blocking caches,

scheduling of concurrent operations.

Hash functions: We need one hash function per way. Hash functions range from

extremely simple (e.g., bit selection) to exceedingly complex (e.g., cryptographic hash

functions like SHA-1). In this study, we use H3 hash functions [31], a family of low-

cost, universal, pairwise-independent hash functions that require a few XOR gates per

hash bit [138]. We choose H3 functions because of their good analytical properties

and simple implementation, although other hash function families may also work well

with zcache.
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State: The controller needs to remember the positions of the replacement candi-

dates visited during the walk and the position of the best eviction candidate. Tracking

only the most desirable replacement candidate is not sufficient, because relocations

need to know about all blocks in the path. However, a single-ported SRAM or small

register file suffices. This memory does not need to store full tags, just R hash values.

Also, no back-pointers need to be stored, because for a certain position in the SRAM,

the parent’s position is always the same. In the example shown in Figure 3.1, the

controller needs 63 bits of state to track candidates (21 hash values × 3 bits/value).

If the cache was larger, e.g., 3MB, with 1MB per way and 64-byte lines (requiring 14

bits/hash value), it would need 294 bits. Additionally, the controller must buffer the

tags and data of the L lines it reads and writes on a relocation. Since the number of

levels is typically small (2 or 3 in our experiments), this also entails a small overhead.

Concurrent operations for non-blocking caches: To avoid increasing cache

latency, the replacement process should be able to run concurrently with all other

operations (tag/data reads and writes due to hits, write-backs, invalidations, etc.).

The walk process can run concurrently without interference. This may lead to benign

races where, for example, the walk identifies the best eviction candidate to be a block

that was accessed (e.g., with a hit) in the interim. This is exceedingly rare in large

caches, so we simply evict the block anyway. In smaller caches (e.g., highly-associative

but small TLBs or first-level caches), we could keep track of the best two or three

eviction candidates and discard them if they are accessed while the walk process is

running.

In the second part of the replacement, the relocations, the controller must block

intervening operations to at most L positions while blocks in these positions are being

relocated. We note that the controller already has logic to deal with these cases (e.g.,

with MSHRs [97]).

While it is feasible to run multiple replacement processes concurrently, it would

complicate the cache controller, and since replacements are not in the critical path,

they can simply queue up. Even in caches that serve many concurrent misses, MSHRs

can be used to satisfy each miss before finishing its corresponding replacement and
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filling in the data. Concurrent replacements would only make sense to increase band-

width utilization when the cache is close to bandwidth saturation. As we will see in

Section 3.6, we do not see the need for such mechanism in our experiments.

In conclusion, zcache imposes minor state and logic overheads to traditional cache

controllers.

3.3.4 Extensions

We now discuss additional implementation options to enhance zcaches.

Avoiding repeats: In small first-level caches or TLBs, repeats can be common

due to walking a significant portion of the cache. Moreover, a repeat at a low level

can trigger the expansion of many repeated candidates. Repeats can be avoided by

inserting the addresses visited during the walk in a Bloom filter [18], and not contin-

uing the walk through addresses that are already represented in the filter. Repeats

are rare in our experiments, so we do not see any performance benefit from this.

Alternative walk strategies: The current walk performs a breadth-first search

for candidates, fully expanding all levels. Alternatively, we could perform a depth-

first search (DFS), always moving towards higher levels of replacement candidates.

Cuckoo hashing [124] follows this strategy. DFS allows us to remove the walk table

and interleave walk with relocations, reducing state. However, it increases the number

of relocations for a given number of replacement candidates (since L = R/W ), which

in turn increases both the energy required per replacement (as relocations read and

write to the much wider data array) and replacement latency (as accesses in the walk

cannot be pipelined). BFS is a much better match to a hardware implementation

as the extra required state for BFS is a few hundred bits at most. Nevertheless,

a controller can implement a hybrid BFS+DFS strategy to increase associativity

cheaply. For instance, in our example in Figure 3.1, the controller could perform

a second phase of BFS, trying to re-insert N rather than evicting it, to double the

number of candidates without increasing the state needed.
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3.3.5 Replacement Policy

So far, we have purposely ignored how the replacement policy is implemented. In

this section, we cover how to implement or approximate LRU. While set-associative

caches can cheaply maintain an order of the blocks in each set (e.g., using LRU or

pseudo-LRU), since zcaches do not have sets, policies that rely on set ordering need

to be implemented differently. However, several processor designs already find it

too expensive to implement set ordering and resort to policies that do not require

it [74, 149]. Additionally, some of the latest, highest-performing policies do not rely

on set ordering [85]. While designing a replacement policy specifically tailored to

zcaches is an interesting endeavor, we defer it to future work.

Full LRU: We use a global timestamp counter, and add a timestamp field to each

block in the cache. On each access, the timestamp counter is incremented, and the

timestamp field is updated to the current counter value. On a replacement, the

controller selects the replacement candidate with the lowest timestamp (in mod 2n

arithmetic). This design requires very simple logic, but timestamps have to be large

(e.g., 32 bits) to make wrap-arounds rare, thus having high area overhead.

Bucketed LRU: To decrease space overheads, we can make timestamps smaller,

and have the controller increase the timestamp counter once every k accesses. For

example, with k = 5% of the cache size and n = 8 bits per timestamp, it is rare for

a block to survive a wrap-around without being either accessed or evicted. We use

this LRU policy in our evaluation.

3.4 Analytical Framework for Associativity

Quantifying and comparing associativity across different cache designs is hard. In set-

associative caches, more ways implicitly mean higher associativity. However, when

comparing different designs (e.g., a set-associative cache and a zcache), the number

of ways becomes a useless proxy for associativity.

The most commonly used approach to quantify associativity is by the number
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of conflict misses [75]. Conflict misses for a cache are calculated by subtracting the

number of misses incurred by a fully-associative cache of the same size from the total

number of misses. Using conflict misses as a proxy for associativity has the advantage

of being an end-to-end metric, directly linking associativity to performance. However,

it is subject to three problems. First, it is highly dependent on the replacement policy;

for example, by using an LRU replacement policy in a workload with an anti-LRU

access pattern, we can get higher conflict misses when increasing the number of ways.

Second, in CMPs with multilevel memory hierarchies, changing the associativity can

alter the reference stream at higher cache levels, and comparing the number of conflict

misses when the total number of accesses differs is meaningless. Finally, conflict misses

are workload-dependent, so they cannot be used as a general proxy for associativity.

In this section, we develop a framework to address these issues, with the objec-

tives of (1) being able to compare associativity between different cache organizations,

and (2) determining how various design aspects (e.g., ways, number of replacement

candidates, etc.) influence cache associativity.

3.4.1 Associativity Distribution

Model: We divide a cache into the following components:

• Cache array: Holds tags and data, implements associative lookups by block ad-

dress, and, on a replacement, gives a list of replacement candidates that can be

evicted.

• Replacement policy: Maintains a global rank of which cache blocks to replace.

This model assumes very little about the underlying cache implementation. The array

could be set-associative, a zcache, or any of the schemes mentioned in Section 3.2.

The only requirement that we impose on the replacement policy is to define a global

ordering of blocks, which most policies conceptually do. For example, in LRU blocks

are ranked by the time of their last reference, in LFU they are ordered by access

frequency, and in OPT [15] they are ranked by the time to their next reference. This

does not mean that the implementation actually maintains this global rank. In a

set-associative cache, LRU only needs to remember the order of elements in each set,
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and in a zcache this can be achieved with timestamps, as explained in Section 3.3.5.

By convention, we give a higher rank r to blocks with a higher preference to

be evicted. In a cache with B blocks, r ∈ [0, ..., B − 1]. To make the rest of the

analysis independent of cache size, we define a block’s eviction priority to be its rank

normalized to [0, 1], i.e., e = r/(B − 1).

Associativity distribution: We define the associativity distribution as the prob-

ability distribution of the eviction priorities of evicted blocks. In a fully-associative

cache, we would always evict the block with e = 1.0. However, most cache designs ex-

amine only a small subset of the blocks in an eviction, so they select blocks with lower

eviction priorities. In general, the more skewed the distribution is towards e = 1.0,

the higher the associativity is. The associativity distribution characterizes the quality

of the replacement decisions made by the cache in a way that is independent of the

replacement policy. Note that this decouples how the array performs from ill-effects

from the replacement policy. For example, a highly associative cache may always find

replacement candidates with high eviction priorities, but if the replacement policy

does a poor job in ranking the blocks, this may actually hurt performance.

3.4.2 Linking Associativity and Replacement Candidates

Defining associativity as a probability distribution lets us evaluate the quality of the

replacement candidates, but is still dependent on workload and replacement policy.

However, under certain general conditions this distribution can be characterized by

a single number, the number of replacement candidates. This is the figure of merit

that zcaches optimize for.

Uniformity assumption: If the cache array always returns R replacement can-

didates, and we treat the eviction priorities of these blocks as random variables

Ei, assuming that they are (1) uniformly distributed in [0,1] and (2) statistically

independent from each other, we can derive the associativity distribution. Since
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Figure 3.2: Associativity CDFs under the uniformity assumption (FA(x) = xR, x ∈
[0, 1]) for R = 4, 8, 16, 64 replacement candidates, in linear and logarithmic scales.

E1, ..., ER ∼ U [0, 1], i.i.d, the cumulative distribution function (CDF) of each evic-

tion priority is FEi
(x) = Prob(Ei ≤ x) = x, x ∈ [0, 1]1. The associativity is the

random variable A = max {E1, ..., ER}, and its CDF is:

FA(x) = Prob(A ≤ x) = Prob(E1 ≤ x ∧ ... ∧ ER ≤ x)

= Prob(Ei ≤ x)R = xR, x ∈ [0, 1]
(3.1)

Therefore, under this uniformity assumption, the associativity distribution only de-

pends on R, the number of replacement candidates. Figure 3.2 shows example CDFs

of the associativity distribution, in linear and semi-log scales, with each line rep-

resenting a different number of replacement candidates. The higher the number of

replacement candidates, the more skewed towards 1.0 the associativity distribution

becomes. Also, evictions of blocks with a low eviction priority quickly become very

rare. For example, for 16 replacement candidates, the probability of evicting a block

with e < 0.4 is 10−6.

Random candidates cache: The uniformity assumption makes it simple to char-

acterize associativity, but it is not met in general by real cache designs. However,

1Note that we are treating Ei as continuous random variables, even though they are discrete

(normalized ranks with one of B equally probable values in [0, 1]). We do this to achieve results that
are independent of cache size B. Results are the same for the discretized version of these equations.
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a cache array that returns n randomly selected replacement candidates (with rep-

etition) from all the blocks in the cache always achieves these associativity curves

perfectly. Each Ei is uniformly distributed because it is an unbiased random sam-

pling of one of the B possible values of a rank, and since different selections are done

independently, the Ei are independent as well. We simulated this cache design with

tens of real workloads, under several configurations and replacement policies, and

obtained associativity distributions as shown in Figure 3.2, experimentally validating

the previous derivation.

Although this random candidates cache design is unrealistic, it reveals a sufficient

condition to achieve the uniformity assumption: the more randomized the replace-

ment candidates, the better a cache will match the uniformity assumption.

3.4.3 Associativity Measurements of Real Caches

Our analytical framework implies that the number of replacement candidates is the

key metric in determining associativity. We now evaluate whether this is the case

using real cache designs.

Set-associative caches: Figure 3.3a shows the associativity distributions for 8MB

L2 set-associative caches of 4 and 16 ways, using an LRU replacement policy. The

details on system configuration and methodology can be found in Section 3.5. Each

of the 6 solid lines represents a different benchmark, from a representative selection

of PARSEC and SPECOMP applications. The single dotted line per graph plots the

associativity distribution under the uniformity assumption, which is independent of

the workload. We see that the distributions differ significantly from the uniformity

assumption. Two workloads (wupwise and apsi) do significantly worse, with the CDF

rapidly climbing towards 1.0. For example, in wupwise, 60% of the evictions happen

to blocks with≤ 20% eviction priority. Others (mgrid, canneal and fluidanimate) have

sensibly worse associativity, and only one benchmark (blackscholes) outperforms the

uniformity assumption. These differences are not surprising: replacement candidates

all come from the same small set, thwarting independence, and locality of reference

will skew eviction priorities towards lower values, breaking the assumption of an
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Figure 3.3: Associativity distributions for selected PARSEC and SPECOMP work-
loads using different types of caches.

uniform distribution.

We can improve associativity with hashing. Figure 3.3b shows the associativity

distributions of set-associative caches indexed by an H3 hash of the block address.

Associativity distributions generally improve, but some hot-spots remain, and all

workloads now perform sensibly worse than the uniformity assumption case.

Skew-associative caches and zcaches: Figure 3.3c shows the associativity dis-

tributions of 4 and 16-way skew-associative caches. As we can see, skew-associative

caches closely match the uniformity assumption on all workloads. These results

provide an analytical foundation to the previous empirical observations that skew-

associative caches “improve performance predictability” [20].

Figure 3.3d shows the associativity of 4-way zcaches with 2 and 3 levels of re-

placement candidates. We also observe a close match to the uniformity assumption.
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This is expected, since replacement candidates are even more randomized: nth-level

candidates depend on the addresses of the (n− 1)th-level candidates, making the set

of positions checked varying with cache contents.

In conclusion, both skew-associative caches and zcaches match the uniformity

assumption in practice. Hence, their associativity is directly linked to the number

of candidates examined on replacement. Although the graphs only show a small set

of applications for clarity, results with other workloads and replacement policies are

essentially identical. The small differences observed between applications decrease by

either increasing the number of ways (and hash functions) or improving the quality

of hash functions (the same experiments using more complex SHA-1 hash functions

instead of H3 yield distributions identical to the uniformity assumption).

Overall, our analysis framework reveals two main results:

1. In zcaches, associativity is determined by the number of replacement candidates,

and not the number of ways, essentially decoupling ways and associativity.

2. When using an equal number of replacement candidates, zcaches empirically show

better associativity than set-associative caches for most applications.

In the next two chapters, we will leverage the fact that zcaches match the uni-

formity assumption to implement scalable techniques that provide QoS in the cache

hierarchy with minimal, controlled overprovisioning.

3.5 Experimental Methodology

Infrastructure: We perform microarchitectural, execution-driven simulation by

developing and using zsim, an x86-64 simulator based on Pin [110]. We use Mc-

PAT [108] to obtain comprehensive timing, area and energy estimations for the CMPs

we model, and use CACTI 6.5 [116] for more detailed cache area, power and timing

models. We use 32nm ITRS models, with a high-performance process for all the

components of the chip except the L2 cache, which uses a low-leakage process.

System: We simulate a 32-core CMP, with in-order x86 cores modeled after the

Atom processor [62]. The system has a 2-level cache hierarchy, with a fully shared
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Cores 32 cores, x86-64 ISA, in-order, IPC=1 except on memory accesses, 2 GHz
L1 caches 32KB, 4-way set associative, split D/I, 1-cycle latency
L2 cache 8MB NUCA , 8 banks, 1MB bank, shared, inclusive, MESI directory coherence,

4-cycle average L1-to-L2-bank latency, 6–11-cycle L2 bank latency
MCU 4 memory controllers, 200 cycles zero-load latency, 64GB/s peak memory BW

Table 3.1: Main characteristics of the simulated CMPs. The latencies assume a 32 nm
process at 2GHz.

L2 cache. Table 3.1 shows the details of the system. On 32nm, this CMP requires

about 220mm2 and has a TDP of around 90W at 2GHz, both reasonable budgets.

Workloads: We use a variety of multithreaded and multiprogrammed benchmarks:

6 PARSEC [16] applications (blackscholes, canneal, fluidanimate, freqmine, stream-

cluster and swaptions), 10 SPEC OMP2001 benchmarks (all except galgel, which

gcc cannot compile) and 26 SPEC CPU2006 programs (all except dealII, tonto and

wrf, which we could not compile). For multiprogrammed runs, we run different

instances of the same single-threaded CPU2006 application on each core, plus 30

random CPU2006 workload combinations (choosing 32 workloads each time, with

repetitions allowed). These make a total of 72 workloads. All applications are run

with their reference (maximum size) input sets. For multithreaded workloads, we

fast-forward into the parallel region and run the first 10 billion instructions. Since

synchronization can skew IPC results for multithreaded workloads [7], we do not count

instructions in synchronization routines (locks, barriers, etc.) to determine when to

stop execution, but we do include them in energy calculations. For multiprogrammed

workloads, we follow standard methodology from prior work [85]: we fast-forward 20

billion instructions for each process, simulate until all the threads have executed at

least 256 million instructions, and only take the first 256 million instructions of each

thread into account for IPC computations.

3.6 Evaluation

ZCache can be used with any design that requires high associativity at low overheads

in terms of area, hit time, and hit energy. In this chapter, we evaluate zcache as a
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Cache
Serial lookups Parallel lookups

Bank Bank Bank Bank Bank Bank L2 L2
lat E/hit E/miss lat E/hit E/miss area leakage

SA 4-way 4.14 ns 0.61 nJ 1.26 nJ 2.91 ns 0.71 nJ 1.42 nJ 42.3mm2 535mW
SA 8-way 4.41 ns 0.75 nJ 1.57 nJ 3.18 ns 0.99 nJ 1.88 nJ 45.1mm2 536mW
SA 16-way 4.74 ns 0.88 nJ 1.87 nJ 3.51 ns 1.42 nJ 2.46 nJ 46.4mm2 561mW
SA 32-way 5.05 ns 1.23 nJ 2.66 nJ 3.82 ns 2.34 nJ 3.82 nJ 51.9mm2 588mW

ZCache 4/16 4.14 ns 0.62 nJ 2.28 nJ 2.91 ns 0.72 nJ 2.44 nJ 42.3mm2 535mW
ZCache 4/52 4.14 ns 0.62 nJ 3.47 nJ 2.91 ns 0.72 nJ 3.63 nJ 42.3mm2 535mW

Table 3.2: Area, power and latency of 8MB, 8-banked L2 caches with different orga-
nizations.

last-level cache in a 32-node CMP. We first quantify the area, energy and latency

advantages of zcaches versus set-associative caches with similar associativity, then

compare the performance and system-wide energy over our set of workloads.

3.6.1 Cache Costs

Table 3.2 shows the timing, area and power requirements of both set-associative

caches and zcaches with varying associativities. We use CACTI’s models to obtain

these numbers. Tag and data arrays are designed separately by doing a full design

space exploration and choosing the design that minimizes area×delay×power. Arrays

are sub-banked, and both the address and data ports are implemented using H-trees.

We show results for both serial and parallel-lookup caches. In serial caches, tag

and data arrays are accessed sequentially, saving energy at the expense of delay. In

parallel caches, both tag and data accesses are initiated in parallel. When the tag

read resolves the appropriate way, it propagates a way-select signal to the data array,

which selects and propagates the correct output. This parallelizes most of the tag

and data accesses while avoiding an exceedingly wide data array port. For zcaches,

we explore designs with two and three-level walks. We denote zcaches with “W/R”,

indicating the number of ways and replacement candidates, respectively. For example,

a 4/16 zcache has 4 ways and 16 replacement candidates per eviction (obtained from

a two-level walk).
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Figure 3.4: L2 MPKI and IPC improvements for all workloads, over a 4-way set-
associative with hashing baseline.

Table 3.2 shows that increasing the number of ways beyond 8 starts imposing

significant area, latency and energy overheads. For example, a 32-way cache with

serial lookups has 1.22× the area, 1.23× the hit latency and 2× the hit energy of a

4-way cache (for parallel lookups, hit latency is 1.32× and hit energy is 3.3×). This

is logical, since a 32-way cache reads 4× more tag bits than data bits per lookup, the

tag array has a much wider port, and the critical path is longer (slower tag array,

more comparators). For zcaches, however, area, hit latency and hit energy grow

with the number of ways, but not with the number of replacement candidates. This

comes at the expense of increasing energy per miss, which, however, is still similar

to set-associative caches with the same associativity. For example, a serial-lookup

zcache 4/52 has almost twice the associativity of a 32-way set-associative cache at

1.3× higher energy per miss, but retains the 2× lower hit energy and 1.23× lower

access latency of a 4-way cache.

3.6.2 Performance

Figure 3.4 shows the improvements in both L2 misses per thousand instructions

(MPKI) and IPC for all workloads, using both OPT and LRU replacement policies.

Each line represents the improvement of a different cache design over a baseline 4-way

set-associative cache with H3 hashing. Caches without hashing perform significantly
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worse (even at high associativities), so we do not consider them here. Serial-lookup

caches are used in all cases. For each line, workloads (in the x-axis) are sorted accord-

ing to the improvement achieved, so each line is monotonically increasing. Fractional

improvements are given (e.g., a L2 MPKI reduction of 1.2 means 1.2× lower MPKI

than the baseline).

OPT: Figure 3.4a shows the effects of using OPT replacement (i.e., evicting the

candidate reused furthest). OPT simulations are run in trace-driven mode. Although

OPT is unrealistic, it removes ill-effects from the replacement policy (where e.g.,

increasing associativity degrades performance), allowing us to decouple replacement

policy issues from associativity effects2. Note that these numbers do not necessarily

show maximum improvements from increasing associativity, as other replacement

policies may be more sensitive to associativity changes. In terms of misses, higher

associativities always improve MPKI, and designs with the same associativity have

practically the same improvements (e.g., 16-way set-associative vs Z4/16). However,

for set-associative caches, these improvements in MPKI do not always translate to

IPC, due to the additional access latency (1 extra cycle for 16-way, 2 cycles for

32-way). For example, the 32-way set-associative design performs worse than the

4-way design on 15 workloads (which have a large number of L1 misses, but few L2

misses), and performs worse than the 16-way design on half of the workloads (36). In

contrast, zcaches do not suffer from increased access latency, sensibly improving IPC

with associativity for all workloads (e.g., a Z4/52 improves IPC by up to 16% over

the baseline).

LRU: Figure 3.4b compares cache designs when using LRU. Associativity improves

MPKI for all but 3 workloads, and both MPKI and IPC improvements are significant

(e.g., a Z4/52 reduces L2 misses by up to 2.1× and improves performance by up to

25% over a 4-way set-associative cache). With LRU, the difference between Z4/16

and Z4/52 designs is lower than with OPT, however they significantly outperform

both the baseline and the Z4/4 (skew-associative) design.

2In caches with interference across sets, like skew-associative caches and zcaches, OPT is not
actually optimal, but it is a good heuristic. In fact, in these caches the optimal replacement policy
is NP-hard [24]
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3.6.3 Serial vs Parallel-Lookup Caches

Figure 3.5 shows the performance and system-wide energy efficiency when using serial

and parallel-lookup caches, under both OPT and LRU replacement policies. Results

are normalized to a serial-lookup, 4-way set-associative cache with H3 hashing. Each

graph shows improvements on five representative applications, as well as the geometric

means of both all 72 workloads and the 10 workloads with the highest L2 MPKI.

We can distinguish three types of applications: a few benchmarks, like blacksc-

holes or freqmine, have low L1 miss rates, and are insensitive to the L2’s organization.

Other applications, like ammp and gamess, have frequent L2 hits but infrequent

L2 misses. These workloads are sensitive to hit latency, so parallel-lookup caches

provide higher performance gains than increasing associativity (e.g., a 3% IPC im-

provement on gamess vs serial-lookup caches). In fact, increasing associativity in

set-associative caches reduces performance due to higher hit latencies, while highly-

associative zcaches do not degrade performance. Finally, workloads like cpu2K6rand0,

canneal, and cactusADM have frequent L2 misses. These applications are often sensi-

tive to associativity, and a highly-associative cache improves performance (by reduc-

ing L2 MPKI) more than reducing access time (e.g., in cactusADM with LRU, going

from Z4/4 to Z4/52 improves IPC by 9%, while going from serial to parallel-lookup

improves IPC by 3%).

In terms of energy efficiency, set-associative caches and zcaches show different

behaviors when increasing associativity. Because hit energy increases steeply with the

number of ways in parallel-lookup caches, 16 and 32-way set-associative caches often

achieve lower energy efficiency than serial-lookup caches (e.g., up to 8% lower BIPS/W

in cactusADM). In contrast, serial and parallel-lookup zcaches achieve practically the

same energy efficiency on most workloads, due to their similarly low access and miss

energies. In conclusion, zcaches enable highly-associative, energy-efficient parallel-

lookup caches.

Overall, zcaches offer both the best performance and energy efficiency. For ex-

ample, under LRU, when considering all 72 workloads, a parallel-lookup zcache 4/52

improves IPC by 7% and BIPS/W by 3% over the 4-way baseline. Over the subset

of the 10 most L2 miss-intensive workloads, a zcache 4/52 improves IPC by 18% and
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Figure 3.5: IPC and energy efficiency (BIPS/W) improvements for serial and parallel-
lookup caches, over a serial-lookup 4-way set-associative with hashing baseline. Each
graph shows improvements for 5 representative workloads, plus the geometric mean
over both all 72 workloads and the 10 workloads with the highest L2 MPKI.
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energy efficiency by 13% over the 4-way baseline, and obtains 7% higher performance

and 10% better energy efficiency than a 32-way set-associative cache.

3.6.4 Array Bandwidth

Since zcaches perform multiple tag lookups on a miss, it is worth examining whether

these additional lookups can saturate bandwidth. Of the 72 workloads, the maximum

average load per bank is 15.2% (i.e., 0.152 core accesses/cycle/L2 bank). However,

as L2 misses increase, average load decreases: at 0.005 misses/cycle/bank, average

load is 0.035 accesses/cycle/bank, and total load on the tag array for a Z4/52 cache

is 0.092 tag accesses/cycle/bank. In other words, as L2 misses increase, bandwidth

pressure on the L2 decreases; the system is self-throttling. ZCaches use this spare tag

bandwidth to improve associativity. Ultimately, even for high-MLP architectures, the

load on the tag arrays is limited by main memory bandwidth, which is more than an

order of magnitude smaller than the maximum L2 tag bandwidth and much harder

to scale.

3.7 Additional Related Work

ZCache is inspired by cuckoo hashing, a technique to build space-efficient hash tables

proposed by Pagh and Rodler [124]. The original design uses two hash functions to

index the hash table, so each lookup needs to check two locations. On an insertion,

if both possible locations are occupied, the incoming item replaces one of them at

random, and the replaced block is reinserted. This is repeated until either an empty

location is found or, if a limit number of retries is reached, elements are rehashed

into a larger array. Though cuckoo hashing has been mostly studied as a technique

for software hash tables, hardware variants have been proposed to implement lookup

tables in IP routers [51]. For additional references, Mitzenmacher has a survey on

recent research in cuckoo hashing [114].

Both high associativity and a good replacement policy are necessary to improve
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cache performance. The growing importance of cache performance has sparked re-

search into alternative policies that outperform LRU [36, 83, 85, 163]. The increasing

importance of on-chip wire delay has also motivated research in non-uniform cache

architectures (NUCA) [95]. Some NUCA designs such as NuRAPID [43] use indirec-

tion to enhance the flexibility of NUCA placement and reduce access latency instead

of increasing associativity.

3.8 Summary

This chapter has presented zcache, a cache design that enables high associativity with

a small number of ways and provides analytical, workload-independent guarantees on

associativity. ZCache uses a different hash function per way to enable an arbitrarily

large number of replacement candidates on a miss. To evaluate zcache’s associativity,

we have developed an analytical framework to characterize and compare associativity.

We use this framework to show that, for zcaches, associativity is determined by the

number of replacement candidates, not the number of ways, hence decoupling ways

and associativity. An evaluation using zcaches as the last-level cache in a CMP shows

that they provide high associativity with low overheads in terms of area, hit time,

and hit energy.
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Vantage: Scalable and Efficient

Cache Partitioning

4.1 Introduction

Shared caches are pervasively used in CMPs, especially in the higher levels of the

memory hierarchy, because they have significant utilization and efficiency benefits

over private caches. However, when multiple applications share the CMP, they suf-

fer from interference in shared caches. This causes large performance variations,

precluding quality of service (QoS) guarantees, and can degrade cache utilization,

hurting overall throughput. As we discussed in Section 2.2, cache partitioning can

eliminate this interference, but previously proposed partitioning techniques have two

main drawbacks: they are limited to a small number of coarse-grain partitions, so they

are not scalable, and partitioning often degrades performance, imposing a trade-off

between high performance or predictability and QoS.

In this chapter we present Vantage, a cache partitioning scheme that avoids the

drawbacks of prior techniques. Vantage can maintain hundreds of partitions defined at

cache line granularity, provides strict isolation among partitions, maintains high cache

performance, and is simple to implement, requiring minimal overheads. Thanks to

these features, Vantage enables performance isolation and quality of service in current

and future large-scale CMPs, and can be used for several other purposes, such as

48
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cache-pinning critical data, or implementing flexible local stores through application-

controlled partitions. To this end, this chapter presents the following contributions:

1. We present the design of Vantage. Unlike other techniques, Vantage is designed

and fully characterized by accurate analytical models. Vantage leverages the ana-

lytical associativity guarantees of zcaches (Section 3.4), which enable soft-pinning

a large portion of the lines by simply modifying the replacement process. Vantage

does not physically restrict line placement, side-stepping the problems of previ-

ous strict partitioning techniques ((Section 2.2.2), and leverages analytical models

to provide strict guarantees on partition sizes and interference, independently of

workload behavior. To provide these guarantees, Vantage partitions most of the

cache, not all of it. Partitions can slightly outgrow their target allocations, but

they borrow space from a small unpartitioned region of the cache, not from other

partitions. Hence, Vantage eliminates destructive interference between partitions.

Vantage maintains partition sizes by matching the average rates at which lines

enter and leave each partition. We prove that by controlling partition sizes this

way, the amount of cache space that has to be left unpartitioned for Vantage to

work well is both small (e.g., around 5-15% in a 4-way zcache) and independent

of the number of partitions or their sizes. Therefore, Vantage is scalable. Van-

tage also works with conventional set-associative caches, although with slightly

reduced performance and weaker guarantees.

2. While the conceptual techniques that Vantage relies on provide strong guarantees,

implementing them directly would be complex. We propose a practical design that

relies on negative feedback to control partition sizes in a way that maintains the

guarantees of the analytical models without their complexity. Our design just

requires adding few bits to each tag (e.g., 6 bits to support 32 partitions) and

simple modifications to the cache controller, which only needs to track about 256

bits of state per partition, and a few narrow adders and comparators for its control

logic. On an 8MB last-level cache with 32 partitions, Vantage adds a 1.1% state

overhead overall.

3. We evaluate Vantage by simulating a large variety of multiprogrammed workloads

on both 4-core and 32-core CMPs. We compare it to way-partitioning [42] and
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Way-partitioning
[42, 132]

No No Yes Yes Yes Low Yes

Set-partitioning
[132, 155]

No Yes No Yes Yes High Yes

Page coloring
[109]

No Yes No Yes Yes
None
(SW)

Yes

Ins/repl policy-based
[82, 162, 163]

Some-
times

Some-
times

Yes No No Low Yes

Vantage Yes Yes Yes Yes Yes Low
No

(most)

Table 4.1: Classification of partitioning schemes.

PIPP [163] using utility-based cache partitioning (UCP) [128] as the allocation

policy. Vantage significantly improves the performance of UCP on the 4-core

system (up to 40%), but results are most striking on the 32-core system: while

using either way-partitioning or PIPP to partition a 64-way cache almost always

degrades performance due to the large loss of associativity, Vantage is able to

deliver similar performance improvements as in the 4-core system, maintaining 32

fine-grain, highly-associative partitions using a 4-way cache (i.e., 16 times fewer

ways). Additional simulation results show that Vantage achieves the benefits and

bounds predicted by the analytical models.

4.2 Background on Cache Partitioning

Partitioning requires an allocation policy to decide the number and sizes of partitions,

and a partitioning scheme to enforce them. In this work we focus on the latter.

Table 4.1 summarizes the differences between current approaches, which we review

in this section. Broadly, there are two approaches to partition a cache:
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Strict partitioning by restricting line placement: Schemes with strict parti-

tioning guarantees rely on restricting the locations where a line can be placed de-

pending on its partition. Way-partitioning or column caching [42] divides the cache

by ways, restricting fills from each partition to its assigned subset of ways. Way-

partitioning is simple, but has several problems: partitions are coarsely sized (in

multiples of way size), the number of partitions is limited by the number of ways,

and the associativity of each partition is proportional to its way count, imposing a

trade-off between isolation and partition performance. For way-partitioning to work

well, the number of ways should be significantly larger than the number of partitions,

so this scheme does not scale to large partition counts.

To avoid losing associativity, the cache can be partitioned by sets instead of ways,

as proposed by one flavor of reconfigurable caches [132] and molecular caches [155].

However, these approaches require configurable decoders or a significant redesign of

cache arrays, and must do scrubbing, i.e., flushing or moving data when resizing

partitions. Most importantly, this scheme will only work when we have fully disjoint

address spaces, which is not true in most cases. Even different applications operating

on separate address spaces share library code and OS code and data. A different

approach to partition through placement restriction is to leverage virtual memory,

using page coloring to constrain the physical pages of a process to map to a portion of

the cache sets [109]. While this scheme does not require hardware support, it is limited

to coarse-grain partition sizes (multiples of page size×cache ways), precludes the use

of superpages, does not work on caches that are indexed using hashing (common in

modern processors [141]), and repartitioning requires costly recoloring (i.e., copying)

of physical pages, so it must be done infrequently [109].

Soft partitioning by controlling insertion and/or replacement: Alterna-

tively, a cache can be partitioned approximately by modifying the allocation or re-

placement policies. These schemes avoid some of the issues of restricting line place-

ment, but provide only limited control over partition sizes and inter-partition inter-

ference. They are useful for partitioning policies that can work with approximate



CHAPTER 4. VANTAGE 52

partitioning, but not for uses that require stricter guarantees. In selective cache allo-

cations [82] each partition is assigned a probability p, and incoming lines from that

partition are inserted with probability p or discarded (self-replaced) with probabil-

ity 1 − p. In decay-based replacement policies, lines from different partitions age at

different rates; adjusting the rates provides some control over partition sizes [162].

Promotion-insertion pseudo-partitioning (PIPP) [163] assigns each partition a dif-

ferent insertion position in the LRU chain and slowly promotes lines on hits (e.g.,

promoting ≃ 1 position per hit instead of moving the line to the head of the LRU

chain). With an additional mechanism to restrict cache pollution of thrashing appli-

cations, PIPP approximately attains the desired partition sizes. PIPP is co-designed

to work with UCP as the allocation policy, and may not work correctly with other

policies. Finally, as we will see in Section 4.6, PIPP’s partitioning scheme does not

scale with the number of partitions.

4.3 Vantage Techniques

4.3.1 Overview

Vantage relies on caches with high associativity and good hashing that meet the

uniformity assumption (Section 3.4), such as zcaches. These caches provide high,

predictable associativity regardless of the workload, and thus can keep a large portion

of the lines effectively pinned in the cache (see Section 4.3.2).

Vantage does not physically restrict line placement: lines from all partitions share

the cache. It enforces partition sizes at replacement time. On each replacement, Van-

tage needs to evict one line from a set of replacement candidates. In a partitioned

cache, this set may include good candidates from other partitions (i.e., lines that the

owning partition would have to evict anyway). To strictly enforce partition sizes, we

should always evict a candidate from the same partition as the incoming line. How-

ever, this does not scale with the number of partitions, as the portion of candidates

from that specific partition will be increasingly small with more partitions. For ex-

ample, a 16-way set-associative cache has 16 replacement candidates to choose from
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when unpartitioned, but only 2 when it is evenly divided in 8 partitions. The core

idea behind Vantage is to relax this restriction, imposing only that the rates of inser-

tions and evictions from each partition match on average. Since Vantage dynamically

adjusts how to select candidates based on the insertion rate of each partition, we call

this technique churn-based management (Section 4.3.4).

Unfortunately, churn-based management alone has several drawbacks: it allows

interference across partitions (as choosing a candidate from another partition means

taking space away from that partition and giving it to the one that caused the miss),

makes it hard to provide strong guarantees on partition sizes, and requires a complex

controller. To solve these issues, we partition most of the cache rather than all of it.

We divide cache space into a managed region and a small unmanaged region (e.g.,

15% of the cache), and partition only the managed region. Partitions can slightly

outgrow their target allocations, borrowing space from the unmanaged region instead

of from each other. This managed-unmanaged region division (Section 4.3.3) solves

all interference issues, allows for a simple controller design, and significantly increases

the associativity on the managed region.

Vantage’s control scheme is derived from statistical analysis rather than empiri-

cal observation. It achieves provable, strong guarantees, namely, it eliminates inter-

partition interference, provides precise control of partition sizes, and maintains high

partition associativities, regardless of the number of partitions or the workload.

4.3.2 Caches with High Associativity

Vantage relies on highly associative caches that meet the uniformity assumption (Sec-

tion 3.4) to provide analytical guarantees. ZCache is well-suited for this purpose, since

it can provide high associativity efficiently. However, skew-associative caches (which

zcache generalizes) can also be used. These caches exhibit two very useful properties

for partitioning: they can restrict evictions to a specific portion of lines by simply

controlling the replacement policy, and provide high associativity independently of

the workload’s access pattern.

For caches that meet the uniformity assumption, the associativity distribution can
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be derived analytically (Section 3.4.2), and is given by Equation 3.1. Figure 3.2 plots

this distribution for a varying number of replacement candidates. In particular, note

that with a large number of replacement candidates, the probability of evicting lines

with a low eviction priority quickly becomes negligible. For example, with R = 64,

the probability of evicting a line with eviction priority e < 0.8 is FA(0.8) = 10−6.

Hence, by simply controlling how lines are ranked, we can guarantee that they will

be kept in the cache with a very high probability.

Vantage assumes that the underlying cache design meets the uniformity assump-

tion FA(x). However, Vantage is not limited to zcaches and skew-associative caches.

In Section 4.6 we show that Vantage can be used with hashed set-associative caches,

although at higher cost (more ways) and with a slight loss of performance and ana-

lytical guarantees.

Assumptions: For the rest of this section, we make two assumptions in our anal-

ysis. First, we assume that the replacement candidates on each eviction are inde-

pendent and uniformly distributed. Although this is not strictly the case, it is close

enough (Section 3.4.3) that our models are accurate in practice, as we will see in

Section 4.6. Second, we assume that, on each replacement, we know the eviction pri-

ority of every candidate, as given by the replacement policy. While tracking eviction

priorities would be very expensive in practice, Section 4.4 shows that we can achieve

similar results with a much simpler scheme.

4.3.3 Managed-Unmanaged Region Division

We divide the cache in two logical regions: a managed and an unmanaged region.

This division is done by simply tagging each line as either managed or unmanaged,

and region sizes are set by controlling the flow of lines between the two regions. A

base replacement policy (e.g., LRU) ranks lines as in an undivided cache, oblivious to

the existence of the two regions. On an eviction, lines in the unmanaged region are

always prioritized for eviction over managed lines. The unmanaged region is sized so

that it captures most evictions, making evictions in the managed region negligible.



CHAPTER 4. VANTAGE 55

Evictions
Fills

Demotions

Promotions

Managed

region

Unmanaged

region

(a) Managed-unmanaged region di-
vision for a R = 16 replacement
candidates cache, and flows be-
tween regions.

0.0 0.2 0.4 0.6 0.8 1.0
Demotion priority (in managed region)

0.0

0.2

0.4

0.6

0.8

1.0

A
s
s
o
c
ia

ti
v
it
y

C
D

F

R=16

R=32

R=64

(b) Associativity CDF in the
managed region when do-
ing exactly one demotion per
eviction.

0.0 0.2 0.4 0.6 0.8 1.0
Demotion priority (in managed region)

0.0

0.2

0.4

0.6

0.8

1.0

A
s
s
o
c
ia

ti
v
it
y

C
D

F

R=16

R=32

R=64

(c) Associativity CDF in the
managed region when doing
one demotion per eviction
on average.

Figure 4.1: Managed-unmanaged region division: setup, flows and associativity in
the managed region (assuming 30% of the cache is unmanaged).

Figure 4.1a illustrates this setup. It shows the associativity distribution of a cache

with R = 16 candidates, divided in the managed and unmanaged regions, and the

flows of lines between the two. To make evictions in the managed region negligible

(≃ 10−3 probability), the unmanaged region is sized to 30% of the cache. Caches

with R > 16 will require a smaller unmanaged region. Incoming lines are inserted in

the managed region, eventually demoted to the unmanaged region, and either evicted

from there, or promoted if they get a hit. Promotions and demotions do not physically

move the line, just change its tag.

In a sense, the unmanaged region acts as a victim cache for the managed region.

Evicting a line requires that it be demoted first (saving for the rare cases where we do

not find a candidate from the unmanaged region). To keep the sizes of both regions

constant, we would have to demote one line on each replacement and promotion. We

denote the fraction of the cache devoted to the managed and unmanaged regions by

m and u, respectively (e.g., in Figure 4.1a, m = 0.7 and u = 0.3). Ignoring the flow of

promotions (which is typically small compared to the evictions), if we demote exactly

one line on each replacement, the associativity distribution for demotions inside the
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managed region is:

FM(x) ∼=
R−1
∑

i=1

B(i, R)FAi
(x) (4.1)

where B(i, R) =
(

R
i

)

(1 − u)iuR−i is the probability that i of the R replacement

candidates are in the managed region (a binomial distribution), and FAi
(x) = xi is

the nominal associativity distribution with i replacement candidates1. Figure 4.1b

plots this distribution for various values of R.

To maintain the sizes of the two regions under control, however, it is not necessary

to demote exactly one candidate per eviction. It suffices to demote one on average.

For example, some evictions might not yield any candidates with high eviction priority

from the managed region, while others might find two or more. By allowing demotions

to work on the average case rather than being affected by the worst case, associativity

increases significantly. In this case the controller only needs to select a threshold

value, which we call the aperture (A), over which it will demote every candidate that

it finds. For example, if A = 0.05, it will demote every candidate that is on the top

5% of eviction priorities (i.e., e ≥ 0.95). Since, on average, R · m of the candidates

are from the managed region, maintaining the sizes requires an aperture A = 1
R·m

.

The associativity distribution in the managed region is uniform ∼ U [1−A, 1], so the

CDF is:

FM(x) =















0 if x < 1− A
x−(1−A)

A
if 1− A ≤ x ≤ 1

1 if x > 1

(4.2)

Figure 4.1c shows the associativity distributions for several values of R. By comparing

Figure 4.1b and Figure 4.1c, we clearly see that demoting on the average significantly

improves associativity. For example, with R = 16 candidates, demoting on the av-

erage only demotes lines with eviction priority e > 0.9. Meanwhile, when demoting

always one line per eviction, 60% of the demotions will happen to lines with e < 0.9.

Overall, using the unmanaged region has several advantages. First, it enables

1This formula is approximate, because we ignore the cases i = 0 (no replacement candidates are
from the managed region, hence none can be demoted), and i = R (all the candidates are from the
managed region, so we need to evict from the managed region rather than demote). Both cases have
a negligible probability.
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the controller to work on the average in the managed region, increasing associativity.

Second, once we partition the managed region, partitions will borrow space from it

instead of from each other, eliminating inter-partition interference. Third, it will

make it practical to implement a Vantage controller (Section 4.4). While a portion of

the cache must remain unpartitioned, this is typically a small percentage, e.g., 5-15%

with R = 52 candidates (Section 4.4).

4.3.4 Churn-based Management

We now logically partition the managed region2. We have P partitions of target sizes

T1, ..., TP , so that
∑P

i=1 Ti = m (i.e., partition sizes are expressed as a fraction of the

total cache size). These target sizes are given to Vantage by the allocation policy (e.g.,

UCP or software mechanisms). Partitions have actual sizes S1, ..., SP , and insertion

rates, which we call churns, C1, ..., CP (a partition’s churn is measured in insertions

per unit of time). Churn-based management keeps the actual size of each partition

close to its target size by matching its demotion rate with its churn. It achieves

this by controlling how demotions are done. Instead of having one aperture for the

managed region, there is one aperture per partition, Ai. On each replacement, all the

candidates below their partitions’ apertures are demoted. Unlike way-partitioning,

which achieves isolation by always evicting a line from the inserting partition, Van-

tage allows a partition’s incoming line to demote others’ lines. Vantage embraces

interference and uses it to its advantage.

We now describe how churn-based management works on different cases. As in

Section 4.3.3, we ignore the flow of promotions to simplify the analysis. Promotions

are rare compared to insertions, hence we treat them as a small modeling error,

addressed when implementing the controller (Section 4.4).

Partitions with similar behavior: The simplest case happens when partitions

have both the same sizes (Si) and churns (Ci). In this case, keeping all apertures

equal, Ai = 1
R·m

, will maintain their sizes. This is independent of how the base

2Note the distinction between regions and partitions: Vantage keeps two regions, managed and
unmanaged, and divides the managed region in partitions.
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replacement policy ranks candidates, as we are demoting from the bottom Ai portion

from each partition. Furthermore, the aperture is independent from the number of

partitions: Vantage retains the same associativity as if the cache was unpartitioned.

Partitions with different behaviors: When partitions have different sizes and/or

churns, apertures need to accommodate for this. A partition with a higher churn than

the average will need a larger aperture, as we need to demote its lines at a higher

frequency; and a partition that is smaller in size than the average will also need a

larger aperture, because replacement candidates from that partition will be found

more rarely.

Overall, partitions with a larger churn and/or a smaller size than the average will

have a larger aperture, and partitions with a smaller churn and/or a larger size than

the average will have a smaller aperture. For example, consider a case with 4 equally

sized partitions (S1 = S2 = S3 = S4), where the first partition has twice the churn

as the others (C1 = 2C2, C2 = C3 = C4). The cache examines R = 16 replacement

candidates per eviction, and the managed region takes m = 62.5% of the cache. On

each replacement, R · m = 16 · 0.625 = 10 candidates are in the managed region

on average. To maintain the partitions’ sizes, on average, for every 5 demotions, 2

should be done from partition 1, and 1 demotion from each of partitions 2, 3 and 4.

Every 5 demotions, Vantage gets 5 · 10 = 50 candidates from the managed region on

average, 50/4 = 12.5 candidates per partition since they are equally sized. Therefore,

the apertures need to be A1 = 2/12.5 = 16% for partition 1, and A2 = A3 = A4 =

1/12.5 = 8% for the other partitions. Hence, partitions with disparate churns or sizes

cause associativity to be unevenly distributed.

In general, when we have partitions with different sizes Si and churns Ci, we can

derive the aperture of each partition. Out of the R · m replacement candidates per

demotion that fall in the managed region, a fraction Si∑
P

k=1
Sk

are from partition i, and

we need to demote lines at a fractional rate of Ci∑
P

k=1
Ck

in this partition. Therefore,

Ai =
Ci

∑P
k=1 Ck

∑P
k=1 Sk

Si

1

R ·m (4.3)
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Stability: Depending on the sizes and churns of the partitions, simply adjusting

their apertures may not be enough to maintain their sizes. Even if we are willing

to sacrifice associativity by allowing the aperture to reach up to 1.0 (demoting every

candidate from this partition), a partition with a large Ci/Si ratio may require a larger

aperture. Since it is undesirable to completely sacrifice associativity to maintain

partition sizes, we set a maximum aperture Amax. If using Equation 4.3 yields an

aperture larger than Amax, we have three options. First, we can do nothing and let

the partition grow beyond its target allocation, borrowing space from the unmanaged

region. Second, we can allow low-churn/size → high-churn/size partition interference

by inserting its lines in the unmanaged region (throttling its churn). Third, we can

allow high-churn/size → low-churn/size partition interference by reducing the size of

one or more low-churn partitions and allocating that space to the high-churn partition

until its aperture is lower than Amax.

Doing nothing could lead, in principle, to borrowing too much space from the

unmanaged region, making it too small and leading to frequent forced evictions from

the managed region, breaking our scheme. However, this is not the case if we allow for

some extra slack when sizing the unmanaged region. Consider what happens when

several partitions cannot match their minimum sizes. Specifically, partitions 1, ..., Q

(Q < P ) have very small sizes (e.g., 1 line each) and high churns. Each partition will

grow until it is large enough that its Ci/Si ratio can be handled with aperture Amax.

This minimum stable size is:

MSSj =
Cj

∑P
k=1 Ck

∑P
k=1 Sk

Amax ·R ·m, ∀j ∈ {1, ..., Q} (4.4)

(obtained from Equation 4.3, with Sj = MSSj and Aj = Amax). Additionally, in the

worst case, all other partitions (Q+1, ..., P ) have zero churn, so
∑P

k=1 Ck =
∑Q

k=1 Ck.

In this case, the total space borrowed from the unmanaged region is:

Q
∑

j=1

MSSj =

∑Q
j=1 Cj

∑P
k=1 Ck

∑P
k=1 Sk

Amax ·R ·m =

∑P
k=1 Sk

Amax ·R ·m (4.5)
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and assuming
∑P

k=1 Sk
∼= m,

∑Q
j=1 MSSj

∼= 1/(AmaxR). For the exact derivation,
∑P

k=1 Sk =
∑P

k=1 Tk +
∑Q

j=1 MSSj, and the target sizes achieve
∑P

k=1 Tk = m. By

substituting on the previous equation,
∑Q

j=1 MSSj = 1/(AmaxR−1/m). For any reason-

able values of Amax, R and m, AmaxR ≫ 1/m, and therefore
∑Q

j=1 MSSj
∼= 1/(AmaxR)

is a fine approximation. Hence, sizing the unmanaged region with an extra 1/(AmaxR) of

the cache guarantees that the scheme maintains the desired number of evictions from

the managed region, regardless of the number of partitions ! For example, if the cache

has R = 52 candidates, with Amax = 0.4, we need to assign an extra 1/0.4·52 = 4.8%

to the unmanaged region. Given that this is an acceptable size, we let partitions

outgrow their allocations, disallowing inter-partition interference.

Transient behavior: So far, we have analyzed what happens in a steady-state sit-

uation. However, partitions may be suddenly resized. A partition that is suddenly

downsized will need some time to reach its new target size (its aperture will be Amax

during this period). Similarly, a partition that is suddenly upsized will take some time

to acquire capacity (and will have an aperture of 0 until it reaches it). If we are re-

assigning space and upsized partitions gain capacity faster than downsized partitions

lose it, the managed region may temporarily grow larger than it should be. In our

evaluation, re-partitioning is infrequent and this is a minor issue. However, Vantage

applications that resize partitions at high frequency should control the upsizing and

downsizing of partitions progressively and in multiple steps.

Since partitions are cheap, some applications (e.g., local stores [42, 45]) might want

to have a variable number of partitions, creating and deleting partitions dynamically.

Deleting an existing partition simply requires setting its target size to 0, and its

aperture to 1.0. When most or all of its lines have been demoted, the partition

identifier can be reused for a new partition.

4.4 Vantage Cache Controller

Vantage implements partitioning through the replacement process, so only the cache

controller needs to be modified. Specifically, the controller is given the target sizes
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of each partition and the partition ID of each cache access. Partition sizes are set

by an external resource allocation policy (such as UCP), and partition IDs depend

on the specific application. In our evaluation, we have one partition per thread, but

other schemes may have other assignments, e.g., local stores [42, 45] may partition by

address range, TM and TLS [32, 71] would have extra partitions to hold speculative

data, etc. Vantage tags each line with its partition ID, and, on each replacement,

performs evictions from the unmanaged region and demotions from the managed

region, as described in Section 4.3. However, implementing a controller simply using

the previous analysis is impractical due to several reasons:

1. It is too compute-intensive: Each aperture Ai depends on the sizes and churns

of all the other partitions (Equation 4.3 in Section 4.3.4), and they need to con-

stantly change to adapt to time-varying behavior. Recomputing these on every

replacement would be extremely expensive. Also, we need to estimate the churn

(insertions/cycle) of each partition, which is not trivial.

2. It is not robust: The prior analysis has two sources of modeling errors. First,

replacement candidates are not exactly independent and uniformly distributed

(though they are close). Second, the previous analysis ignores promotions, which

have no matching demotion3. Even if we could perfectly estimate the Ai, these

modeling errors would cause partition sizes to drift away from their targets.

3. It requires knowing the eviction priority of every line (in order to know which

candidates are below the aperture): This would be extremely expensive to do in

practice.

In this section, we address these issues with a practical controller implementation

that relies on two techniques: feedback-based aperture control enables a simple and

robust controller where the required aperture is found using feedback instead of cal-

culating it explicitly, and setpoint-based demotions lets us demote lines according to

the desired aperture without knowing their eviction priorities.

3One could argue that promotions are not bounded, so they may affect the strong guarantees
derived in Section 4.3. Addressing this issue completely just requires to do one demotion per
promotion on average, but we observe that in practice, promotions are rare compared to evictions,
so demoting on evictions is enough for Vantage to work well.



CHAPTER 4. VANTAGE 62

Amax

Ai

Ti (1+slack)Ti
Si

(a) Linear transfer
function used in feed-
back-based aperture
control.

Pa
rt

it
io

n 
lin

e
s 

d
is
tr

ib

Timestamp 2550

Setpoint TS Current TS

Demote DemoteKeep

(b) Setpoint-based demo-
tions selects candidates
below setpoint (in modulo
arithmetic).

0.5

Ai

1000 1100
Si

Si range

(lines)

Dems per 256 

candidates

1000-1033 32

1034-1066 64

1067-1100 96

1101+ 128

(c) 4-entry demotion thresholds lookup ta-
ble for a 1000-line partition with 10% slack.

Figure 4.2: Feedback-based aperture control and setpoint-based demotions.

4.4.1 Feedback-based Aperture Control

Deriving the aperture of each partition is possible by using negative feedback alone.

Once again, we let partitions slightly outgrow their target allocations, borrowing

from the unmanaged region, and adjust their apertures based on how much they

outgrow them. Specifically, we derive each aperture Ai as a function of Si, as shown

in Figure 4.2a:

Ai(Si) =















0 if Si ≤ Ti

Amax

slack
Si−Ti

Ti
if Ti < Si ≤ (1 + slack)Ti

Amax if Si > (1 + slack)Ti

(4.6)

where Ti is the partition’s target size, and slack is the fraction of the target size

at which the aperture reaches Amax and tapers off. This is a classic application of

negative feedback: an increase in size causes an increase in aperture, attenuating

the size increase. The system is stable: partitions can reach and exceed a size of

(1+slack)Ti, in which case Amax aperture is applied, and the dynamics of the system

follow what was discussed in the previous section (i.e., the partition will reach a

minimum stable size MSSi). This linear transfer function is simple, works well in

practice, and the extra space requirements are small and easily derived: in the linear
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region, ∆Si = Si − Ti = slack · Si
Ai

Amax
. Using Equation 4.3 (Section 4.3.4), we get:

∆Si =
slack

Amax

Si
Ci

∑P
k=1 Sk

Si

∑P
k=1 Ck

1

R ·m =
slack

Amax

Ci
∑P

k=1 Ck

1

R
(4.7)

Therefore, the aggregate outgrow for all partitions in steady-state is:

P
∑

i=1

∆Si =
slack

Amax ·R
(4.8)

We will need to account for this when sizing the unmanaged region. This is relatively

small, e.g., with R = 52 candidates, slack = 0.1 and Amax = 0.4,
∑P

i=1 ∆Si = 0.48%

of the cache size. This also reveals the trade-off in selecting the slack: with a larger

slack, apertures will deviate less from their desired value due to instantaneous size

variations, but it requires a larger unmanaged region, as partitions will outgrow their

target sizes by a larger amount. We will see how to size the unmanaged region in

Section 4.4.3.

4.4.2 Setpoint-based Demotions

Setpoint-based demotions is a scheme to perform demotions without tracking eviction

priorities. We first explain it with a concrete replacement policy, then generalize it

to other policies.

We use coarse-timestamp LRU (Section 3.3.5) as the base replacement policy.

Each partition has a current timestamp counter that is incremented every ki ac-

cesses, and accessed lines are tagged with the current timestamp value. We choose

8-bit timestamps with ki = 1/16 of the partition’s size, which guarantees that wrap-

arounds are rare. To perform demotions, we choose a setpoint timestamp, and all the

candidates that are below it (in modulo 256 arithmetic) are demoted if the partition

is exceeding its target size. We adjust the setpoint every c candidates seen from each

partition in the following fashion: we have a counter for candidates seen from this

partition, and a counter for the number of demoted candidates, di. Every time that

the candidates counter reaches c, if di > c ·Ai (i.e., di/c > Ai), the partition’s setpoint
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is incremented, and if di < c · Ai, it is decremented. Both counters are then reset.

Additionally, we increase the setpoint every time the timestamp is increased (i.e.,

every ki accesses), so that the distance between both remains constant.

Figure 4.2b illustrates this scheme. Adjusting the setpoint allows us to track the

aperture indirectly, without profiling the distribution of timestamps in the partition.

In our controller, we find that c = 256 candidates is a sensible value. Since c is

constant and, in our evaluation, target allocations are varied sparingly (every 5 million

cycles), we do not even need to explicitly compute the desired aperture from the size

(as in Equation 4.6). Instead, we use a small 8-entry demotion thresholds lookup table

that gives the di threshold for different size ranges. Figure 4.2c shows a concrete

example of this lookup table, where we have a partition with Ti = 1000 lines, and a

10% slack. For example, if when we reach c = 256 candidates from this partition, its

size is anywhere between 1034 and 1066 lines, having more/less than 64 demotions

in this interval will cause the setpoint to be incremented/decremented. This table is

filled at resize time, and used every c candidates seen.

This scheme is also extensible to other policies beyond coarse-timestamp LRU.

For example, in LFU we would choose a setpoint access frequency, and RRIP [85] can

use a setpoint re-reference prediction value, as we will see in Section 4.6.

4.4.3 Putting it all Together

Now that we have seen the necessary techniques, we describe the implementation of

the Vantage controller in detail.

State: Figure 4.3 shows the state required by Vantage:

• Tag state: Each line needs to be tagged with its partition ID, and we need an

extra ID for the unmanaged region. For example, with P = 32 partitions, we need

33 identifiers, or 6 bits per tag. If tags are nominally 64 bits, and cache lines are

64 bytes, this is a 1.01% increase in cache state. Note that each tag also has an

8-bit timestamp field to implement the LRU replacement policy, as in the baseline

zcache.

• Per-partition state: For each partition, the controller needs to keep track of the
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Vantage Controller

Partition 0 
state (256b)

Partition 31 
state (256b)

…

Data
Array
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Tag Fields

Partition 
(6b)

Per-Partition State

CurrentTS (8b)

AccessCounter (16b)

ActualSize (16b)

SetpointTS (8b)

CandsSeen(8b)

CandsDemoted(8b)

ThrSize0 (16b) ThrDems0 (8b)

ThrSize7 (16b) ThrDems7 (8b)

Implement coarse-grain timestamp LRU
Used on accesses

Implement setpoint-based demotions
Used on replacements

8-entry demotion thresholds lookup table
Used to adjust SetpointTS (sparingly)

…

TargetSize (16b)

Figure 4.3: State required to implement Vantage: tag fields and per-partition regis-
ters. Additional state over an unpartitioned baseline is shown in blue. Each field or
register shows its size in bits.

registers detailed in Figure 4.3. We explain how each of these registers is used

below. Each register is labeled as either 8 or 16-bit, but 16-bit registers, which

track sizes or quantities relative to size, assume a cache with 216 lines. We assume

that each of these registers is kept in partition-indexed register files. With 32K

lines per bank, this amounts to 256 bits per partition. For 32 partitions and

4 banks (for an 8 MB cache), this represents 4 KBytes, less than a 0.5% state

overhead.

Hits: On each hit, the controller writes the partition’s CurrentTS into the tag’s

Timestamp field and increases the partition’s AccessCounter. This counter is used to

drive the timestamp registers forward: when AccessCounter reaches ActualSize/16,

the counter is reset and both timestamp registers, CurrentTS and SetpointTS, are

increased. This scheme is similar to the basic coarse-grained timestamp LRU re-

placement policy, except that the timestamp and access counter are per partition.

Additionally, if the tag’s Partition field indicates that the line was in the unmanaged

region, this is a promotion, so ActualSize is increased and Partition is written when

updating the Timestamp field.
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Misses: On each miss, the controller examines the replacement candidates and

performs one demotion on average, chooses the candidate to evict, and inserts the

incoming line:

• All candidates are checked for demotion: a candidate from partition p is demoted

when both ActualSize[p] >TargetSize[p] (i.e., the partition is over its target size)

and the candidate’s Timestamp field is not in between SetpointTS[p] and Cur-

rentTS[p] (as shown in Figure 4.2b), which requires two comparisons to decide. If

the candidate is demoted, the tag’s Partition field is changed to the unmanaged

region, its Timestamp field is updated to the unmanaged region’s timestamp, Ac-

tualSize[p] is decreased, and CandsDemoted[p] is increased. Regardless of whether

the candidate is demoted or not, CandsSeen[p] is increased.

• The controller evicts the candidate from the unmanaged region with the oldest

timestamp. If all candidates come from the managed region, it chooses one of

the demoted candidates arbitrarily, and if no lines are selected for demotion, it

chooses among all the candidates. Note that if the unmanaged region is sized

correctly, the common case is to find candidates from it.

• The incoming line is inserted into the cache as usual, with its Timestamp field

set to its partition’s CurrentTS register, and its ActualSize is increased. As in

a hit, AccessCounter is increased and the timestamps are increased if it reaches

ActualSize/16.

Additionally, to implement the setpoint adjustment scheme from Section 4.4.2, parti-

tion p’s setpoint is adjusted when CandsSeen[p] crosses 0. At this point, the controller

has seen 256 candidates from p since the last time it crossed 0 (since the counter is 8

bits), and has demoted CandsDemoted[p] of them. The controller finds the first entry

K in the 8-entry demotion thresholds lookup table (as in Figure 4.2b) so that the

partition’s threshold size, ThrSize[K][p], is lower than its current size, ActualSize[p].

It then compares CandsDemoted[p] with the demotion threshold, ThrDems[K][p]. If

the demoted candidates exceed the threshold, SetpointTS[p] is decreased, while if

they are below the threshold, the setpoint is increased. Finally, CandsDemoted[p] is

reset. Note that this happens sparingly, e.g., if the cache examines 64 replacement

candidates per miss, the controller does one setpoint adjustment each 256/64 = 4
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Figure 4.4: Fraction of the cache dedicated to the unmanaged region, with slack = 0.1
and R = 16, 52 candidates, both (a) as a function of Amax, with Pev = 10−2, and (b)
as a function of Pev, with Amax = 0.4.

misses on average, independently of the number of partitions.

Implementation costs: The controller requires counter updates and comparisons

on either 8 or 16-bit registers, so a few narrow adders and comparators suffice to

implement it. Operation on hits is simple and does not add to the critical path.

On misses, demotion checks are the main overhead versus an unpartitioned cache,

as the controller needs to decide whether to demote every candidate it sees, and

each demotion check requires a few comparisons and counter updates. When a W -

way zcache is used (typically W = 4 ways), replacements are done over multiple

cycles, with the cache array returning at most W candidates per cycle. Therefore, a

narrow pipeline suffices for demotions (i.e., we only need logic that can check W =

4 candidates per cycle). When using wider caches (e.g., a 16-way set-associative

cache), the controller can implement demotion checks over multiple cycles, because

the replacement process is not on the critical path. Finally, note that, while all

candidates are checked for demotion, only one on average is demoted per miss. Unlike

other partitioning schemes, Vantage does not need to implement set ordering or LRU

chains or pseudo-random number generation [82, 128, 163].

Sizing the unmanaged region: We finally have all the information needed to

size the unmanaged region. First, from Equation 3.1 (Section 4.3.2), to have a worst-

case probability of a forced eviction from the managed region Pev, we need FA(m) =
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Cores 32 cores, x86-64 ISA, in-order, IPC=1 except on memory accesses, 2 GHz

L1 caches 32KB, 4-way set associative, split D/I, 1-cycle latency

L2 cache
8MB NUCA , 4 banks, 2MB per bank, shared, non-inclusive, MESI directory
coherence, 4-cycle average L1-to-L2-bank latency, 8-cycle L2 bank latency

MCU 4 memory controllers, 200 cycles zero-load latency, 32GB/s peak memory BW

Table 4.2: Main characteristics of the large-scale CMP. Latencies assume a 32 nm
process at 2GHz.

FA(1− u) = Pev = (1− u)R. Hence, at least we need u ≥ 1− R
√
Pev. Additionally, we

need to reserve 1/(AmaxR) to allow high-churn/small-sized partitions to grow to their

minimum stable sizes, and slack/(AmaxR) for feedback-based aperture control. Sizing

u = 1 − R
√
Pev + (1+slack)/(AmaxR) accounts for all these effects. Figure 4.4 shows the

fraction of the cache that needs to be unmanaged when varying both Amax and Pev,

for a 10% slack and R = 16 or 52 candidates. For example, with 52 candidates,

having Amax = 0.4 requires 13% of the cache to be unmanaged for Pev = 10−2,

while going down to Pev = 10−4 would require 21% to be unmanaged. Different

applications will have different requirements for Pev. For example, Pev ≃ 10−2 may

suffice for applications that only require approximate partitioning, while applications

with strong partitioning and isolation requirements may need Pev ≃ 10−4 or lower.

4.5 Experimental Methodology

Modeled systems: We model both small and large-scale CMPs using zsim (Sec-

tion 3.5). Our large-scale design has 32 in-order, single-threaded x86 cores modeled

after Atom [62]. The system has private L1s and a shared 8MB, 4-bank L2, where

the different partitioning schemes are implemented. Table 4.2 shows the details of

the system. On a high-performance 32nm process, this CMP requires about 220mm2

and has a TDP of around 90W at 2GHz. Our small-scale design is similar, but has 4

cores, a 2MB L2 (1 bank) and 4GB/s of memory bandwidth.

Partitioning schemes: We compare Vantage against way-partitioning and PIPP.

Way-partitioning uses LRU, and its replacement process is implemented as in [128].

PIPP is implemented as described in [163] (pprom = 3/4, stream detection with θm ≥
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Insensitive (n)
perlbench, bwaves, gamess, gromacs, namd, gobmk, dealII,
povray, calculix, hmmer, sjeng, h264ref, tonto, wrf

Cache-friendly (f) bzip2, gcc, zeusmp, cactusADM, leslie3d, astar

Cache-fitting (t) soplex, lbm, omnetpp, sphinx3, xalancbmk

Thrashing/streaming (s) mcf, milc, GemsFDTD, libquantum

Table 4.3: Classification of SPEC CPU2006 workloads.

12.5%, 1 way per streaming application and pstream = 1/128).

Allocation policy: We use utility-based cache partitioning (UCP) to determine

space allocation among partitions [128]. UCP uses auxiliary cache monitors to es-

timate how well each core uses cache capacity, and allocates more capacity to the

threads that benefit from it the most. Each core has a small utility monitor based on

dynamic set sampling (UMON-DSS) with 64 sets. Partition sizes are found with the

Lookahead algorithm [128]. UCP repartitions the cache every 5 million cycles. When

used with Vantage, UMONs are configured with the same number of ways as way-

partitioning and PIPP are using, but since Vantage can partition at line granularity

instead of at way granularity, we linearly interpolate the miss rate curves given by

UMON, getting 256-point curves, and use them to drive the Lookahead algorithm.

Workloads: We use multiprogrammed SPEC CPU2006 application mixes, and fol-

low the methodology of prior cache partitioning studies [128, 163]. Each application in

the mix is fast-forwarded for 20 billion instructions, and the mix is simulated until all

applications have executed 200 million instructions. We report aggregate throughput

(
∑

IPCi), where each application’s IPC is measured on its first 200 million instruc-

tions. Other studies also report metrics that give insight on fairness, such as weighted

speedup or harmonic mean of weighted speedups [128, 163]. Due to lack of space, and

because UCP attempts to maximize throughput, we report throughput only. We have

checked these metrics and they do not offer additional insights. Fairness is mostly an

issue of the allocation policy, i.e., UCP.

The 29 SPEC programs are divided in four categories, following a classification

similar to the one in [83]. We first run each application alone, using cache sizes from

64KB to 8MB. Applications with less than 5 L2 misses per kilo-instruction (MPKI)
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are classified as insensitive; from the remaining ones, applications that gradually

benefit from increased cache size are classified as cache-friendly ; those where misses

decrease abruptly with size when getting close to cache capacity (over 1MB) are

classified as cache-fitting, and the ones where additional capacity does not yield any

benefit are marked as thrashing/streaming. Table 4.3 shows this classification. There

are 35 possible combinations (with repetitions) of these four categories, each of which

forms a class. In the 4-core mixes, we have 10 mixes per class, with each application

being randomly selected from the ones in its category, yielding 350 workloads. The

32-core mixes have 8 randomly chosen workloads per category, and again 10 mixes

per class, for another 350 workloads.

4.6 Evaluation

We first compare Vantage against other partitioning schemes using utility-based cache

partitioning. We then present a series of experiments focused on Vantage, showing

how to configure it, its sensitivity to configuration parameters, and confirm that the

assumptions made in the analysis are met in practice.

4.6.1 Comparison of Partitioning Schemes

Small-scale configuration: Figure 4.5a summarizes the performance results across

the 350 workload mixes on the simulated 4-core system. Each line shows the through-

put (
∑

IPCi) of a different scheme, normalized to a 16-way set-associative cache using

LRU. For each line, workloads (the x-axis) are sorted according to the improvement

achieved. All caches use simple H3 hashing [31], since it improves performance in

most cases. Way-partitioning and PIPP use a 16-way set-associative cache, while

Vantage uses a 4-way zcache with 52 replacement candidates (Z4/52), with a u = 5%

unmanaged region, Amax = 0.5 and slack = 10%. Although zcaches have a lower hit

latency, we simulate the same hit latency for all designs (which is unfair to Vantage,

but lets us isolate the improvements due to partitioning).
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Figure 4.5a shows that, overall, Vantage provides much larger improvements than

either way-partitioning or PIPP: a 6.2% geometric mean on average and up to 40%.

While Vantage slightly decreases performance for only 4% of the workloads, when

using either way-partitioning or PIPP, around 45% of the workloads show worse

throughput, often significantly (up to 22% worse for way-partitioning, and 29% worse

for PIPP). These workloads already share the cache efficiently with LRU, and parti-

tioning hurts performance by decreasing associativity. Indeed, when using 64-way set-

associative caches, way-partitioning and PIPP improve performance for most work-

loads. This shows the importance of maintaining high associativity, which Vantage

achieves.

Figure 4.5b compares the throughput of selected workload mixes. Each bar repre-

sents throughput improvements of a specific configuration, and there is an additional

configuration per set, an unpartitioned Z4/52 zcache, to determine how much the

higher associativity of the zcache is helping Vantage. As we can see, most of the

benefits are due to Vantage, not the zcache, though they are complementary. We

have selected these workloads to illustrate several points. First, we observe that

PIPP sometimes shows significantly different behavior from way-partitioning and

Vantage, sometimes outperforming both (sftn1), and sometimes doing considerably
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worse (ffft4). PIPP does not use LRU, and performance differences do not neces-

sarily come from partitioning. Nevertheless, both way-partitioning and Vantage can

benefit from another replacement policy, as we will see in Section 4.6.2. Between

way-partitioning and Vantage, Vantage achieves higher performance in all except

3 of the 350 workloads. In these rare cases (e.g., ssst7), way-partitioning has a

slight edge as Vantage cannot partition the whole cache, which affects some mixes,

especially those with cache-fitting applications where the miss rate curve decreases

abruptly. Way-partitioning and PIPP, however, do significantly worse on associati-

vity-sensitive workloads, such as fffn7 and ffnn3. We can see that, in these cases,

the highly-associative zcache has a more noticeable effect in improving Vantage’s

performance. Finally, mixes ttnn4, sfff6 and sssf6 illustrate typical behavior of

workloads that benefit more from partitioning than from high associativity: both

way-partitioning and PIPP improve performance, with PIPP having a slight edge

over way-partitioning, while Vantage provides significantly higher throughput.

Large-scale configuration: Figure 4.6 shows the throughput improvements of dif-

ferent partitioning schemes for the 32-core system, in the same fashion as Figure 4.5a.

In this configuration, the baseline, way-partitioning and PIPP configurations use a 64-

way cache, while Vantage uses the same Z4/52 zcache and configuration of the 4-core

experiments. Results showcase the scalability of Vantage: while way-partitioning and

PIPP degrade performance for most workloads, even with their highly-associative

caches, Vantage continues to provide significant improvements on most workloads

(8.0% geometric mean and up to 20%) with the same configuration as the 4-core

system. While low associativity is again the culprit with way-partitioning, PIPP has

much more severe slowdowns (up to 3×) because its approach of assigning an inser-

tion position equal to the number of allocated ways causes very low insertion positions

with many partitions, leading to high contention at the lower end of the LRU chain

and hard to evict dead lines at the higher end.

Partition sizes and associativity: Figure 4.7 shows, for each partitioning scheme,

the target and actual partition sizes as a function of time for a specific partition and

workload mix in the 4-core system. As we can see, way-partitioning and Vantage
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Figure 4.7: Comparison of way-partitioning, Vantage and PIPP for a specific partition
in a 4-core mix. Plots show target partition size (as set by UCP) and actual size for
the three schemes. We also show heat maps of the measured associativity CDF on
this partition for way-partitioning and Vantage.

closely track the target size, while PIPP only approximates it. More importantly, in

Vantage the partition is never under its target allocation, while in PIPP the target is

often not met (e.g., in some intervals the target size is 2048 lines, but the partition

has less than 100). We also observe that with way-partitioning, when the target

size is suddenly decreased, reaching the new target allocation can take a significant
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amount of time (100Mcycles). This happens because the applications that now own

the reallocated ways need to access all the sets and evict all of this partition’s lines

in those ways. In contrast, Vantage adapts much more quickly, both because of the

better location randomization of zcaches and because it works on global, not per-

set, allocations. Finally, at times UCP gives a negligible allocation to this partition

(128 lines in Vantage, 2048 lines, i.e., 1 way in way-partitioning/PIPP). Vantage

cannot keep the partition size that small, so it grows to its minimum stable size,

which hovers around 400-700 lines. In this cache, the worst-case minimum stable

size is 1/(AmaxR) = 1/0.5·52 = 3.8%, i.e., 1260 lines, but replacements caused by other

partitions help this partition stay smaller.

Figure 4.7 also shows the time-varying behavior of the associativity distributions

on way-partitioning and Vantage using heat maps. For each million cycles, we plot the

portion of eviction/demotions that happen to lines below a given eviction/demotion

priority (i.e., the empirical associativity CDFs). For a given point in time (x-axis),

the higher in the y-axis the heat map starts becoming darker, the more skewed the

demotion/eviction priorities are towards 1.0, and the higher the associativity. Van-

tage achieves much higher associativity than way-partitioning: when the partition is

large (7 ways at 200-400Mcycles), way-partitioning gets acceptable associativity, but

when given one way, evictions have almost uniformly distributed eviction priorities

in [0, 1], and even worse at times (e.g., 700-800Mcycles). In contrast, Vantage main-

tains a very high associativity when given a large allocation (at 200-400Mcycles, the

aperture hovers around 3%) because the churn/size ratio is low. Even when given a

minimal allocation, demoted lines are uniformly distributed in [0.5, 1], by virtue of

the maximum aperture, giving acceptable worst-case associativity.

4.6.2 Vantage Evaluation

Sensitivity analysis: Figure 4.8a shows the performance of Vantage on the 4-core

workloads when the size of the unmanaged region changes from 5% to 30% in a

Z4/52 zcache. Differences are relatively small, and a size of 5% delivers the highest

throughput. Figure 4.8b shows what portion of evictions happen from the managed
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Figure 4.8: Throughput and fraction of evictions in the managed region when varying
the size of the unmanaged region, on a Z4/52 cache with Amax = 0.5 and slack = 0.1.

region (because no candidates are from the unmanaged region). For u = 5%, on most

workloads 1% to 10% of the evictions come from the managed region. By having

a smaller unmanaged region, Vantage can partition a larger portion of the cache,

but this slightly degrades isolation. UCP is not very sensitive to strict isolation or

partition size control, but benefits from having more space to partition, so 5% works

best. Other applications may need better isolation, which would require a larger

unmanaged region. We have also studied the sensitivity of Vantage to the maximum

aperture, Amax, and the slack needed for feedback-based aperture control. With

UCP, Vantage is largely insensitive to these parameters: ranges of 5− 70% for Amax

and slack > 2% work well.

Comparison with analytical models: In Figure 4.8b, we have included a round

marker at the point where each line crosses the worst-case eviction priority Pev, as

predicted by our models (Section 4.4.3). Most workloads achieve probabilities below

the predicted worst-case. For those that exceed it, we have determined that frequent

transients are the main culprit: these workloads have fast time-varying behavior,

UCP continuously changes target sizes, and the size of the unmanaged region shrinks

during transients, increasing evictions. Nevertheless, Figure 4.8b shows that we can
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Figure 4.9: Throughput improvements of
Vantage on the 4-core system, using dif-
ferent cache designs.
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Figure 4.10: Throughput improvements
on the 4-core system using RRIP variants
and Vantage.

make evictions in the managed region arbitrarily rare by increasing the size of the

unmanaged region, achieving strong isolation guarantees.

We also simulated Vantage in two unrealistic configurations to test that our as-

sumptions hold: first, using feedback-based aperture control but with perfect knowl-

edge of the apertures instead of using setpoint-based demotions, and second, using

a random candidates cache, an unrealistic cache design that gives truly independent

and uniformly distributed candidates. Both design points perform exactly as the

practical implementation of Vantage. These results show that our simple controller

provides the benefits predicted by the analytical models.

Set-associative and low-associativity caches: Figure 4.9 compares Vantage on

different cache designs on the 4-core system: our original Z4/52 zcache; a Z4/16

zcache, and 64 and 16-way set-associative caches. Vantage is tuned in each case: the

16-way set-associative and Z4/16 caches use an unmanaged region u = 10%, while

the 64-way set-associative and Z4/52 caches use u = 5%. All use Amax = 0.5 and

slack = 0.1. As we can see, Vantage works well on set-associative caches and degrades

gracefully with lower associativity: the 64-way set-associative cache and Z4/52 zcache

achieve practically the same performance, followed very closely by the Z4/16 design,

and the 16-way set-associative does sensibly worse, although still significantly better

than either way-partitioning or PIPP with a 16-way cache (Figure 4.5a). These results
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show that, although Vantage works best and provides stronger isolation with zcaches,

it is practical to use with traditional set-associative caches.

Comparison with alternative replacement policies: We have used LRU so

far because the partitioning schemes we compare Vantage with are based on LRU.

However, much prior work has improved on LRU, both in performance and implemen-

tation cost. The RRIP family of replacement policies [85] is one such example. They

include scan-resistant SRRIP, thrash-resistant BRRIP, and scan and thrash-resistant

DRRIP, which uses set dueling to choose between SRRIP and BRRIP dynamically.

Additionally, TA-DRRIP enhances performance in shared caches by using TADIP’s

thread-aware set dueling mechanism on DRRIP [83]. These policies do not require set

ordering, so they are trivially applicable to zcaches and Vantage. Figure 4.10 com-

pares the performance achieved by using these policies with two variants of Vantage,

one using LRU and other using DRRIP. All RRIP variants use a 3-bit re-reference

prediction value (RRPV) in each tag instead of 8-bit LRU timestamps. In Vantage-

DRRIP, we have a per-partition setpoint RRPV instead of a setpoint LRU timestamp,

and do not age lines from partitions below their target size, but otherwise the scheme

works as in [85]. Additionally, for Vantage-DRRIP to work, we have to (1) modify

UCP’s UMON-DSS mechanism to work with RRIP instead of LRU, and (2) provide

a way to decide between SRRIP and BRRIP. To achieve this, UMON-DSS is modi-

fied to maintain RRIP chains instead of LRU chains (i.e., lines are ordered by their

RRPVs), and one half of the UMON sets use SRRIP, while the other half use BRRIP.

Each time partitions are resized, the best of the two policies is chosen for each parti-

tion and used in the next interval. Because the decision of whether to use SRRIP or

BRRIP is done per partition, Vantage-DRRIP is automatically thread-aware.

Figure 4.10 shows that Vantage-LRU outperforms all RRIP variants, and Vantage-

DRRIP further outperforms Vantage-LRU, although by a small amount: the geomet-

ric means over all benchmarks are 2.5% for TA-DRRIP, 6.2% for Vantage-LRU, and

6.8% for Vantage-DRRIP. We can extract three conclusions from these experiments.

First, Vantage can be easily modified to work with alternative replacement policies.

Second, Vantage is still beneficial when using a better replacement policy. Moreover,
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partitioning has several other uses beyond improving miss rates, as explained in Sec-

tion 4.1. Finally, we note that these results are preliminary, as there may be better

ways than using UMON to decide partition sizes and choosing the replacement policy.

4.7 Summary

We have presented Vantage, a scalable and efficient scheme for fine-grained cache

partitioning. Vantage works by matching the insertion (churn) and demotion rates of

each partition, thus keeping their sizes approximately constant. It partitions most of

the cache, and uses the unmanaged region to eliminate inter-partition interference and

achieve a simple implementation. Vantage is derived from analytical models, which

allow it to provide different degrees of isolation by varying the size of the unman-

aged region: a small unmanaged region (5%) suffices to provide moderate isolation,

while a larger region (20%) can provide strong isolation and eliminate inter-partition

interference. Thus, Vantage satisfies the needs of applications with different isola-

tion requirements, all while maintaining a good associativity per partition regardless

of the number of partitions. Under UCP, Vantage outperforms existing partitioning

schemes on small-scale CMPs, but most importantly, it continues to deliver the same

benefits on CMPs with tens of threads, where previous schemes fail to scale.
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SCD: Scalable Coherence Directory

with Flexible Sharer Set Encoding

5.1 Introduction

Implementing coherent cache hierachies becomes increasingly difficult as we scale

CMPs into the hundreds and thousands of cores. Large-scale CMPs require a directory-

based protocol, which introduces a coherence directory between the private and shared

cache levels to track and control which caches share a line and serve as an ordering

point for concurrent requests. However, as we discussed in Section 2.2.3 implementing

directories that can track hundreds of sharers efficiently has been problematic so far.

Moreover, directories are fully shared resources, so, like shared caches, they can intro-

duce a significant amount of interference across competing applications in the form of

invalidations in the lower levels of the cache hierarchy. Previously proposed directory

implementations do not address this issue, precluding a cache coherent CMP that

provides QoS guarantees.

In this chapter, we present the Scalable Coherence Directory (SCD), a novel di-

rectory scheme that scales to thousands of cores efficiently, while incurring negligible

invalidations and keeping an exact sharer representation. We leverage zcache’s analyt-

ical properties to design and analyze SCD, and show that it can provide performance

guarantees with a minimal amount of overprovisioning. This chapter presents the

79
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following contributions:

1. We present the SCD design. We recognize that, to be scalable, a directory im-

plementation only needs the number of bits per tracked sharer to scale gracefully

(e.g., remaining constant or increasing logarithmically) with the number of cores.

SCD exploits this insight by using a variable-size sharer set representation: lines

with one or few sharers use a single directory tag, while widely shared lines use

additional tags. We propose a hybrid pointer/bit-vector organization that scales

logarithmically and can track tens of thousands of cores efficiently. While conven-

tional set-associative arrays have difficulties with this approach, highly-associative

zcache arrays allow SCD to work.

2. We develop analytical models that characterize SCD and show how to size it.

First, we show that for a given occupancy (fraction of directory capacity used),

SCD incurs the same number of directory-induced invalidations and average num-

ber of lookups, independently of the workload. Second, different workloads im-

pose varying capacity requirements, but the worst-case capacity requirement is

bounded and small. Hence, directories can be built to guarantee a negligible

number of invalidations and a small average number of lookups in all cases, guar-

anteeing performance and energy efficiency with just a small amount of overpro-

visioning (around 5-10% depending on the requirements, much smaller than what

is required with set-associative arrays [59]). These results are useful for two rea-

sons. First, they enable designers to quickly size directories without relying on

empirical results and extensive simulations. Second, they provide guarantees on

the interference introduced by the shared directory, which is paramount to achieve

performance isolation among multiple competing applications sharing the chip

(CMPs need a fully shared directory even if they have private last-level caches).

This analytical characterization also applies to sparse directories implemented

with zcaches.

3. We evaluate SCD by simulating CMPs with 1024 cores and a 3-level cache hi-

erarchy. We show that, for the same level of provisioning, SCD is 13× more

area-efficient than sparse directories and 2× more area-efficient than hierarchical
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Scheme
Scalable
area

Scalable
energy

Exact
sharers

Dir-
induced
invals

Extra
protocol

complexity

Extra
latency

Duplicate-tag Yes No Yes No No No

Sparse full-map No Yes Yes Yes No No

Coarse-grain/limptr No Yes No Yes Small No

Hierarchical sparse Yes Yes Yes Yes High Yes

Tagless No No No Yes Medium No

SPACE No Yes No Yes Small No

Cuckoo Directory No Yes Yes Negligible No No

SCD Yes Yes Yes Negligible No No

Table 5.1: Qualitative comparison of directory schemes. The first three properties
are desirable, while the last three are undesirable.

organizations. SCD can track 128MB of private cache space with a 20MB direc-

tory, taking only 3% of total die area. Moreover, we show that the analytical

models on invalidations and energy are accurate in practice, enabling designers to

guarantee bounds on performance, performance isolation, and energy efficiency.

5.2 Background on Directory Organizations

Cache coherence is needed to maintain the illusion of a single shared memory on a

system with multiple private caches. A coherence protocol arbitrates communication

between the private caches and the next level in the memory hierarchy, typically a

shared cache (e.g., in a CMP with per-core L2s and a shared last-level cache) or main

memory (e.g., in multi-socket systems with per-die private last-level caches). In this

work we focus on directory-based, write-invalidate protocols, as alternative protocols

scale poorly beyond a few private caches [73]. These protocols use a coherence di-

rectory to track which caches share a line, enforce write serialization by invalidating

or downgrading access permissions for sharers, and act as an ordering point for con-

current requests to the same address. Implementing a directory structure that scales

to hundreds of sharers efficiently has been problematic so far. We now review dif-

ferent directory organizations, with a focus on comparing their scalability. Table 5.1

summarizes their characteristics.
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Traditional directory schemes do not scale well with core count. Duplicate-tag

directories maintain a full copy of all the tags tracked in the lower level. Their area

requirements scale well with core count, but they have huge associativity requirements

(e.g., tracking 1024 16-way caches would require 16384 ways), so they are limited to

small-scale systems [13, 149]. In contrast, sparse directories [69] are organized as an

associative array indexed by line address, and each directory tag encodes the set of

sharers of a specific address. Sparse directories are energy-efficient. However, due to

their limited associativity, sparse directories are often forced to evict entries, causing

directory-induced invalidations in the lower levels of the hierarchy. This can pose

large performance overheads and avoiding it requires directories that are significantly

overprovisioned [59].

The encoding method for the sharer set is a fundamental design choice in sparse di-

rectories. Full-map sparse directories encode the sharer set exactly in a bit-vector [69].

They support all sharing patterns, but require storage proportional to the number of

cores, and scale poorly beyond a few tens of cores. Alternatively, sparse directories

can use a compressed but inexact encoding of the sharer set. Traditional alternatives

include coarse-grain sharer bit-vectors [69], and limited pointer schemes, in which

each entry can hold a small number of sharer pointers, and lines requiring more shar-

ers either cause one of the existing sharers to be invalidated, a broadcast on future

invalidations and downgrades [3, 102], or trigger an interrupt and are handled by

software [33]. Inexact sharer set schemes trade off space efficiency for additional

coherence traffic and protocol complexity.

In contrast to these techniques, hierarchical sparse directories [66, 158, 164] allow

an exact and area-efficient representation of sharer sets. Hierarchical directories are

organized in multiple levels: each first-level directory encodes the sharers of a subset

of caches, and each successive level tracks directories of the previous level. A two-

level organization can scale to thousands of cores efficiently. For example, using 32

first-level directories and one (possibly banked) second-level directory, we can track

1024 caches using 32-bit sharer vectors, or 4096 caches using 64-bit vectors. However,

hierarchical directories have two major drawbacks. First, they require several lookups

on the critical path, increasing directory latency and hurting performance. Second,
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multi-level coherence protocols are more complex than single-level protocols, and

significantly harder to verify [40, 41].

Motivated by the shortcomings of traditional approaches, recent work has inves-

tigated alternative directory organizations that improve scalability in a single-level

directory. Tagless directories [170] use Bloom filters to represent sharer sets. Tagless

does not store address tags, making it highly area-efficient (as we will see later, SCD

spends more space storing addresses than actual coherence information). Although

Tagless reduces area overheads, both area and energy scale linearly with core count,

so Tagless is area-efficient but not energy-efficient at 1024 cores [59]. Additionally,

it requires significant modifications to the coherence protocol, and incurs additional

bandwidth overheads due to false positives. Moreover, Tagless relies on the tracked

caches being set-associative, and would not work with other array designs, such as

zcaches. SPACE [172] observes that applications typically exhibit a limited number

of sharing patterns, and introduces a level of indirection to reduce sharing pattern

storage: a sharing pattern table encodes a limited number of sharing patterns with

full bit-vectors, and an address-indexed sparse directory holds pointers to the pattern

table. Due to the limited sharing pattern table size, patterns often need to be merged,

and are inexact. However, multiple copies of the sharing pattern table must be main-

tained in a tiled organization, increasing overheads with the number of tiles [172].

Although these schemes increase the range of sharers that can be tracked efficiently,

they are still not scalable and require additional bandwidth.

Alternatively, prior work has proposed coarse-grain coherence tracking [29, 54,

169]. These schemes reduce area overheads, but again increase the number of spurious

invalidation and downgrade messages, requiring additional bandwidth and energy.

Finally, to reduce directory overheads, WayPoint [91] proposes to cache a sparse full-

map directory on the last-level cache, using a hash table organization. This reduces

directory overheads and works well if programs have significant locality, but it reduces

directory coverage and introduces significant complexity.

Finally, Cuckoo Directory [59] uses skew-associative arrays with W-ary Cuckoo

hashing instead of set-associative arrays to build sparse directories. As we saw in
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Section 3.3.4, zcache is much better suited for a hardware implementation than con-

ventional Cuckoo hashing. ZCache requires fewer lookups and far fewer moves (saving

energy), can be pipelined (reducing latency), and enables using a replacement pol-

icy. For example, in a 4-way array, evaluating 52 replacement candidates requires 13

lookups and at most 2 moves in a zcache, but 17 lookups and 16 moves in a Cuckoo

Directory. However, the Cuckoo Directory replacement process can stop early, while

zcaches expand a fixed number of candidates. SCD combines the best features from

both schemes to implement its replacement process. Ferdman et al. empirically

show that Cuckoo Directory reduces evictions (and therefore directory-induced inval-

idations) to negligible levels with arrays that are somewhat larger than the caches

they are tracking. SCD’s analytical models are also applicable to Cuckoo Directories,

providing an analytical foundation and enabling tighter sizing.

As Table 5.1 shows, all these schemes suffer from one or several significant draw-

backs. In contrast, SCD, which we present in this paper, represents sharer sets exactly

and in a scalable fashion (both in area and energy), does not require coherence pro-

tocol modifications, and can be designed to guarantee an arbitrarily small amount

of invalidations. SCD’s design relies on the flexibility provided by efficient highly-

associative caches, which we review next.

5.3 Scalable Coherence Directory

To scale gracefully, SCD exploits the insight that a directory does not need to provide

enough capacity to track a specific number of addresses, but a specific number of

sharers, ideally as many as can fit in the tracked caches. However, sparse directories

use address-indexed arrays, so they use one directory tag per address. Instead, SCD

represents sharer sets using a variable number of tags per address. Lines with one or a

few sharers use a single directory tag with a limited pointer format, and widely shared

lines employ a multi-tag format using hierarchical bit-vectors. We first describe the

array used to hold the directory tags, then explain how SCD represents and operates

on sharer sets.
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Figure 5.2: SCD line formats. Field widths
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Figure 5.3: Example operation: adding a sharer to a full limited pointer line.

5.3.1 SCD Array

Figure 5.1 shows the structure of the SCD array. It is similar to a zcache, with one

hash function per way. However, hash functions take the concatenation of the line

address and an index as input instead of using just the address. Every line in the

directory will have a tag with index 0. Additionally, lines that use more than one

directory tag will have those additional tags at locations with indices other than 0.

These indices need not be consecutive, and are included in the hash functions so that

multiple tags representing the same line map to different sets.

SCD’s replacement process is very similar to zcache’s, since it is more efficient than

Cuckoo Directory’s, as explained in Section 5.2. However, SCD does not pipeline the

replacement process, and stops looking for candidates as soon as an empty tag is

found. As we will see, this greatly improves directory efficiency. SCD can optionally

implement a replacement policy. However, replacement policies only make sense for

underprovisioned directories — in Section 5.4 we will see that SCD can be sized to

cause a negligible amount of evictions regardless of the workload, making a replace-

ment policy unnecessary.
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5.3.2 Line Formats

SCD encodes lines using different tag formats. Figure 5.2 illustrates these formats

for a 1024-sharer directory. Lines with few sharers use a single-tag, limited pointer

representation, with three pointers in the example. When more sharers are needed,

SCD switches to a multi-tag format using hierarchical bit-vectors. In the example,

a 32-bit root bit-vector tag indicates which subsets of cores share the line, while

a set of 32-bit leaf bit-vectors encode the sharers in each subset. Leaf bit-vectors

include a leaf number field that encodes the subset of sharers tracked by each leaf

(e.g., leaf number 0 tracks sharers 0–31, 1 tracks 32–63, and so on). We will explain

SCD’s operation using this two-level representation, but this can be easily extended

to additional levels.

5.3.3 Directory Operations

SCD needs to support three operations on sharer sets: adding a sharer when it

requests the line, removing a sharer when it writes back the line, and retrieving all

sharers for an invalidation or downgrade.

Adding and removing sharers: On a directory miss, the replacement process

allocates one tag for the incoming line with index 0 (possibly evicting another tag).

This tag uses the limited pointer format. Further sharers will use additional pointers.

When a sharer needs to be added and all the pointers are used, the line is switched

to the multi-tag format as follows: First, the necessary bit-vector leaves are allocated

for the existing pointers and the new sharer. Leaf tags are then populated with the

existing and new sharers. Finally, the limited pointer tag transitions to the root bit-

vector format, setting the appropriate bits to 1. Figure 5.3 illustrates this process.

Removing a sharer (due to clean or dirty writebacks) follows the inverse procedure.

When a line loses all its sharers, all its directory tags are marked as invalid.

Invalidations and downgrades: Invalidations are caused by both coherence (on

a request for exclusive access, the directory needs to invalidate all other copies of

the line) and evictions in the directory. Downgrades only happen due to coherence
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(a request for read on an exclusive line needs to downgrade the exclusive sharer, if

any). Coherence-induced invalidations are trivial: all the sharers are sent invalidation

messages. If the address is represented in the hierarchical bit-vector format, all leaf

bit-vectors are marked as invalid, and the root bit-vector tag transitions to the limited

pointer format, which then encodes the index of the requesting core.

In contrast, eviction-induced invalidations happen to a specific tag, not an address.

Limited pointer and root bit-vector tag evictions are treated like coherence-based

invalidations, invalidating all sharers so that the tag can be reused. Leaf bit-vector

evictions, however, only invalidate the subset of sharers represented in the tag. As

we will see later, eviction-induced invalidations can be made arbitrarily rare.

Additional levels and scalability: SCD can use hierarchical bit-vector represen-

tations with more than two levels. A two-level approach scales to 256 sharers with

∼16 bits devoted to track sharers (pointers/bit-vectors) per tag, 1024 sharers with

∼32 bits, and 4096 sharers with ∼64 bits. A three-level representation covers 4096

sharers with ∼16 bits, 32768 sharers with ∼32 bits, and 256K sharers with ∼64 bits.

Four-level implementations can reach into the millions of cores. In general, space and

energy requirements increase with O(logN), where N is the number of sharers, be-

cause the limited bit-vectors and the extended address space increase logarithmically.

Since each tag needs on the order of 40-50 bits to store the line address anyway, having

on the order of 16-32 bits of sharer information per tag is a reasonable overhead.

5.3.4 Implementation Details

SCD’s multi-tag format achieves the scalability of hierarchical directories, but since

all tags are stored in the same array, it can be made transparent to the coherence

protocol. We now discuss how to implement SCD to make it completely transparent

to the protocol, and take the delay of additional accesses out of the critical path,

providing the performance of a sparse directory.

Scheduling: Directories must implement some scheduling logic to make operations

appear atomic to the protocol while ensuring forward progress and fairness. This
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is required in both sparse directories and SCD. For example, in a sparse directory

adding a sharer is a read-modify-write operation, and the scheduling logic must pre-

vent any intervening accesses to the tag between the read and the write (e.g., due

to a conflicting request or an eviction). However, because SCD operations some-

times span multiple tags, ensuring atomicity is more involved. Note that the access

scheduling logic makes the array type transparent to the directory: so long as the

SCD array maintains atomicity, forward progress and fairness, it can be used as a

drop-in replacement for a sparse array, with no changes to the coherence protocol or

controller.

Our SCD implementation satisfies these goals with the following scheduling poli-

cies. First, as in conventional sparse directories, concurrent operations to the same

address are serialized, and processed in FCFS order, to preserve atomicity and en-

sure fairness. Second, as in zcaches, the array is pipelined, and we allow concurrent

non-conflicting lookups and writes, but only allow one replacement at a time. If the

replacement process needs to move or evict a tag from an address of a concurrent re-

quest, it waits until that request has finished, to preserve atomicity. Third, similar to

prior proposals using Cuckoo hashing where insertions are sometimes on the critical

path [59, 96], we introduce an insertion queue to avoid the latency introduced by the

replacement process. Tags are allocated in the insertion queue first, then inserted in

the array. We have observed that, in practice, a 4-entry insertion queue suffices to

hide replacement delay for sufficiently provisioned directories, where replacements are

short, while severely underprovisioned directories require an 8-entry queue. Finally,

to avoid deadlock, operations that require allocating new tags and block on a full

insertion queue are not started until they allocate their space. This way, the replace-

ment process is able to move or evict tags belonging to the address of the blocking

request.

Performance: With this implementation, operations on a specific address are exe-

cuted atomically once they start. Operations that require allocating one or more tags

(adding a sharer) are considered completed once they have reserved enough space in

the insertion queue. Writebacks, which require removing a sharer and never allocate,
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are considered complete once the root tag is accessed. Therefore, adding and remov-

ing a sharer are typically as fast in SCD as in a conventional sparse directory. On

the other hand, coherence-induced invalidations on widely shared addresses need to

access several leaf tags to retrieve the sharers, invalidate them, and respond to the

original requester once all invalidated sharers have responded. This could take longer

with SCD than with a sparse directory, where the whole sharer set can be retrieved

in one access (e.g., processing 1024 vs 32 sharers/cycle in our example). However,

the critical-path latency of invalidations is determined by serialization latency in the

network, as the directory can only inject one invalidation request per cycle, so SCD

and sparse full-map directories perform similarly. Invalidation delays have a small

performance impact in our simulations (Section 5.6), but should they become an is-

sue, they can be reduced by processing invalidations in a hierarchical fashion, using

multicast networks, or cruise-missile invalidates [13].

5.3.5 Storage Efficiency

We define storage efficiency as the average number of sharers that SCD encodes per

tag. Storage efficiency determines how many directory tags are needed, and therefore

how to size the directory. When all the lines have a single sharer, SCD has a storage

efficiency of 1 sharer/tag. This is a common case (e.g., running a separate workload on

each core, or a multithreaded workload where each working set is thread-private and

shared code footprint is minimal). When lines have multiple sharers, SCD typically

achieves an efficiency higher than 1. For example, using the format in Figure 5.2, a

limited pointer tag with three sharers would have a storage efficiency of 3, while a

fully shared line would have an efficiency of 1024 sharers/33 tags ∼= 31 sharers/tag.

If the expected efficiency is consistently higher than 1, one could undersize or power

off part of the directory and still achieve negligible invalidations. Note that SCD

has a much lower dynamic range of storage efficiency than sparse directories (1-31

sharers/tag vs 1-1024 sharers/tag) but has far fewer sharer bits per tag (∼32 bits vs

∼1024 bits).

Although, as we will see in Section 5.6, SCD typically achieves a storage efficiency
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≥ 1, its worst-case efficiency is smaller than 1. In particular, the worst-case efficiency

is 1/2, which happens when a single-sharer line is stored using a two-level bit-vector.

Worst-case efficiency decreases as we scale up (e.g., with N -level bit-vectors, it is

1/N), and might be an issue if the designer wants the directory to provide strict

guarantees on evictions (e.g., to avoid interference among applications sharing the

CMP). Therefore, we propose two techniques to improve worst-case efficiency.

Line coalescing: A simple optimization is to inspect entries that have few sharers

on writebacks, and coalesce them into a limited pointer representation if possible. For

example, following Figure 5.2, if every time we remove a sharer and the root bit-vector

has two or fewer bits set, we try to coalesce the line, the worst-case efficiency becomes

2/3. If we do this with every line with 3 or fewer sharers, the worst-case efficiency

becomes 3/4. Coalescing improves storage efficiency at the expense of additional

accesses.

Pointer in root bit-vector: If strict efficiency guarantees are necessary, we can

change the tag format to guarantee a worst-case efficiency of 1 by including a single

pointer in the root bit-vector tag. When switching a limited pointer tag to a hierar-

chical bit-vector, the root bit-vector tag keeps one of the sharers in the pointer. If

that sharer is removed, one of the sharers represented in the leaf bit-vector tags is

moved over to the root tag. With more than two levels, both root and intermediate

levels would need to implement the pointer. This guarantees that every tag represents

at least one sharer, so the worst-case efficiency is 1. As we will see in Section 5.4, this

enables strict guarantees on directory-induced invalidations. However, this format

improves storage efficiency at the expense of additional area. For example, using this

format in the example in Figure 5.2 would require 45 bits/tag for sharer information

instead of 39 to hold the extra pointer (assuming we widen the leaf bit-vectors and

narrow the root one).
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5.4 Analytical Framework for Directories

We now show that directories built using zcache-like arrays in general, and SCD

in particular, can be characterized with analytical models. First, we show that the

fraction of replacements that result in evictions and the distribution of lookups per re-

placement is a function of the directory’s occupancy, i.e., the fraction of directory tags

used. Second, although directory occupancy is time-varying and workload-dependent,

we show that it can be easily bounded. Together, these results show that, with a small

amount of overprovisioning, SCD can be designed to guarantee negligible invalidations

and high energy efficiency in the worst case.

Uniformity assumption: In our analytical models, we rely on the assumption that

the candidates visited in the replacement process have an uniform random distribution

over the cache array (Section 3.4.2). We have already shown that, in practice, this is

an accurate assumption for both zcache and Vantage. We leverage this assumption

in the derivations, and verify its accuracy in Section 5.6 using simulation.

Evictions as a function of occupancy: Assume the directory has T tags, of

which U are used. We define directory occupancy as occ = U/T . Per the unifor-

mity assumption, replacement candidates are independent and uniformly distributed

random variables, i.e., candi ∼ U [0, T − 1], and the probability of one being used

is Prob(candi used) = occ. If the replacement process is limited to R replacement

candidates, the probability that all candidates are being used and we are forced to

evict one of them is simply:

Pev(occ) = Prob(cand0 used ∧ ... ∧ candR−1 used)

= Prob(candi used)
R = occR (5.1)

Not surprisingly, this equation has the same form as Equation 3.1, and can also be

explained as a particular case of zcache when the replacement policy simply prioritizes

unused lines over used lines for eviction. Figure 5.4 plots this probability in linear and

semi-logarithmic scales. As in Equation 3.1, with a reasonably large R, the eviction

probability quickly becomes negligible. For example, with R = 64, Pev(0.8) = 10−6,
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Figure 5.4: Probability that a replacement results in
an eviction as a function of occupancy, for R=8, 16, 64
and 128 replacement candidates, in linear and semi-
logarithmic-scales.

Figure 5.5: Average lookups
per replacement as a func-
tion of occupancy for a 4-
way array.

i.e., only one in a million replacements will cause an eviction when the directory is

80% full.

Lookups per replacement: We now derive the distribution and average number

of lookups per replacement as a function of occupancy and the number of ways,

W . While Equation 5.1 characterizes worst-case behavior, this illustrates average

behavior, and therefore average latency and energy requirements of the directory.

First, the probability that all lines are occupied in a single lookup (W ways) is

p = occW . Second, the maximum number of lookups is L = R/W . Therefore, the

probability of finding an empty line in the kth lookup is pk = (1−p)pk−1, k ≤ L. Also,

the probability of doing L lookups and not finding any empty line is Pev. Therefore,

the average number of lookups is:

AvgLookups(occ) =
L
∑

k=1

k(1− p)pk−1 + L · Pev

=
1− pL

1− p
=

1− occR

1− occW
(5.2)

Figure 5.5 plots this value for different numbers of replacement candidates. Fortu-

nately, even for high occupancies, the average number of lookups is much lower than

the worst case (R/W ). In fact, when evictions are negligible, the average is almost

independent of R, and is simply 1/(1− p) = 1/(1− occW ). Therefore, assuming that
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we design for a negligible number of evictions, the maximum number of candidates

R is irrelevant in the average case. In other words, a reasonable design methodology

is to first define the target occupancy based on how much extra storage we want to

devote versus how expensive allocation operations are, then set R high enough to

satisfy a given eviction probability Pev.

Bounding occupancy: Occupancy is trivially bounded by 1.0 (the directory can-

not use more lines than it has). However, if we can bound it to a smaller quantity, we

can guarantee a worst-case eviction probability and average lookups independently of

the workload. In general, the number of used tags is U = load/eff, where load is the

number of sharers that need to be tracked, and eff is the storage efficiency. There-

fore, occ = U/T = load/T
eff

. We can bound storage efficiency to eff ≥ 1.0 sharers/line

(Section 5.3.5). With a single-banked directory, the worst-case load is trivially the

aggregate capacity of the tracked caches (in lines), which we denote C. Therefore, if

we never want to exceed a worst-case occupancymaxOcc, we should size the directory

with T = C/maxOcc tags. This in turn limits Pev and AvgLookups. For example,

to ensure that the occupancy never exceeds 90%, we would need to overprovision

the directory by 11%, i.e., have 11% more tags than lines are tracked, and with a

4-way, 64-replacement candidate array, this would yield worst-case Pev(0.9) = 10−3

and worst-case AvgLookups(0.9) = 2.9 lookups/replacement. If we wanted a lower

bound on Pev (e.g., to provide stricter non-interference guarantees among competing

applications sharing the CMP), we could use R = 128, which would give Pev = 10−6,

and still require 2.9 average lookups. Furthermore, most applications will not reach

this worst-case scenario, and the directory will yield even better behavior. Alter-

natively, designers can provision the directory for an expected range of occupancies

instead of for the worst case, reducing guarantees but saving storage space. In con-

trast, set-associative directories need to be overprovisioned by 2× or more to reduce

evictions, and provide no guarantees [59].

When directories are banked, as it is commonly done with large-scale designs,

this bound needs to be relaxed slightly, because the tracked caches will impose a
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different load on each bank. If a reasonable hash function is used, distributing ad-

dresses uniformly across the K directory banks, from basic probability theory, load

has a binomial distribution ∼ B(C, 1/K), with mean C/K and standard deviation
√

C/K · (1− 1/K). Therefore, the lower the number of banks, the more concentrated

these values will be around the mean. In the CMP we study (C = 221 lines, K = 64

banks), the standard deviation is only 0.5% of its mean, and it can be assumed that

the worst-case load ∼= C/K is constant across banks. In general, both Pev and the

number of lookups can be treated as functions of random variable C to determine the

exact bounds for a given amount of overprovisioning.

In summary, we have seen that SCD can be characterized with analytical models,

and can be tightly sized: high occupancies can be achieved with efficient replacements

and incurring a negligible amount of evictions. These models apply to SCD and

regular sparse directories implemented with arrays where the uniformity assumption

holds (skew-associative caches, zcaches or Cuckoo Directories). We will show that

these models are accurate in practice using simulation.

5.5 Experimental Methodology

Modeled system: We use zsim (Section 3.5) to model a large-scale CMP with

1024 cores, shown in Figure 5.6. Table 5.2 summarizes its main characteristics. Each

core is in-order and single-threaded, modeled after Atom [62], and has split 32KB

L1 instruction and data caches and a private, inclusive, 128KB L2. All cores share

a 256MB L3, which is kept coherent using a MESI coherence protocol. The CMP

is divided in 64 tiles, each having 16 cores, a directory and L3 bank, and a memory

controller. Both L2 and L3 are 4-way zcaches with 16 and 52 replacement candidates,

respectively. All directories and all caches except the L1s useH3 hash functions, which

are simple to implement and work well in practice [31]. Tiles are connected with an

8×8 mesh network-on-chip (NoC) with physical express links.

The system we model is in line with several large-scale CMP proposals, such as

Rigel [90, 91] and ATAC [102], and represents a reasonable scale-up of commercial

designs like Tilera’s Gx-3100 [153], which has 100 cores and 32MB of distributed,
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Figure 5.6: Simulated 64-tile, 1024-core CMP: global tile view (including network
links) and tile organization.

Cores 1024 cores, x86-64 ISA, in-order, IPC=1 except on memory accesses, 2 GHz

L1 caches 32KB, 4-way set associative, split D/I, 1-cycle latency

L2 caches 128KB private per-core, 4-way 16-candidate zcache, inclusive, 5-cycle latency

L3 cache
256MB NUCA, 64 banks (1 bank/tile), fully shared, 4-way 52-candidate
zcache, non-inclusive, 10-cycle bank latency

Global
NoC

8×8 mesh with express physical links every 4 routers, 128-bit flits and links,
X-Y routing, 2-cycle router traversal, 1-cycle local links, 3-cycle express links

Coherence
protocol

MESI protocol, split request-response, no forwards, no silent drops; sequential
consistency

Memory
controllers

64 MCUs (1 MCU/tile), 200 cycles zero-load latency, 5GB/s per controller
(optical off-chip interface as in [102])

Table 5.2: Main characteristics of the simulated 1024-core CMP.

directory-coherent last-level cache that can be globally shared, and is implemented at

40 nm. We estimate that our target CMP should be implementable at 14 or 11 nm.

Using McPAT [108], we find that a scaled-down version of this system with 8 tiles

and 128 cores would require 420mm2 and 115W at 32 nm. We use the component

latencies of this scaled-down CMP in the 1024-core simulations.

Directory implementations: We compare three different directory organizations:

sparse, sparse hierarchical (two-level), and SCD. The classic sparse organization has

a full-map 1024-bit sharer vector per line. The hierarchical implementation has a

distributed first directory level every two tiles, and a second, banked directory level.

Therefore, both levels have 32-bit sharer vectors. SCD has the same organization
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as shown in Figure 5.2, with 3 limited pointers and a 32/32 2-level bit-vector orga-

nization. All organizations nominally use 4-way zcache arrays with 52 replacement

candidates and H3 hash functions, so the sparse organization is similar to a Cuckoo

Directory [59]. All directories are modeled with a 5-cycle access latency. We com-

pare directories with different degrees of coverage. Following familiar terminology

for TLBs, we define coverage as the maximum number of addresses that can be rep-

resented in the directory, as a percentage of the total lines in the tracked caches.

Therefore, 100%-coverage Sparse and SCD have as many tags as lines in the tracked

caches, while a hierarchical directory with 100% coverage has twice as many tags (as

each address requires at least two tags, one per level).

Workloads: We simulate 14 multithreaded workloads selected from multiple suites:

PARSEC [16] (blackscholes, canneal, fluidanimate), SPLASH-2 [161] (barnes, fft, lu,

ocean, radix, water), SPEC OMP2001 (applu, equake, wupwise), SPEC JBB2005

(specjbb), and BioParallel [84] (svm). We have selected workloads that scale reason-

ably well to 1024 cores and exhibit varied behaviors in the memory hierarchy (L1, L2

and L3 misses, amount of shared data, distribution of sharers per line, etc.). We simu-

late complete parallel phases (sequential portions of the workload are fast-forwarded),

and report relative execution times as the measure of performance. Runs have at least

200 million cycles and 100 billion instructions, ensuring that all caches are warmed

up. We perform enough runs to guarantee stable averages (all results presented have

95% confidence intervals smaller than 1%).

5.6 Evaluation

5.6.1 Comparison of Directory Schemes

Directory size and area: Table 5.3 shows the directory size needed by the dif-

ferent directory organizations (SCD, Sparse, and Hierarchical) for 128 to 1024 cores.

We assume line addresses to be 42 bits. Storage is given as a percentage of total

tracked cache space. All directories have 100% coverage.

As we can see, SCD significantly reduces directory size. A 2-level SCD uses
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Cores
SCD

storage
Sparse
storage

Hier.
storage

Sparse
vs SCD

Hier.
vs SCD

128 10.94% 34.18% 21.09% 3.12× 1.93×
256 12.50% 59.18% 24.22% 4.73× 1.94×
512 13.87% 109.18% 26.95% 7.87× 1.94×

1024 15.82% 209.18% 30.86% 13.22× 1.95×

Table 5.3: Directory size requirements for different organizations. Size is given as
a percentage of the aggregate capacity of the tracked caches, assuming a 42-bit line
address, 64-byte lines and 100% coverage.

3×–13× less space than a conventional sparse directory, and around 2× less than a

2-level hierarchical implementation. A 3-level SCD would be even more efficient (e.g.,

requiring 18 bits of coherence data per tag instead of 39 at 1024 cores), although gains

would be small since the address field would take most of the tag bits.

We can approximate directory area using directory size and assuming the same

storage density for the L3 cache and the directory. On our 1024-core CMP, SCD would

require 20.2MB of total storage, taking 3.1% of die area, while a two-level hierarchical

directory would require 39.5MB, taking 6.1% of die area. Sparse directories are

basically unimplementable at this scale, requiring 267MB of storage, as much as the

L3 cache.

Performance: Figure 5.7 compares execution time, global NoC traffic and average

memory access time among different directory organizations. Each directory is sim-

ulated at both 100% and 50% coverage. Smaller values are better for all graphs, and

results are normalized to those of an idealized directory (i.e., one with no invalida-

tions). Recall that all directory organizations use 4-way/52-candidate zcache arrays.

We will discuss set-associative arrays in Section 5.6.4.

Looking at Figure 5.7a, we see that both SCD and Sparse achieve the performance

of the ideal directory in all applications when sized for 100% coverage, while their 50%-

sized variants degrade performance to varying degrees (except on canneal, which we

will discuss later, where performance increases). Underprovisioned Sparse directories

perform slightly better than SCD because their occupancy is lower, as they require

one line per address. Hierarchical directories, on the other hand, are slightly slower

even at 100% coverage, as they require an additional level of lookups, and their
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Figure 5.7: Comparison of nominally provisioned (100% coverage) and underprovi-
sioned (50% coverage) directory organizations: SCD, sparse full-map (FM) and 2-level
sparse hierarchical (HR). All directories use 4-way/52-candidate zcache arrays.

performance degrades significantly more in the undersized variant. Note that the

50%-coverage Hierarchical directory has about the same area as the 100%-coverage

SCD.

Figures 5.7b and 5.7c give more insight into these results. Figure 5.7b breaks down

NoC traffic into GET (exclusive and shared requests for data), PUT (clean and dirty

writebacks), coherence INV (invalidation and downgrade traffic needed to maintain

coherence), and eviction INV (invalidations due to evictions in the directory). Traffic

is measured in flits. We see that all the 100%-sized directories introduce practically

no invalidations due to evictions, except SCD on canneal, as canneal pushes SCD oc-

cupancy close to 1.0 (this could be solved by overprovisioning slightly, as explained in

Section 5.4). The undersized variants introduce significant invalidations. This often
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Figure 5.8: Comparison of array operations (lookups and writes) of sparse full-map
(FM) and SCD with 100% coverage.

reduces PUT and coherence INV traffic (lines are evicted by the directory before the

L2s evict them themselves or other cores request them). However, those evictions

cause additional misses, increasing GET traffic. Undersized directories increase traf-

fic by up to 2×. Figure 5.7c shows the effect that additional invalidations have on

average memory access time (AMAT). It shows normalized AMAT for the different

directories, broken into time spent in the L2, local directory (for the hierarchical or-

ganization), NoC, directory and L3, coherence invalidations, and main memory. Note

that the breakdown only shows critical-path delays, e.g., the time spent on invali-

dations is not the time spent on every invalidation, but the critical-path time that

the directory spends on coherence invalidations and downgrades. In general, we see

that the network and directory/L3 delays increase, and time spent in invalidations

decreases sometimes (e.g., in fluidanimate and canneal). This happens because evic-

tion invalidations (which are not on the critical path) reduce coherence invalidations

(on the critical path). This is why canneal performs better with underprovisioned

directories: they invalidate lines that are not reused by the current core, but will

be read by others (i.e., canneal would perform better with smaller private caches).

Dynamic self-invalidation [103] could be used to have L2s invalidate copies early and

avoid this issue.

In general, we see that hierarchical directories perform much worse when under-

sized. This happens because both the level-1 directories and level-2 (global) directory

cause invalidations. Evictions in the global directory are especially troublesome, since

all the local directories with sharers must be invalidated as well. In contrast, an un-

dersized SCD can prioritize leaf or limited pointer lines over root lines for eviction,

avoiding expensive root line evictions.
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Figure 5.9: Average and maximum used lines as a fraction of tracked cache space
(in lines), measured with an ideal SCD directory with no evictions. Configurations
show 1 to 4 limited pointers, without and with coalescing. Each bar is broken into
line types (limited pointer, root bit-vector and leaf bit-vector). Each dot shows the
maximum instantaneous occupancy seen by any bank.

Energy efficiency: Due to a lack of energy models at 11 nm, we use the number

of array operations as a proxy for energy efficiency. Figure 5.8 shows the number

of operations (lookups and writes) done in SCD and Sparse directories. Each bar

is normalized to Sparse. Sparse always performs fewer operations because sharer

sets are encoded in a single line. However, SCD performs a number of operations

comparable to Sparse in 9 of the 14 applications. In these applications, most of the

frequently-accessed lines are represented with limited pointer lines. The only applica-

tions with significant differences are barnes (5%), svm, fluidanimate (20%), lu (40%)

and canneal (97%). These extra operations are due to two factors: first, operations

on multi-line addresses are common, and second, SCD has a higher occupancy than

Sparse, resulting in more lookups and moves per replacement. However, SCD lines

are narrower, so SCD should be more energy-efficient even in these applications.

5.6.2 SCD Occupancy

Figure 5.9 shows average and maximum used lines in an ideal SCD (with no evictions),

for different SCD configurations: 1 to 4 limited pointers, with and without coalescing.

Each bar shows average occupancy, and is broken down into the line formats used

(limited pointer, root bit-vector and leaf bit-vector). Results are given as a fraction

of tracked cache lines, so, for example, an average of 60% would mean that a 100%-

coverage SCD would have a 60% average occupancy assuming negligible evictions.

These results show the space required by different applications to have negligible
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Figure 5.10: Measured fraction of evictions as a function of occupancy, using SCD
on 4-way zcache arrays with 16, 52 and 104 candidates, in semi-logarithmic scale.
Empirical results match analytical models.

evictions.

In general, we observe that with one pointer per tag, some applications have a

significant amount of root tags (which do not encode any sharer), so both average and

worst-case occupancy sometimes exceed 1.0×. Worst-case occupancy can go up to

1.4×. However, as we increase the number of pointers, limited pointer tags cover more

lines, and root tags decrease quickly (as they are only used for widely shared lines).

Average and worst-case occupancy never exceed 1.0× with two or more pointers,

showing that SCD’s storage efficiency is satisfactory. Coalescing improves average

and worst-case occupancy by up to 6%, improving workloads where the set of shared

lines changes over time (e.g., water, svm, canneal), but not benchmarks where the

set of shared lines is fairly constant (e.g., fluidanimate, lu).

5.6.3 Validation of Analytical Models

Figure 5.10 shows the measured fraction of evictions (empirical Pev) as a function of

occupancy, on a semi-logarithmic scale, for different workloads. Since most applica-

tions exercise a relatively narrow band of occupancies for a specific directory size, to

capture a wide range of occupancies, we sweep coverage from 50% to 200%, and plot

the average for a specific occupancy over multiple coverages. The dotted line shows

the value predicted by the analytical model (Equation 5.1). We use 4-way arrays with

16, 52 and 104 candidates. As we can see, the theoretical predictions are accurate in

practice.

Figure 5.11 also shows the average number of lookups for the 52-candidate array,
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and replacements are energy-efficient with sufficiently provisioned directories.
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Figure 5.12: Measured fraction of evictions as a function of occupancy, using SCD on
set-associative arrays with 16, 32 and 64 ways, in semi-logarithmic scale.

sized at both 50% and 100% coverage. Each bar shows the measured lookups, and the

red dot shows the value predicted by the analytical model. Again, empirical results

match the analytical model. We observe that with a 100% coverage, the number

of average lookups is significantly smaller than the maximum (R/W = 13 in this

case), as occupancy is often in the 70%-95% range. In contrast, the underprovisioned

directory is often full or close to full, and the average number of lookups is close to

the maximum.

In conclusion, we see that SCD’s analytical models are accurate in practice.

This lets architects size the directory using simple formulas, and enables provid-

ing strict guarantees on directory-induced invalidations and energy efficiency with a

small amount of overprovisioning, as explained in Section 5.4.



CHAPTER 5. SCD 103

5.6.4 Set-Associative Caches

We also investigate using SCD on set-associative arrays. Figure 5.12 shows the frac-

tion of evictions as a function of occupancy using 16, 32 and 64-way caches. All

designs use H3 hash functions. As we can see, set-associative arrays do not achieve

the analytical guarantees that zcaches provide: results are both significantly worse

than the model predictions and application-dependent. Set-associative SCDs incur a

significant number of invalidations even with a significantly oversized directory. For

example, achieving Pev = 10−3 on these workloads using a 64-way set-associative

design would require overprovisioning the directory by about 2×, while a 4-way/52-

candidate zcache SCD needs around 10% overprovisioning. In essence, this happens

because set-associative arrays violate the uniformity assumption, leading to worse

associativity than zcache arrays with the same candidates.

These findings essentially match those of Ferdman et al. [59] for sparse directories.

Though not shown, we have verified that this is not specific to SCD — the same pat-

terns can be observed with sparse and hierarchical directories as well. In conclusion,

if designers want to ensure negligible directory-induced invalidations and guarantee

performance isolation regardless of the workload, directories should not be built with

set-associative arrays. Note that using zcache arrays has more benefits in directories

than in caches. In caches, zcaches have the latency and energy efficiency of a low-way

cache on hits, but replacements incur similar energy costs as a set-associative cache

of similar associativity (Section 3.3.2). In directories, the cost of a replacement is also

much smaller since replacements are stopped early.

5.6.5 Replacement Policy

Figure 5.13 shows the execution time when using an underprovisioned 52-candidate

SCD under different replacement policies. Execution times are normalized to an

ideal SCD with no evictions. We only show underprovisioned directories because

well-provisioned directories show negligible evictions, and the replacement policy is

irrelevant. We compare LRU, NumSharers, Cuckoo and Random policies. LRU

is implemented with 8-bit coarse-grain timestamps as described in Section 3.3.5.
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Figure 5.13: Execution time penalty for using an underprovisioned SCD (50% cover-
age) under several replacement policies. Results are normalized to an ideal SCD (no
evictions).

NumSharers simply prioritizes candidates by their number of sharers, conservatively

overestimating the number of sharers of a root line as the number of bits set times the

leaf bit-vector size. NumSharers requires no extra storage, but needs a small amount

of logic. Cuckoo models the replacement process of Cuckoo Directories instead of

zcaches, where candidates are obtained depth-first and the line displaced at the max-

imum move threshold is evicted, as explained in Section 5.2. Finally, Random simply

selects a candidate at random.

Although performance varies by application, we can make several observations.

First, LRU generally outperforms the other policies, so if designers are to implement

an underprovisioned directory (e.g., for an application-specific accelerator where typi-

cal sharing patterns are known in advance to not stress the directory beyond a certain

capacity), it may be desirable to invest in additional state for the replacement pol-

icy. Second, NumSharers performs well when there is a high spread in the number

of sharers (e.g., svm, lu), but performs like Random replacement when most data

is private (e.g., equake, fft). Finally, Cuckoo replacement performs equivalently to

Random, which makes it sub-optimal with underprovisioned directories.

5.7 Summary

We have presented SCD, a single-level, scalable coherence directory design that is

area-efficient, energy-efficient, requires no modifications to existing coherence proto-

cols, represents sharer sets exactly, and incurs a negligible number of invalidations.

SCD exploits the insight that directories need to track a fixed number of sharers,
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not addresses, by representing sharer sets with a variable number of tags: lines with

one or few sharers use a single tag, while widely shared lines use additional tags.

SCD uses efficient highly-associative caches that allow it to be characterized with

simple analytical models, and enables tight sizing and strict probabilistic bounds on

evictions and energy consumption. SCD requires 13× less storage than conventional

sparse full-map directories at 1024 cores, and is 2× smaller than hierarchical directo-

ries while using a simpler coherence protocol. Using simulations of a 1024-core CMP,

we have shown that SCD achieves the predicted benefits, and its analytical models

on evictions and energy efficiency are accurate in practice.



Chapter 6

GRAMPS: Dynamic Fine-Grain

Scheduling of Irregular Data, Task

and Pipeline Parallelism

6.1 Introduction

Large-scale CMPs require abundant parallelism, but most programmers find it hard

to expose enough parallelism using conventional low-level techniques. This has cre-

ated a renewed interest in high-level parallel programming models such as Cilk [60],

TBB [81], CUDA [122], OpenCL [94], and StreamIt [151]. These models provide

constructs to express parallelism and synchronization in a safe and manageable way,

and their runtimes take care of resource management and scheduling for the program-

mer. However, for this approach to succeed, we need efficient parallel runtimes and

schedulers. Unfortunately, as Section 2.3.1 discusses, previously proposed scheduling

techniques have significant drawbacks except with a restricted set of programming

models. On one hand, dynamic schedulers (such as Task-Stealing or Breadth-First)

work well on programs with no or simple dependencies (e.g., fork-join), but they pro-

duce inefficient schedules and cannot bound memory footprint under more complex

dependencies (e.g., pipeline-parallel programs). On the other hand, Static schedulers

handle programs with complex dependencies well, but do not admit run-time load

106
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balancing, so variability introduced by the application or the underlying hardware

causes load imbalance, hindering performance.

In this chapter, we present a scheduler implementation for pipeline-parallel pro-

grams that performs fine-grain dynamic load balancing efficiently. Specifically, we

implement the first real runtime for GRAMPS [146], a programming model that fo-

cuses on supporting applications with irregular task, pipeline and data parallelism (in

contrast to classical stream programming models and schedulers, which require pro-

grams to be regular). GRAMPS applications are expressed as a graph of stages that

communicate either explicitly through data queues or implicitly through memory

buffers. Compared to programming models with simpler semantics (such as Task-

Stealing), knowing the application graph gives two main benefits. First, the graph

contains all the producer-consumer relationships, enabling improved locality. Sec-

ond, memory footprint is easily bounded by limiting the size of queues and memory

buffers. However, prior GRAMPS work [146] was based on an idealized simulator with

no scheduling overheads, making it an open question whether a practical GRAMPS

runtime could be designed. To this end, this chapter presents the following contribu-

tions:

1. We present the first real implementation of a GRAMPS runtime for multi-core

machines. The scheduler introduces two novel techniques. First, task-stealing

with per-stage queues and a queue backpressure mechanism enable dynamic load

balancing while maintaining bounded footprint. Second, a buffer management

technique based on packet-stealing enables dynamic allocation of data packets

at low overhead, while maintaining good locality even in the face of frequent

producer-consumer communication. To our knowledge, this is the first runtime

that supports dynamic fine-grain scheduling of irregular streaming applications.

While our runtime is specific to GRAMPS, the techniques used can be applied

to other streaming programming models, such as StreamIt [151] or Delite [26].

We evaluate this runtime on a variety of benchmarks using a modern multi-core

machine, and find that it efficiently schedules both simple and complex application

graphs while preserving locality and bounded footprint.

2. We compare GRAMPS with commonly used scheduling techniques. Since the



CHAPTER 6. GRAMPS 108

GRAMPS programming model provides a superset of the constructs of other mod-

els, the runtime can work with the other families of schedulers. We implement

these schedulers and compare them using the same infrastructure, allowing us to

focus on the differences between schedulers, not runtime implementations. We

find that Task-Stealing is generally a good approach to schedule simple graphs,

but becomes inefficient with complex graphs or ordered queues, and does not

guarantee bounded footprint in general. Breadth-First scheduling is simple, but

does not take advantage of pipeline parallelism and requires significantly more

footprint than other approaches, putting more pressure on the memory subsys-

tem. Finally, Static scheduling provides somewhat better locality than schedulers

using dynamic load balancing due to carefully optimized, profile-based schedules.

However, this benefit is negated by significant load imbalance, both from applica-

tion irregularities and the dynamic nature of the underlying hardware. We show

that our proposed GRAMPS scheduler achieves significant benefits over each of

these approaches.

6.2 Background on Scheduling Techniques

In this section, we give the necessary background and definitions for different schedul-

ing approaches: Task-Stealing, Breadth-First, Static, and GRAMPS. Rather than

comparing specific scheduler implementations, our objective is to distill the key

scheduling policies of each and to compare them.

6.2.1 Scheduler Features

We use four main criteria to compare scheduling approaches:

• Support for shaders: The scheduler supports a built-in construct for data-

parallel work, which is automatically parallelized by the scheduler across inde-

pendent lightweight instances.

• Support for producer-consumer: The scheduler is aware of data produced as

intermediate results (i.e., created and consumed during execution) and attempts
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Approach
Supports Producer- Hierarch- Adaptive

Examples
Shader Consumer ical Work Schedule

Task-Stealing No No No Yes Cilk, TBB, OpenMP
Breadth-First Yes No Yes No CUDA, OpenCL

Static Yes Yes Yes No StreamIt, Imagine

GRAMPS Yes Yes Yes Yes GRAMPS

Table 6.1: Comparison of different scheduling approaches.

to exploit this during scheduling.

• Hierarchical work: The scheduler supports work being expressed and grouped

at different granularities rather than all being expressed at the finest granularity.

• Adaptive schedule: The scheduler has freedom to choose what work to execute

at run-time, and can choose from all available work to execute.

Using the above criteria, we discuss the four scheduling approaches considered.

Table 6.1 summarizes the differences between scheduling approaches.

6.2.2 Previous Scheduling Approaches

Task-Stealing: A Task-Stealing scheduler sees an application as a set of explicitly

divided, concurrent and independent tasks. These tasks are scheduled on worker

threads, where each worker thread has a queue of ready tasks to which it enqueues

and dequeues tasks. When a worker runs out of tasks, it tries to steal tasks from

other workers.

Task-Stealing has been shown to impose low overheads and scale better than al-

ternative task pool organizations [76]. Therefore, it is used by a variety of parallel

programming models, such as Cilk [60], X10 [34], TBB [81], OpenMP [53], and Ga-

lois [99].

Task-Stealing is rooted in programming models that exploit fine-grain parallelism,

and often focus on low-overhead task creation and execution [10]. As a result, they

tend to lack features that add overhead, such as task priorities. All tasks appear

to be equivalent to the scheduler, preventing it from exploiting producer-consumer

relationships. Task-Stealing has several algorithmic options that provide some control

over scheduling, such as the order in which tasks are enqueued, dequeued and stolen
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(e.g., FIFO or LIFO) or the choice of queues to steal from (e.g., randomized or nearest

neighbor victims). Several programming models, such as Cilk and X10, focus on fork-

join task parallelism. In these cases, LIFO enqueues and dequeues with FIFO steals

from random victims is the most used policy, as it achieves near-optimal performance

and guarantees that footprint grows at most linearly with the number of threads [19].

However, several studies have shown that there is no single best scheduling policy

in the general case [53, 67, 76]. In fact, Galois, which targets irregular data-parallel

applications that are often sensitive to the scheduling policy, exposes a varied set of

policies for task grouping and ordering, and enables the programmer to control the

scheduling policy [99, 119].

In this work we leverage Task-Stealing as an efficient load balancing mechanism,

combining it with additional techniques to schedule pipeline-parallel applications ef-

ficiently.

Breadth-First: In Breadth-First scheduling, the application is specified as a se-

quence of data-parallel stages or kernels. A stage is written in an implicitly parallel

style that defines the work to be performed per input element. Stages are executed

one at a time, and the scheduler automatically instances and manages a collection of

shaders that execute the stage, with an implicit barrier between stages.

This model is conceptually very simple, but has weaknesses in extracting paral-

lelism and constraining data footprint. If an application has limited parallelism per

stage but many independent stages, the system will be under-utilized. Furthermore,

even if a stage produces results at the same rate as the next stage that will consume

them, the explicit barrier leaves no alternative but to spend memory space and band-

width to spill the entire intermediate output of the first stage and to read it back

during the second stage.

GPGPU programming models (e.g., CUDA [122] and OpenCL [94]) rely on a

GPU’s high bandwidth and large execution context count to implement Breadth-First

schedulers. However, such assumptions could be problematic for a general-purpose

multi-core machine.
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Static: In this scheduling approach, an application is expressed as a graph of stages,

which communicate explicitly via data streams. The scheduler uses static analysis,

profiling, and/or user annotations to derive the execution time of each stage and the

communication requirements across stages. Using this knowledge, it schedules stages

across execution contexts in a pattern optimized for low inter-core communication

and small memory footprints [64, 88, 98, 125]. Scheduling is done offline, typically by

the compiler, eliminating run-time scheduling overheads.

Static schedulers take advantage of producer-consumer locality by scheduling pro-

ducers and consumers in the same or adjacent cores. They work well when all stages

are regular, but cannot adapt to irregular or data-dependent applications.

This scheduling approach is representative of StreamIt [151] and streaming archi-

tectures [48, 92], where it is assumed that a program has full control of the machine.

However, it can suffer load imbalance in general-purpose multi-cores where resources

(e.g., cores or memory bandwidth available to the application) can vary at run-time,

as we will see in Section 6.7.

6.3 The GRAMPS Programming Model

We now discuss the core concepts of the GRAMPS programming model that are rele-

vant to scheduling. However, GRAMPS is expressive enough to describe a wide vari-

ety of computations. A full description of all constructs supported by the GRAMPS

programming model and its detailed API can be found in [145].

GRAMPS applications are structured as graphs of application-defined stages with

producer-consumer communication between stages through data queues. Application

graphs may be pipelines, but cycles are also allowed. Figure 6.1 shows an example

application graph.

The GRAMPS programming model defines two types of stages: Shaders and

Threads (there are also Fixed-function stages, but they are effectively Thread stages

implemented in hardware and not relevant to this paper). Shader stages are stateless

and automatically instanced by the scheduler. They are an efficient mechanism to

express data-parallel regions of an application. Thread stages are stateful, and must
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Figure 6.1: A GRAMPS application: the raytracing graph from [146].

be manually instanced by the application. Thread stages are typically used to im-

plement task-parallel, serial, and other regions of an application characterized by (1)

large per-element working sets or (2) operations dependent on multiple elements at

once (e.g., reductions or re-sorting of data).

Stages operate upon data queues in units of packets, which expose bundles of

grouped work over which queue operations and runtime decisions can be amortized.

The application specifies the capacity of each queue in terms of packets and whether

GRAMPS must maintain its contents in strict FIFO order. Applications can also use

buffers to communicate between stages. Buffers are statically sized random-access

memory regions that are well suited to store input datasets and final results.

There are three basic operations on queues: reserve, commit, and push. reserve

and commit claim space in a queue and notify the runtime when the stage is done

with it (either input was consumed or output was produced). Thread stages explicitly

use reserve and commit. For Shader stages, GRAMPS implicitly reserves packets

before running a shader and commits them when it finishes. push provides support

for shaders with variable output. Shaders can push elements to a queue instead of

whole packets. These elements are buffered and coalesced into full packets by the

runtime, which then enqueues them. For example, in Figure 6.1 the Shadow Intersect

stage operates on 32-ray input packets using SIMD operations, but the Shade stage

produces a variable number of output rays. Push queues allow full 32-ray packets to

be formed, maintaining the efficiency of SIMD operations.

Queue sets provide a mechanism to enable parallel consumption with synchroniza-

tion: packets are consumed in sequence within each subqueue, but different subqueues



CHAPTER 6. GRAMPS 113

may be processed in parallel. Consider a renderer updating its final output image:

with unconstrained parallelism, instances cannot safely modify pixel values without

synchronization. If the image is divided into disjoint tiles and updates are grouped

by tile, then tiles can be updated in parallel. In Figure 6.1, by replacing the input

queue to the frame buffer stage with a queue set, the stage can be replaced with an

instanced Thread stage (with one instance per subqueue) to exploit parallelism.

A GRAMPS scheduler should dynamically multiplex Thread and Shader stage

instances onto available hardware contexts. The application graph can be leveraged

to (1) reduce footprint by giving higher priority to downstream stages, so that the

execution is geared towards pulling the data out of the pipeline, (2) bound footprint

strictly by enforcing queue sizes, and (3) exploit producer-consumer locality by co-

scheduling producers and consumers as much as possible.

At a high level, GRAMPS and streaming programming models have similar goals:

both attempt to minimize footprint, exploit producer-consumer locality, and load-

balance effectively across stages. However, GRAMPS achieves these goals via dy-

namic scheduling at run-time, while Static scheduling performs it offline at compile-

time. GRAMPS also dynamically emulates filter fusion and fission [64] by co-locating

producers and consumers on the same execution context and by time-multiplexing

stages. Most importantly, Static schedulers rely on regular stage execution times and

input/output rates to derive the long-running steady state of an application, which

they can then schedule [104]. In contrast, GRAMPS does not require applications to

have a steady state, allowing dynamic or irregular communication and execution pat-

terns. For instance, a thread stage can issue an impossibly large reserve, which will

be satisfied only when all the upstream stages have finished, thus effectively forming

a barrier.

6.4 GRAMPS Runtime Implementation

Task-based schedulers, such as Task-Stealing, can perform load balancing efficiently

because they represent work in compact tasks, so the cost of moving a task between

cores is significantly smaller than the time it takes to execute it. However, these
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schedulers do not include support for data queues. On the other hand, in Static

streaming schedulers worker threads simply run through a pre-built schedule, and

have no explicit notion of a task. Work is implicitly encoded in the availability of

data in each worker’s fixed-size input buffers. Since scheduling and buffer manage-

ment are so fundamentally bound, fine-grain load balancing on streaming runtimes is

unachievable.

To achieve fine-grain load balancing and bounded footprint, the GRAMPS runtime

decouples scheduling and buffer management. The runtime is organized around two

entities:

• A scheduler that tracks runnable tasks and decides what to run on each thread

context.

• A buffer manager that allocates and releases packets. It is essentially a specialized

memory allocator for packets.

6.4.1 Scheduler Design

The GRAMPS scheduler is task-based: at initialization, the scheduler creates a num-

ber of worker threads using PThread facilities. Each of these threads has task queues

with priorities, to which it enqueues newly produced tasks and from which it dequeues

tasks to be executed. As in regular task-stealing, when a worker runs out of tasks, it

tries to obtain more by stealing tasks from other threads. Worker threads leverage

the application graph to determine the order in which to execute and steal tasks. All

these operations are performed in a scalable but globally coordinated fashion.

Figure 6.2 shows an overview of the scheduler organization. We begin by describ-

ing how different kinds of stages are represented and executed in the runtime. We

then describe the scheduling algorithms in detail.

Shader Stages: Shader stages are stateless and data-parallel, and a Shader can

always be run given a packet from its input queue. Therefore, every time an input

packet for a Shader stage is produced, a new Shader task with a pointer to that

packet is generated and enqueued in the task queue. Shaders cannot block, so they

are executed non-preemptively, avoiding context storage and switching overheads.
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Figure 6.2: Scheduler organization and task/packet flows.

Shaders have two types of output queues: packet queues, to which they produce

full packets, and push queues, to which they enqueue element by element. Execut-

ing a Shader with no push queues is straightforward: first, the output packets (or

packet) are allocated by the buffer manager. The Shader task is then executed, its

input packet is released to the buffer manager, and the generated packets are made

available, possibly generating additional tasks. Shaders with push queues are treated

slightly differently: each worker thread has a coalescer, which aggregates the elements

enqueued by several instances of the Shader into full packets, and makes the resulting

packets available to the scheduler.

The GRAMPS runtime and API are designed to avoid data copying: application

code has direct access to input packets, and writes to output packets directly, even

with push queues.

Thread Stages: Thread stages are stateful, long-lived, and may have queue order-

ing requirements. In particular, Thread stages operate on input and output queues

explicitly, reserving and committing packets from them. Thus, they need to be ex-

ecuted preemptively: they can either block when they try to reserve more packets

than are available in one of their input queues, or the scheduler can decide to preempt

them at any reserve or commit operation.

To facilitate low-cost preemption, each Thread stage instance is essentially im-

plemented as an user-level thread. We encapsulate all its state (stack and context)
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and all its input queues into an instance object. Input queues store packets in FIFO

order.

Each task for a Thread stage represents a runnable instance, and is simply a

pointer to the instance object. At initialization, an instance is always runnable.

A Thread stage instance that is preempted by the runtime before it blocks is still

runnable, so after preemption we re-enqueue the task. To amortize preemption over-

heads, the runtime allows an instance to produce a fixed number of output packets

(currently 32) before it preempts it. However, when an instance blocks, it is not

runnable, so no task is generated. Instead, when enough packets are enqueued to

the input queue that the instance blocked on, the runtime unblocks the instance and

produces a task for it.

Note that by organizing scheduler state around tasks, coalescers, and instance

objects, only data queues that feed Thread stages actually exist as queues. Queues

that feed Shader stages are a useful abstraction for the programming model, but they

do not exist in the implementation: each packet in these logical queues is physically

stored as a task in the task queues. This is important, because many applications

perform most of the work in Shaders, so this organization bypasses practically all the

overheads of having data queues.

Per-Stage Task Queues: As mentioned in Section 6.2, GRAMPS gives higher

priority to stages further down the pipeline. Executing higher priority stages drains

the pipeline, reducing memory footprint.

To implement per-stage priorities, each worker thread maintains a set of task

queues, one per stage. For regular dequeues, a task is dequeued from higher priority

stages first. When stealing tasks, however, the GRAMPS scheduler steals from lower

priority stages first, which produce more work per invocation: these stages are at a

lower depth in the application graph, so they will generate additional tasks enqueued

to their consumer stages, which is desirable when threads are running out of tasks.

For example, in Figure 6.1, a Camera task will generate more work than a Shadow

Intersect task. To keep task queue operation costs low on graphs with many stages,

worker threads store pointers to the highest and lowest queues that have tasks. The
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range of queues with tasks is small (typically 1 to 3), so task dequeues are fast.

We implement each task queue as a Chase-Lev deque [35], with LIFO local en-

queues/dequeues and FIFO steals. Local operations do not require atomic instruc-

tions, and steals require a single atomic operation. Stealing uses the non-blocking

ABP protocol [10] and is locality-aware, as threads try to steal tasks from neighbor-

ing cores first.

Footprint and Backpressure: In task-based parallel programming models, it is

generally desirable to guarantee that footprint is bounded regardless of the num-

ber of worker threads. Programming models that exploit fork-join parallelism, like

Cilk and X10, can guarantee that footprint grows at most linearly with the number

of threads by controlling the queuing and stealing policies [4, 19]. However, most

pipeline-parallel and streaming programming models cannot limit footprint as easily.

In particular, GRAMPS applications can experience unbounded memory footprint in

three cases:

1. Bottlenecks on Thread consumers: If producers produce packets faster than a

downstream Thread stage can consume them, an unbounded number of packets

can be generated.

2. Thread preemption policy: In order to amortize preemption overheads, GRAMPS

does not immediately preempt Thread stages. However, without immediate pre-

emption, footprints can grow superlinearly with the number of worker threads due

to stealing [19].

3. Cycles: A graph cycle that generates more output than input will consume un-

bounded memory regardless of the scheduling strategy.

To solve issues (1) and (2), the runtime enforces bounded queue sizes by applying

backpressure. The runtime tracks the utilization of each data queue in a scalable

fashion, and when a queue becomes full, the stages that output to that queue are

marked as non-executable. This guarantees that both data queue and task queue

footprints are bounded.

In general, guaranteeing bounded footprint and deadlock-freedom with cycles is

not a trivial task, and Static scheduling algorithms have significant problems handling
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cycles [98, 125]. To address this issue, we do not enforce backpressure on backward

queues (i.e., queues that feed a lower-priority stage from a higher-priority stage).

If the programmer introduces cycles with uncontrolled loops, we argue that this is

an incorrect GRAMPS application, similar to reasoning that a programmer will not

introduce infinite recursion in a Cilk program. If a cycle is well behaved, it is trivial

to see that footprint is bounded due to stage priorities, even with stealing.

Overall, we find that backpressure strictly limits the worst-case footprint of ap-

plications while adding minimal overheads. We will evaluate the effectiveness of this

approach in Section 6.7.

Ordered Data Queues: Except for push queues, GRAMPS queues can be FIFO-

ordered, which guarantees that the consuming stage of a queue will receive packets in

the same order as if the producing stage was run serially. FIFO ordering on queues

between Thread stages is maintained by default, but queues with Shader inputs or

outputs are not automatically ordered since Shader tasks can execute out of or-

der. Guaranteeing queue ordering allows GRAMPS to implement ordering-dependent

streaming applications, but a näıve implementation could cause significant overheads.

We leverage the fact that guaranteeing ordering across two Thread stages is suf-

ficient to guarantee overall ordering. Specifically, to maintain ordering on a chain of

stages with Thread stage endpoints and Shaders in the middle, the runtime allocates

and enqueues the output packet of the leading Thread stage and the corresponding

input packet of the last stage atomically. The pointer to that last packet is then

propagated through the intermediate Shader packets. While Shaders can execute out

of order, at the end of the chain the packet is filled in and made available to the

Thread consumer in order. Essentially, the last stage’s input queue acts as a reorder

buffer.

This approach minimizes queue manipulation overheads, but it may increase foot-

print since packets are pre-reserved and, more importantly, the last queue is subject

to head-of-line blocking. To address this issue, task queues of intermediate Shader

stages follow FIFO ordering instead of the usual LIFO.
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6.4.2 Buffer Manager Design

To decouple scheduling and buffer management, we must engineer an efficient way

for the scheduler to dynamically allocate new packets and release used ones, while

preserving locality. This is the function of the buffer manager.

The simplest possible buffer manager, if the system supports dynamic memory

allocation, is to allocate packets using malloc and release them using free. We call

this a dynamic memory buffer manager. However, this approach has high overheads:

as more threads stress the memory allocator, synchronization and bookkeeping over-

heads can quickly dominate execution time.

A better buffer management strategy without dynamic memory overheads is to use

per-queue, statically sized memory pools, and allocate packets from the corresponding

queue. Since queue space is bounded in GRAMPS, we can preallocate enough buffer

space per queue, and avoid malloc/free calls and overhead completely. We refer to

this approach as per-queue buffer manager. However, this approach may hurt locality,

as different threads share the same buffer space. To maximize locality, we would like

a packet to be reused by the same core as much as possible. Nevertheless, it would be

inefficient to just partition each per-queue pool among workers, since a worker’s buffer

space demands are not known in advance, and often change throughout execution.

Additionally, accessing the shared queue pools can incur synchronization overheads.

Instead, we propose a specialized packet-stealing buffer manager that maximizes

locality while maintaining low overheads. In this scheme, queues get their packets from

a set of pools, where each pool contains all the packets of the same size. Initially,

within each pool, packets are evenly divided across worker threads; each allocation

tries to dequeue a packet from the corresponding partition. However, if a worker

thread finds its partition empty, it resorts to stealing to acquire additional packets.

When done using a packet, a worker thread enqueues the packet back to its partition.

To amortize stealing overheads, threads steal multiple packets at once.

Since backpressure limits queue size, stealing is guaranteed to succeed, except

when cycles are involved. For cycles, the worker tries one round of stealing, and if

it fails, it allocates new packets to the pool using malloc. In practice, this does not

happen if loop queues are sized correctly, and is just a deadlock avoidance safeguard.
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Packet-stealing keeps overheads low, and more importantly, enables high reuse.

For example, in applications with linear pipelines, the LIFO policy will cause each

worker thread to use only two packets to traverse the pipeline. As a result, packet

stealing only happens as frequently as stealing in the task queues takes place, which

is rare for balanced applications.

6.5 Other Scheduling Approaches

As mentioned in Section 6.1, we augment our GRAMPS implementation to serve as

a testbed for comparing other scheduling approaches. Specifically, we have defined a

modular scheduler interface that enables using different schedulers.

We preserve the core GRAMPS abstractions and APIs —data queues, application

graphs, etc.— for all schedulers, even for those used in programming models that

customarily lack built-in support for them. This isolates the changes derived from

scheduling policies from any distortion caused by changing the programming model.

Additionally, it eliminates application implementation variation, as the same version

of each application is used in all four modes.

The rest of this section describes the specific designs we chose to represent their

respective scheduling approaches. While several variations are possible for a given

scheduler type, we strive to capture the key philosophy behind each scheduler, while

leaving out implementation-specific design choices.

6.5.1 Task-Stealing Scheduler

Our Task-Stealing scheduler mimics the widely used Cilk 5 scheduler [60]. It differs

from the GRAMPS scheduler in three key aspects. First, each worker thread has a

single LIFO Chase-Lev task queue [35]; i.e., there are no per-stage queues. Steals

are done from the tail of the queue. Second, data queues are unbounded (without

per-stage task queues, we cannot enforce backpressure). Third, each thread stage is

preempted as soon as it commits a single output packet. This emulates Cilk’s work-

first policy, which switches to a child task as soon as it is created. This policy enables
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Cilk to guarantee footprint bounds [60]. Although this does not imply bounded buffer

space for GRAMPS, the work-first approach works well in limiting footprint except

when there is contention on thread consumers, as we will see in Section 6.7.

6.5.2 Breadth-First Scheduler

The Breadth-First scheduler executes one stage at a time in breadth-first order, so

a stage is run only when all its producers have finished. It is the simplest of our

schedulers, and represents a typical scheduler for GPGPU programming model (e.g.,

CUDA). All worker threads run the current stage until they are out of work, then

advance in lock-step to the next stage. As usual, load balancing is implemented on

each stage with Chase-Lev dequeues. Some of our applications have cycles in their

graphs so the scheduler will reset to the top of the graph a finite number of times if

necessary. As with Task-Stealing, Breadth-First has no backpressure.

6.5.3 Static Scheduler

The Static scheduler represents schedulers for stream programming models [50, 151].

To generate a static schedule, the application is first profiled running under the

GRAMPS scheduler with the desired number of worker threads. We then run METIS [89]

to compute a graph partitioning that minimizes the communication to computation

ratio, while balancing the computational load in each partition. We then feed the

partitioning to the Static scheduler, which executes the application again following a

minimum-latency schedule [88], assigning each partition to a hardware context.

The Static scheduler does no load balancing; instead, worker threads have producer-

consumer queues that they use to send and receive work [64, 98, 125]. Once a thread

runs out of work, it simply waits until it receives more work or the phase terminates.

To handle barriers in programs with multiple phases, the Static scheduler produces

one schedule per phase.

Overall, the Static scheduler trades off dynamic load balancing for better locality

and lower communication.
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Workload Origin
Graph Shader Pipeline

Regularity
Complexity Work Parallel

raytracer GRAMPS Medium 99% Yes Irregular
hist-r/c MapReduce Small 97% No Irregular

lr-r/c MapReduce Small 99% No Regular
pca MapReduce Small 99% No Regular

mergesort Cilk Medium 99% Yes Irregular
fm StreamIt Large 43% Yes Regular
tde StreamIt Huge 8% Yes Regular
fft2 StreamIt Medium 70% Yes Regular

serpent StreamIt Medium 86% Yes Regular
srad CUDA Small 99% No Regular

rg CUDA Small 99% No Regular

Table 6.2: Application characteristics. Pipeline parallelism denotes the existence of
producer-consumer parallelism at the graph level.

6.6 Methodology

System: We perform all experiments on a 2-socket system with hexa-core 2.93

GHz Intel Xeon X5670 (Westmere) processors. With 2-way Simultaneous Multi-

Threading (SMT), the system features a total of 12 cores and 24 hardware threads.

The system has 256KB per-core L2 caches, 12MB per-socket L3 caches, and 48GB

of DDR3 1333MHz memory (about 21GB/s peak memory bandwidth). The proces-

sors communicate through a 6.4GT/s QPI interconnect. This machine runs 64-bit

GNU/Linux 2.6.35, with GCC 4.4.5. We ran all of our experiments several times and

report average results; experiments were run until the 95% confidence intervals on

each average became negligible (< 1%).

Applications: In order to broadly exercise the schedulers, we have expanded the

original set of GRAMPS applications [146] with a variety of examples from other

programming models. Table 6.2 summarizes their qualitative characteristics, and

Figure 6.3 shows a few representative graphs. The applications are:

• raytracer is the packetized ray tracer from [146]. We run it with no reflection

bounces (ray-0), in which case it is a pipeline, and with one bounce (ray-1), in

which case its graph has a cycle (as in Figure 6.1).
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Figure 6.3: Example application graphs.

• histogram, lr, pca are MapReduce applications from the Phoenix suite [167].

We run histogram and lr in two forms: reduce-only (r) and with a combine stage

(c).

• mergesort is a parallel mergesort implementation using Cilk-like spawn-sync par-

allelism. Its graph, shown in Figure 6.3, contains two nested loops.

• fm, tde, fft2, serpent are streaming benchmarks from the StreamIt suite [151].

All have significant pipeline parallelism and use ordered queues. fm and tde

have very large graphs, with a small amount of data parallelism, while fft2 and

serpent have smaller graphs and more data parallelism.

• srad, rg are data-parallel CUDA applications. srad (Speckle Reducing Anisotropic

Diffusion, an image-processing benchmark) was ported from the Rodinia suite [37],

and rg (Recursive Gaussian) comes from the CUDA SDK [121].



CHAPTER 6. GRAMPS 124

0 5 10 15 20 25
Threads

0
2
4
6
8

10
12
14
16
18

Sp
ee

du
p 

vs
 1

 th
re

ad
GRAMPS scheduler

0 5 10 15 20 25
Threads

0
2
4
6
8

10
12
14
16
18

Sp
ee

du
p 

vs
 1

 th
re

ad

Task-Stealing scheduler

0 5 10 15 20 25
Threads

0
2
4
6
8

10
12
14
16
18

Sp
ee

du
p 

vs
 1

 th
re

ad

Breadth-First scheduler

0 5 10 15 20 25
Threads

0
2
4
6
8

10
12
14
16
18

Sp
ee

du
p 

vs
 1

 th
re

ad

Static scheduler

0510152025
Threads

024681012141618

ray-0
ray-1
lr-r
lr-c
hist-r
hist-c
pca

0 5 10 15 20 25
Threads

0
2
4
6
8

10
12
14
16
18

Sp
ee

du
p 

vs
 1

 th
re

ad

GRAMPS scheduler

0 5 10 15 20 25
Threads

0
2
4
6
8

10
12
14
16
18

Sp
ee

du
p 

vs
 1

 th
re

ad
Task-Stealing scheduler

0 5 10 15 20 25
Threads

0
2
4
6
8

10
12
14
16
18

Sp
ee

du
p 

vs
 1

 th
re

ad

Breadth-First scheduler

0 5 10 15 20 25
Threads

0
2
4
6
8

10
12
14
16
18

Sp
ee

du
p 

vs
 1

 th
re

ad

Static scheduler

0510152025
Threads
024681012141618

msort
fm
tde
fft2
serpent
srad
rg

Figure 6.4: Scalability of GRAMPS, Task-Stealing, Breadth-First, and Static sched-
ulers from 1 to 24 threads (12 cores).

6.7 Evaluation

6.7.1 GRAMPS Scheduler Performance

Figure 6.4 shows the speedups achieved by the GRAMPS scheduler from 1 to 24

threads. The knee that consistently occurs at 12 threads is where all the physical cores

are used and the runtime starts using the second hardware thread per core (SMT).

Overall, all applications scale well. With more cores, srad and rg scale sublinearly

because they become increasingly bound by cache and memory bandwidth. They are

designed for GPUs, which have significantly more bandwidth.

Figure 6.5 gives further insight into these results. It shows the execution time

breakdown of each application when using all 24 hardware threads. In this section,

we focus on the results with the GRAMPS scheduler (the leftmost bar for each app).

Each bar is split into four categories, showing the fraction of time spent in application

code, scheduler code, buffer manager, and stalled (which in the GRAMPS scheduler

means stealing, with no work to execute). This breakdown is obtained with low-

overhead profiling code that uses the CPU timestamp counter, which adds ≤ 2% to

the execution time.
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breakdown. Results are normalized to the runtime with the GRAMPS scheduler.

Overall, results show that GRAMPS is effective at finding and dynamically dis-

tributing parallelism: applications spend minimal time without work to do. Further-

more, runtime overheads are small: the majority of workloads spend less than 2% of

the time in the scheduler and buffer manager. Even tracking the tens of stages in

fm takes only 13% of elapsed time in scheduling overheads. The worst-case buffer

manager overhead happens in queue-intensive fft2, at 15%.

Finally, Table 6.3 shows the average and maximum footprints of the GRAMPS

scheduler. Footprints are reasonable, and always below the maximum queue sizes,

due to backpressure providing strict footprint bounds.

6.7.2 Comparison of Scheduler Alternatives

We now evaluate the differences among the scheduling alternatives discussed in Sec-

tion 6.2. Figure 6.4, Figure 6.5, and Table 6.3 show the scalability, execution time

breakdowns, and footprints for the different schedulers, respectively.

Task-Stealing: For applications with simple graphs, the Task-Stealing scheduler

achieves performance and footprint results similar to the GRAMPS scheduler. How-

ever, it struggles on applications with complex graphs: fm and tde, and applications

with ordering, fft2.

fm and tde have the most complex graphs, with 121 and 412 stages respectively

(Table 6.2), and have abundant pipeline parallelism but little data parallelism, and
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App
GRAMPS Task-Stealing Breadth-First Static

Avg Max Avg Max Avg Max Avg Max

ray-0 215.9KB 287.8KB 191.7KB 276.5KB 23096KB 51648KB 322.7KB 722.7KB

ray-1 361.1KB 447.4KB 327.5KB 424.6KB 31257KB 78706KB 1133KB 2271KB

lr-r 22.9KB 40.7KB 22.9KB 40.9KB 24.0KB 44.0KB 23.7KB 43.8KB

lr-c 8.1KB 8.8KB 7.9KB 8.2KB 15.2KB 30.2KB 9.8KB 12.8KB

hist-r 4922KB 9658KB 4925KB 9654KB 4695KB 9737KB 4903KB 9653KB

hist-c 1860KB 3097KB 1864KB 3096KB 1504KB 3093KB 1855KB 3099KB

pca 0.7KB 1.3KB 0.4KB 0.4KB 89.2KB 178.8KB 4.6KB 8.0KB

msort 2.0KB 7.0KB 1.4KB 4.6KB 6.1KB 10.4KB 5.3KB 18.0KB

fm 1672KB 4277KB 2245KB 3691KB 165145KB 563173KB 29646KB 57391KB

tde 3989KB 6662KB 18399KB 36231KB 89843KB 179282KB 18379KB 31071KB

fft2 261.3KB 376.0KB 149.8KB 211.0KB 75624KB 80096KB 1184KB 1395KB

serpent 79.1KB 88.0KB 68.7KB 73.2KB 1031KB 1048KB 735.8KB 1003KB

srad 0.9KB 1.6KB 0.4KB 0.5KB 40.0KB 80.0KB 2.6KB 8.2KB

rg 0.7KB 1.4KB 0.4KB 0.5KB 1.9KB 5.0KB 0.6KB 1.6KB

Table 6.3: Average and maximum footprints of different schedulers.

ordered queues. In both fm and tde, Task-Stealing is unable to keep the system fully

utilized, as evidenced by the larger Stalled application times, due to the simple LIFO

policy and lack of backpressure, which also cause larger footprints and overheads.

In fft2, scalability is limited by the last stage in the pipeline, a Thread consumer.

Since this workload has ordering requirements, the LIFO task ordering causes signif-

icant head-of-line blocking; packets are released in bursts, which causes this stage to

bottleneck sooner. This bottleneck shows as the large Stalled part of the execution

breakdown in fft2 under Task-Stealing. In contrast, with graph knowledge, GRAMPS

uses FIFO task queuing on ordered stages (Section 6.4). Hence packets arrive almost

ordered, and the receiving stage does not bottleneck.

Breadth-First: The Breadth-First scheduler cannot take advantage of pipeline par-

allelism. Consequently, it matches the GRAMPS scheduler only on those applications

without pipeline parallelism, srad and rg. In other applications, the one-stage-at-a-

time approach significantly affects performance and footprint.

Performance is most affected in fm and tde, which are highly pipeline-parallel

but not data-parallel (Table 6.2). Looking at the execution breakdown for those two
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applications, we see that Breadth-First scheduling leaves the system starved for work

for up to 95% of the time. Compared to GRAMPS, the slowdowns are as high as

15.8x and 17.4x, respectively.

In terms of footprint, the large amount of intermediate results generated by each

stage put high pressure on the memory system and the buffer manager. Footprint

differences are most pronounced in raytracer and the StreamIt applications (Ta-

ble 6.3). For example, the raytracer’s worst-case footprint is 447KB with GRAMPS,

but 78.7MB with Breadth-First. This turns into a larger buffer manager overhead,

which takes 12% of the execution time (Figure 6.5). Larger footprint reduces the

effectiveness of caches, hurting locality, as seen from the slightly higher application

time.

Static: The Static scheduler trades off load balancing for near-optimal static work

division and minimized producer-consumer communication. Although this is likely a

good trade-off in embedded/streaming systems with fully static applications, we see

that it is a poor choice when either the system or the application is dynamic.

Focusing on the scalability graph (Figure 6.4), we see that from 1 to 12 threads the

static scheduler achieves reasonable speedups for highly regular applications: pca, lr,

and tde get close to linear scaling. However, more irregular applications experience

milder speedups, e.g., up to 7x for the raytracer. The worst-performing application

is mergesort, which has highly irregular packet rates, and static partitioning fails to

generate an efficient schedule.

As we move from 12 to 13 threads, performance drops in all applications. At

this point, SMT starts being used in some cores, so threads run at different speeds.

While the other schedulers easily handle this by performing load balancing, this fine-

grain variability significantly hinders the Static scheduler. Interestingly, the execution

time breakdown (Figure 6.5) shows that the static scheduler actually achieves lower

application times, due to optimized locality. However, these improvements are more

than negated by load imbalance, which increases the time spent waiting for work.

In summary, we see that GRAMPS and Task-Stealing achieve the best perfor-

mance overall. However, Task-Stealing’s simple LIFO queuing does not work well for
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tions, using the three alternative buffer managers: packet-stealing (S), per-queue (Q),
and dynamic memory (D).

complex application graphs or graphs with ordering, and cannot bound footprint due

to lack of backpressure. While Breadth-First scheduling takes advantage of data par-

allelism, it cannot extract pipeline parallelism. Breadth-First scheduling also cannot

take advantage of producer-consumer communication typical of pipeline-parallel pro-

grams, causing memory footprint to be extremely large. Static scheduling is able to

effectively schedule for locality, but cannot handle irregular applications or run-time

variability in the underlying hardware. More importantly, we observe that GRAMPS’

dynamic scheduling overheads are mostly negligible and locality is not significantly

worse than what is achieved by locality-optimized Static schedules. This shows that,

contrary to conventional wisdom, dynamic schedulers can efficiently schedule complex

pipeline-parallel applications.

6.7.3 Comparison of Buffer Management Strategies

All the results previously shown have used the proposed packet-stealing buffer man-

ager. We now evaluate the importance of this choice. Figure 6.6 compares the

performance of the different buffer management approaches discussed in Section 6.4,

focusing on applications where the choice of buffer manager had an impact.

We observe that the packet-stealing approach achieves small overheads and good

locality. In contrast, the dynamic buffer manager often has significant slowdowns, as
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frequent calls to malloc/free bottleneck at the memory allocator. We used tcmalloc

as the memory allocator [63], which was the highest-performing allocator of those we

tried (ptmalloc2, hoard, dlmalloc, and nedmalloc). Compared to the stealing buffer

manager, the worst-case slowdown, 5.9x, happens in histogram, which is especially

footprint-intensive.

The per-queue buffer manager shows lower overheads than the dynamic scheme.

However, overheads can still be large (up to 80% in histogram), and more impor-

tantly, having per-queue slabs can significantly affect locality, as seen by the higher

application times in several benchmarks. This is most obvious in tde, where the

large number of global per-queue pools (due to the large number of stages) causes

application time to increase by 50%. In contrast, the stealing allocator uses a reduced

number of thread-local LIFO pools, achieving much better locality.

Overall, we conclude that buffer management is an important issue in GRAMPS

applications, and the stealing buffer manager is a good match to GRAMPS in systems

with cache hierarchies, achieving low overheads while maintaining locality.

6.8 Additional Related Work

We now discuss additional related work not covered in Section 6.2.

Although many variants of Task-Stealing schedulers have been proposed, one of

the most relevant aspects is whether the scheduler follows a work-first policy (mov-

ing depth-first as quickly as possible) or a help-first policy (producing several child

tasks at once). Prior work has shown there are large differences between these ap-

proaches [67], and has proposed an adaptive work-first/help-first scheduler [68]. In

GRAMPS, limiting the number of output packets produced by a Thread before it

is preempted controls this policy. Our Task-Stealing scheduler follows the work-first

policy, but we also tried the help-first policy, which did not generally improve per-

formance, as the benefits of somewhat reduced preemption overheads were countered

by higher memory footprints. The GRAMPS scheduler follows the help-first policy,

preempting threads after several output packets, and leverages backpressure to keep

footprint limited.
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Some Task-Stealing models implement limited support for pipeline parallelism;

TBB [81] supports simple 1:1 pipelines, and Navarro et al. [118] use this feature to

study pipeline applications on CMPs, and provide an analytical model for pipeline

parallelism. As we have shown, Task-Stealing alone does not work well for complex

graphs.

Others have also observed that Breadth-First schedulers are poorly suited to

pipeline-parallel applications. Horn et al. [78] find that a raytracing pipeline can

benefit by bypassing the programming model and writing a single uber-kernel with

dynamic branches. Tzeng et al. [154] also go against the programming model by using

uber-kernels, and implement several load balancing strategies on GPUs to parallelize

irregular pipelines. They find that task-stealing provides the least contention and

highest performance. The techniques presented in this paper could be used to extend

GRAMPS to GPUs.

Although most work in streaming scheduling is static, prior work has introduced

some degree of coarse-grain dynamism. To handle irregular workloads, Chen et al.

propose to pre-generate multiple schedules for possible input datasets and steady

states, and switch schedules periodically [38]. Flextream [77] proposes online adapta-

tion of offline-generated schedules for coarse-grain load balancing. These techniques

could fix some of the maladies shown by Static scheduling on GRAMPS (e.g., SMT ef-

fects). However, applications with fine-grain irregularities, like raytracer or merge-

sort, would not benefit from this. Feedback-directed pipelining [148] proposes a

coarse-grain hill-climbing partitioning strategy to maximize parallelism and power ef-

ficiency on pipelined loop-parallel code. While the power-saving techniques proposed

could be used by GRAMPS, its coarse-grained nature faces similar limitations.

Finally, we have focused on parallel programming models commonly used in either

general-purpose multi-cores, GPUs and streaming architectures. We have not covered

programming models that target clusters, MPPs or datacenter-scale deployments.

These usually expose a multi-level memory organization to the programmer, who

often has to manage memory and locality explicitly. Examples include MPI [143],

PGAS-based models such as UPC [30] or Titanium [166], and more recent efforts like

Sequoia [58].



CHAPTER 6. GRAMPS 131

6.9 Summary

In this chapter, we have presented a scheduler for pipeline-parallel programs that

performs fine-grain dynamic load balancing efficiently. Specifically, we implement

the first real runtime for GRAMPS, a recently proposed programming model that

focuses on supporting irregular pipeline-parallel applications. Our evaluation shows

that the GRAMPS runtime achieves good scalability and low overheads on a 12-

core, 24-thread machine, and that our scheduling and buffer management policies

efficiently schedule simple and complex application graphs while preserving locality

and bounded footprint.

Our scheduler comparison indicates that both Breadth-First and Static schedul-

ing approaches are not broadly suitable on general-purpose processors, and that

GRAMPS and Task-Stealing behave similarly for simple application graphs. However,

as graphs become more complex, GRAMPS shows an advantage in memory footprint

and execution time because it is able to exploit knowledge of the application graph,

which is unavailable to Task-Stealing.



Chapter 7

ADM: Flexible Architectural

Support for Fine-Grain Scheduling

7.1 Introduction

As we have seen in Chapter 6, dynamic scheduling has significant advantages over

static scheduling. However, as the number of cores scales up, these schedulers need

finer-grain tasks to expose enough parallelism. Unfortunately, as we discussed in Sec-

tion 2.3.2, managing tasks of a few thousand instructions is particularly challenging,

as the runtime must ensure load balance without compromising locality and intro-

ducing small overheads. Software-only schedulers can implement various scheduling

algorithms that are tailored to specific programming models or even applications, but

suffer significant overheads as they synchronize and communicate task information

over the deep cache hierarchy of a large-scale CMP. To reduce these costs, hardware-

only schedulers like Carbon [101], which implement task queuing and scheduling in

hardware, have been proposed. However, a hardware-only solution fixes the schedul-

ing algorithm and leaves no room for other uses of the custom hardware.

In this chapter we present a combined hardware-software approach to build fine-

grain schedulers that retain the flexibility of software schedulers while being as fast

and scalable as hardware ones. We introduce asynchronous direct messages (ADM), a

132
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general-purpose hardware primitive that supports sending and asynchronously receiv-

ing short messages between cores at low overhead without additional synchronization

or going through the coherence protocol. ADM is tailored to integrate with cache-

coherent CMPs and the shared-memory programming models for such systems, and

is inspired by previous efforts in integrating message-passing in distributed shared

memory machines [1, 111]. ADM provides user-level support for relatively infrequent

messages for control purposes, while data accesses and communication occur as usual

through the cache hierarchy. ADM is sufficient to implement novel, software-mostly

fine-grain schedulers that rely on low-overhead messaging to efficiently coordinate

scheduling and transfer task information. Since software determines the scheduling

algorithm, we can easily tailor it to the programming model or application. For

example, we can adjust the stealing policy to improve locality, track dependencies

between tasks, implement fast reduction and barrier operations, and use hierarchical

scheduling approaches that scale better with the size of the CMP. Such optimizations

allow ADM-based schedulers to match or outperform hardware-only approaches like

Carbon, sometimes by by large margins, despite using simpler hardware. This chapter

presents the following contributions:

1. We introduce ADM, a simple but general hardware mechanism to send messages

between cores. ADM allows user-level code to send short messages (0-6 words) di-

rectly from registers, and to receive them, either synchronously or asynchronously

via a user-level interrupt handler. The hardware is virtualizable, preserves message

ordering, provides guaranteed delivery, and is independent of the cache hierarchy.

2. We develop and present a set of novel Task-Stealing schedulers that leverage the

messaging hardware to manage fine-grain parallelism. Specifically, we use a subset

of worker threads to coordinate stealing in a distributed and scalable fashion.

ADM allows threads to maintain task queues in thread-local storage, even when

stealing occurs, and to overlap communication with useful computation. Although

in this chapter we focus on Task-Stealing schedulers, ADM can also accelerate

other schedulers that use stealing as a load-balancing mechanism, such as our

GRAMPS runtime presented in Chapter 6.

3. We evaluate ADM for multithreaded CMPs with up to 128 cores (256 threads)
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using a set of challenging fine-grain applications. We find that our approach clearly

outperforms software-only schedulers by up to a factor of 3.8× and matches or

exceeds the performance of Carbon. When we tailor the ADM scheduler to the

application, it outperforms Carbon by up to 70%.

7.2 Background and Motivation

7.2.1 Current Scheduling Approaches

To implement fine-grain schedulers on a cache-coherent CMP, we can either use a

software-only solution in which threads communicate through shared memory, or

leverage special-purpose hardware. In large-scale CMPs, both approaches have serious

disadvantages.

Software-only schedulers maintain queues in software, and threads communi-

cate and exchange work implicitly through shared memory. Several optimized algo-

rithms have been proposed to avoid the use of locks in most local enqueue/dequeue

operations [60] or to use non-blocking stealing protocols [10, 35]. Still, stealers need

to perform multiple remote cache accesses to find and obtain new work, which will

take hundreds of cycles through the cache hierarchy of a large-scale CMP. If steal-

ing is infrequent or tasks are large, stealing overheads can be amortized. However,

irregular or fine-grain workloads with frequent steals suffer from large penalties even

with the most optimized protocols, due to memory latency, synchronization, or con-

tention. These overheads will only become worse as we increase the number of cores

on a CMP, because 1) the latency of a remote or a shared cache access increases,

and 2) the amount of work per thread decreases, leading to shorter phases and more

frequent steals.

Hardware-only schedulers, such as Carbon [101], introduce specialized hard-

ware that handles all aspects of work-stealing. Carbon uses a centralized global task

unit (GTU), which contains one hardware LIFO queue per thread. Software uses

special instructions to enqueue and dequeue task descriptors directly to/from regis-

ters. Task descriptors have a fixed size of 4 64-bit words. A small local task unit
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Figure 7.1: Execution time of cg and gtfold using Carbon and software schedulers,
on CMPs with 32 and 64 dual-threaded cores (for a total of 64 and 128 threads).

(LTU) per core is used as a task buffer to hide enqueue and dequeue latencies from

the GTU. Work-stealing is implemented in hardware in the GTU by moving tasks

between queues. Since the queues in the GTU are bounded, the runtime system

cannot rely exclusively on Carbon for task buffering. Each worker thread maintains

an unbounded task queue in software, where it can enqueue and dequeue new tasks

locally. A portion of these tasks are enqueued in the corresponding hardware queue

in the GTU to allow for work-stealing. Trying to dequeue a task when the GTU is

empty blocks the thread. When all threads are blocked, the GTU sends a special

task to every thread to signal the end of the parallel phase. The GTU generates a

user-level interrupt when the capacity of a hardware queue reaches an upper or lower

threshold to allow each thread to overflow to or refill tasks from the software queue.

Carbon addresses the performance issues of software-only scheduling, but hard-

wires the scheduling policies, such as the structure of queues and the order or gran-

ularity of stealing. Hence, it is difficult to use with applications or programming

models that require alternative algorithms. Figure 7.1 illustrates this issue. It shows

the execution time breakdown between software-only scheduling and Carbon (see

Section 7.5 for the experimental methodology), for two applications. The first one,

cg, is fine-grain, irregular, and has short phases. Carbon can do load-balancing very
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efficiently, thus outperforming the software scheduler by 2.2× at 128 threads. This re-

duction comes both from eliminating the stealing and enqueuing/dequeuing overheads

of software, and performing better balancing (as threads spend less time starved, i.e.,

without work to execute). The second one, gtfold, is also fine-grain but can bene-

fit from a FIFO scheduling algorithm (details in Section 7.6). The software FIFO

scheduler, as shown, outperforms Carbon by 40% at 128 threads by reducing the

starvation time. While it is possible to extend Carbon to capture a few schedul-

ing variations, implementing all possible scheduling algorithms in hardware can be

prohibitively expensive.

7.2.2 Fast and Flexible Fine-Grain Scheduling

We strive to find a balance between speed and flexibility for fine-grain scheduling.

We also want to minimize the required hardware by introducing simple primitives

that have multiple uses rather than fixed-function hardware. We note that Carbon

can be deconstructed in three elements: hardware task queues, logic for stealing

across these queues, and messaging hardware for fast communication of tasks. As

we will see, implementing queues and policies in software is not much slower than

using hardware, as long as all the scheduler state is kept thread-local, avoiding remote

memory accesses. To allow this, we advocate keeping a fast messaging component in

hardware and exposing it directly as a general-purpose mechanism. This avoids the

high penalties of communicating and synchronizing through the memory hierarchy

when task stealing or coordination among software schedulers is needed, and allows

to overlap communication with useful computation. Moreover, scheduling in software

with fast messaging for communicating control information allows us to create runtime

systems tailored to the characteristics and requirements of specific applications or

programming models.
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(a) Target CMP, shown in a 64-core configuration with 16 tiles.
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Figure 7.2: Target CMP architecture and modifications needed to implement ADM.

7.3 Asynchronous Direct Messages

We now describe Asynchronous Direct Messages (ADM), the flexible messaging mech-

anism that we propose to accelerate fine-grain schedulers. ADM adds an extra mes-

saging unit per core that works with any cache hierarchy or coherence protocol. To

focus the discussion, we consider cache-coherent, tiled CMPs with a packet-switched

interconnect, as the one shown in Figure 7.2a.

To provide low-overhead messaging with small payloads, messages are sent and

received directly through registers instead of using memory-mapped buffers. Software

threads initiate a send with a single instruction. Reception can be synchronous, using

a receive instruction, or asynchronous, via a user-level message handler. To enforce

atomicity of accesses to data structures shared by handler and non-handler code (e.g.,

the task queue), messaging interrupts can be disabled or enabled by non-handler code.

The microarchitecture has limited message buffers, which are backed by software
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buffering if needed. Normal operation happens fully at user-level, but the architecture

is virtualizable, and minimal OS support is required. The system preserves message

ordering between sender and receiver and guarantees message delivery because these

features greatly simplify writing ADM-based schedulers.

7.3.1 Microarchitecture and ISA

We modify a baseline CMP in two ways. First, we add an ADM unit to each core,

shown in Figure 7.2b. This unit buffers received messages, translates thread IDs

to physical cores on message sending, and interfaces to the register file (to trans-

fer message payloads), the core’s interrupt unit (to deliver message reception inter-

rupts), and the interconnect. Second, we use an extra virtual network [46, 47] in the

packet-switched interconnect to route message packets. This only requires a moder-

ate amount of extra buffering in the routers (e.g., 9KB of SRAM space in a 64-node

CMP), and avoids deadlocks due to interference with the coherence protocol traffic.

The ADM unit includes one receive buffer per hardware thread context, imple-

mented as a small circular buffer using SRAM memory. Thread ID to core translation

is performed by the Thread ID Translation Buffer (TTB), a small associative memory

that caches (TID, core) pairs. The TTB is software-managed; if it cannot translate

a destination’s thread ID when sending, it triggers a privileged interrupt handler that

refills it with the appropriate translation. Our hierarchical runtimes do not use all-

to-all communication, but instead each thread communicates with a fixed-size subset

of the threads. Thus, we only require small receive buffers (that can hold around 16

4-word messages) and TTBs (of 16∼32 entries) for full performance. Furthermore,

these per-core structures do not need to grow with the size of the CMP.

Table 7.1 summarizes the hardware-software interface, including the extra instruc-

tions to send/receive messages and the new interrupts and exceptions introduced by

ADM. The send instruction is blocking, and the instruction is considered completed

when the message is copied to the send buffer. Each message is transmitted in the

interconnect in a single packet, but using multiple flits [46, 47].



CHAPTER 7. ADM 139

Instruction Description

adm_send r1, r2 Sends message of (r1) words to thread with ID (r2). The
payload can have 0–6 words, taken from registers %o0-%o5

adm_peek r1, r2 Returns the source and message length at the head of the
receive buffer, or a -1 length if the buffer is empty.

adm_rx r1, r2 Returns the source and message length at the head of the
receive buffer, and writes its payload to registers %o0-%o5.
Blocks on an empty buffer.

adm_ei/di Enables or disables ADM receive handler interrupts.

Event Type Privileged

Receive Interrupt No

Receive buffer under/overflow Interrupt Yes

TTB miss Exception Yes

TTB remote invalidate Interrupt Yes

Table 7.1: ISA extensions and new events introduced by ADM, assuming a SPARCv9
ISA.

7.3.2 Guaranteed Delivery and Ordering

To simplify software schedulers, our hardware design preserves message ordering for

each source-destination pair and provides guaranteed delivery. We first focus on how

to implement guaranteed delivery. Suppose there are no send buffers in the ADM

units. This implies that neither the interconnect nor the receiving buffer can drop

messages and that all messages should eventually be dequeued by the receiving core.

These requirements can lead to deadlock scenarios. For example, if two threads send

messages to each other and neither is dequeuing them, the receive buffers will be-

come full as well as any interconnect buffers between the two cores. Further send

attempts will be blocked and the two threads will deadlock. To guarantee the ab-

sence of deadlock, we must ensure that threads will eventually dequeue any message

they receive. One option is to prohibit reception handlers from blocking (e.g., by

disallowing sending messages or acquiring locks) [156], but this is too restrictive for

software. Instead, we include a second, privileged interrupt handler, which is trig-

gered when the thread’s receive buffer becomes full and dequeues half of the messages

from the back of the buffer. To preserve ordering, the privileged handler marks the
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first non-dequeued message. When that message is dequeued by the thread, the priv-

ileged handler triggers again, refilling the buffer with the dequeued messages. Using

the privileged handler, we provide unbounded receive buffers in software.

We structured our runtimes to almost never exceed the size of the receive buffers,

avoiding the performance penalty of the second interrupt handler. However, bad-

behaving user-level software (e.g., a buggy or malicious program) may cause serious

interference with other programs that use ADM by quickly filling up the virtual net-

work buffers with messages before the privileged handler can free space in the receive

buffer. To avoid this, we have a send buffer per thread and use a simple ACK/NACK

flow control scheme. Note that although this avoids clogging the network with mes-

sages, the privileged interrupt handler is still needed to prevent deadlock. Small send

buffers suffice, since ADM is not continuously used. In our runtimes, send buffers

that hold 16 messages are sufficient to cover message bursts. Send buffers also make

it easier to preserve message ordering under virtualization (Section 7.3.3).

The flow control protocol between sender and receiver must preserve message or-

dering between each source-destination pair. In general, we can either use determin-

istic routing in the interconnect or implement a flow control protocol with reordering

at the endpoints. We opt for deterministic routing in our evaluation, since networks

in cache-coherent CMPs are often lightly loaded. Since the interconnect does not

reorder messages, all we need to ensure is that, when the receiver R issues a NACK

to sender S, all the messages in flight from S to R are discarded. To do this, every

receiver keeps one bit per sender BR←S, and every sender keeps one bit per receiver

BS→R. All the bits are initially 0. S stamps all its messages to R with BS→R. When

R NACKs a message, it flips BR←S. When S receives the NACK, it flips BS→R and

tries retransmission of the messages to the receiver. Finally, R ignores all packets

arriving from S with bit stamp not matching BR←S.

7.3.3 Virtualization

The OS needs to be aware of ADM, and perform some extra tasks to interact with

it. First, it needs to assign a unique thread ID to each thread in the system, and
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maintain a mapping between thread IDs and physical cores for scheduled threads that

the TTB refill handler can use. Since the TTB is software-managed, the OS can decide

which thread pairs can communicate with ADM. For example, threads from multiple

processes could be allowed to communicate to implement fast user-level IPC. Second,

to support thread migration and descheduling, we introduce a lazy TTB invalidation

mechanism. When a core receives a message intended for another thread context,

it sends a NACK back to the sender, indicating that the TTB entry is stale. This

NACK triggers a privileged interrupt in the sender, which either refills the TTB with

the correct mapping and resends the messages for this destination in the send buffer

if the thread was migrated, or saves them in a software queue and invalidates the

stale TTB entry if the thread is switched out. Finally, the OS should ensure that

a thread’s send buffer is empty before migrating it to avoid losing message ordering

under migrations.

7.4 Runtime Systems

We now present our baseline software-only runtime and the runtimes that utilize

the hardware features of Carbon and ADM. For this study, we focus on Task-Stealing

runtimes with either a task-parallel or a loop-parallel API. In all cases, the application

code is the same. The application programmer writes code for a shared-memory

CMP and is oblivious of the use of Carbon or ADM. Only the low-level runtime code

interacts with additional hardware features.

7.4.1 Task-Parallel Runtimes

API: All the task-parallel runtimes implement the same simple interface, consisting

of two functions:

• void enqueue(Task t): Enqueues the task identifier t for execution in the cur-

rent parallel phase. Task identifiers consist of four 64-bit words.

• bool dequeue(Task& t): Tries to dequeue a task identifier from the current

parallel phase. If successful, returns true and copies the task to t. Otherwise,



CHAPTER 7. ADM 142

returns false, signaling the end of the parallel phase.

Software-only runtime: Our baseline runtime is a highly optimized work-stealing

scheduler. It uses Chase-Lev circular work-stealing deques [35], which require an

atomic operation per steal, but not in local enqueues or most local dequeues. Lo-

cal enqueues and dequeues are done in LIFO order. The stealing protocol is fully

non-blocking: local enqueues/dequeues and steals to the same queue can happen

concurrently, and a stealing thread never blocks waiting on other stealer to finish.

The phase termination protocol is as in the X10 work-stealing scheduler [44]. We

carefully control memory layout to avoid false sharing and maximize spatial locality.

We explored tuning the stealing policy in two dimensions: victim selection (ran-

dom, round robin or nearest neighbor) and tasks to grab per steal (one or half of

the queue). In our experiments, we find that trying to steal from nearest neighbors

first outperforms random or round-robin stealing due to improved locality, and steal-

ing half of the victim’s queue is preferable to stealing one task to amortize software

overheads and preserve inter-task locality. Therefore, the software runtime uses these

policies in the evaluation.

Carbon runtime: The Carbon runtime operates as outlined in Section 7.2. Each

worker has a private and unbounded LIFO task queue in software that is used when

its hardware queue fills up. Work-stealing is enabled by maintaining at least a portion

of the task queues in the hardware LIFO queues. The GTU hardware performs work-

stealing in the background, and the LTUs fetch and prefetch tasks from the GTU.

When the GTU needs to send a task to the LTU of a specific thread, it first attempts a

dequeue from its corresponding hardware queue. If the queue is empty, it steals from

a non-empty victim queue in a single cycle. As long as there are tasks in the hardware

queues, the latencies of work-stealing and the communication between the GTU and

the LTUs are hidden from the worker threads. Since the GTU cannot reclaim tasks

from the LTUs, it does not serve prefetches when there are few tasks in the GTU

to avoid load imbalance [101]. We optimized the runtime to minimize overflows and

underflows of the hardware queues. As with the software runtime, we have explored

different stealing policies in the GTU, and choose to steal half of the tasks from the
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Name Type Description Format

UPDATE ↑ Inform manager of task count <level, numTasks>

STEAL ↓ Notify victim to perform a steal <level, tasksToXfer, stealer>

TASK → Transfer one task to stealer <taskDescriptor, isLastTask>

VICTIM UPDATE ↑ Victim notifies manager of steal
outcome & new task count

<level, tasksXferd, tasksLeft>

STEALER UPDATE ↑ Stealer notifies manager that
steal is over & new task count

<level, numTasks>

UNBLOCK ↓ Notify end of phase <level>

Table 7.2: Messages in the ADM runtime protocols. The type column indicates how
the message flows in the hierarchy of workers and managers: down (↓), up (↑), or
between workers (→). The level field indicates the tree level of the manager in the
hierarchical runtime, and is not used in the centralized runtime.
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PDATE
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Figure 7.3: Messages involved in a steal in the centralized ADM runtime. The number
in each worker indicates the tasks in its queue.

nearest-neighbor queue, both for performance reasons and for consistency with the

software runtime policy.

ADM runtimes: In ADM runtimes, threads can adopt the roles of workers or

managers. A worker executes the program, enqueuing and dequeuing tasks in thread-

local software queues. A manager handles task distribution, load balancing, and

parallel phase termination by exchanging messages with workers. Managers do not

maintain task queues themselves. A thread can act as a dedicated worker, as a
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dedicated manager, or as both worker and manager, switching between the two roles

as messages arrive and the interrupt handler is triggered.

A simple ADM-based runtime can be centralized, using a single manager to co-

ordinate all the threads, or distributed if it uses multiple managers. Our centralized

runtime operates with four kinds of messages: updates, steal requests, task transfers,

and unblocks. The details of each message are shown in Table 7.2. Workers send up-

date messages to notify the manager about changes in the number of locally queued

tasks, using the adm_send instruction in the functions for task enqueuing and dequeu-

ing. To avoid saturating the manager, workers send updates only when their queues

exceed exponentially varying thresholds. When an update message arrives, the inter-

rupt handler invokes the manager code. The manager initiates and coordinates steals

among workers based on its approximate knowledge of the number of tasks in each

worker, as shown in Figure 7.3. If the number of tasks of a worker S (stealer) goes

below an underflow threshold, the manager sends a steal request message to notify

the worker V (victim) with the most tasks that it should send a portion of its queue

to worker S. Worker V sends tasks to S, using one task message per task descriptor.

When the steal is finished, S and V send updates to the manager. These updates

may trigger further rebalances. A worker that tries to dequeue from an empty queue

blocks and sends an update to its manager. When all the workers block, the manager

sends an unblock message to every worker to signal the end of the parallel phase.

The centralized runtime is simple, but does not scale to large thread counts (e.g.,

64 or 128), even when using a dedicated thread for the manager. If frequent stealing

is needed, the manager quickly saturates when matching stealers and victims. Ad-

ditionally, if the program has short phases, the single manager takes a long time to

detect and signal phase termination.

To improve scalability, we implemented a hierarchical ADM-based runtime, with

multiple levels of managers organized in a tree, as shown in Figure 7.4a. A level-

0 manager directly coordinates a sub-group of workers, while managers at higher

levels coordinate groups of managers down below. The hierarchical scheduler uses

the same set of messages as in the centralized implementation, detailed in Table 7.2:

updates flow up the tree, steal requests and unblocks flow down the tree, and task
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Figure 7.4: Organization and operation of the hierarchical ADM runtime. An 8-
thread, radix-4 runtime is shown. (a) indicates which threads perform the roles of
workers and managers. Note how the manager threads are also workers. (b) shows
the messages involved in a multi-level steal. In (b), the numbers indicate tasks left
in each worker, or task aggregates in managers. The update messages sent after the
steal are omitted for clarity.

transfers happen between workers. Each manager keeps an approximate count of

the aggregate number of tasks in its child partitions, and initiates steals within its

partition when needed to counter imbalance. Hence, there can be steals spanning



CHAPTER 7. ADM 146

multiple levels, as Figure 7.4b shows. In these multi-level steals, managers distribute

the steal request among its children, so a single steal request can rebalance two whole

partitions. The ith worker of the victim partition always transfers tasks to the ith

stealer worker. This may require additional rebalances in the stealer partition, but

enables managers to keep only aggregate task counts. This implementation provides

global load balancing, but at the same time improves locality by first solving local

imbalances with steals from nearby threads. Compared to a centralized runtime,

this approach amplifies stealing bandwidth, allowing for frequent steals. We observe

that radix-4 to radix-16 configurations perform best for our workloads, with marginal

performance differences between them. Larger radices exhibit reduced performance

due to manager saturation. Our evaluation uses a radix-8 tree.

Finally, the scheduler needs to be aware of the limitations of ADM. As explained

in Section 7.3, ADM operates very efficiently as long as the TTB and receive buffer

capacities are not exceeded. TTB overflow is avoided with a relatively small radix,

since the number of threads that a thread can communicate with grows logarithmically

with system size (e.g., to avoid overflows completely, a radix-8 tree of 512 threads

needs at most 31 TTB entries). Receive buffer overflow is avoided by limiting the

number of tasks that a victim can send in a burst. Setting this limit to half of the

receive buffer size makes overflows rare.

7.4.2 Loop-Parallel runtimes

We adapt the task-parallel runtimes to improve performance with loop-parallel ap-

plications. The API is slightly different: Instead of enqueuing and dequeuing tasks,

the application enqueues a whole loop and dequeues its iterations. The Carbon run-

time uses special support for loop tasks [101]: a loop is enqueued to the GTU in a

single enqueue, and loop tasks are partitioned in the GTU. In the software and ADM

runtimes, a single task represents a range of loop iterations. Thus, a task can be effi-

ciently split when stealing. Additionally, the runtimes support loops with reductions.

The software and Carbon runtimes implement tree-based reductions through shared

memory, and in ADM reductions are piggybacked on top of the unblock messages
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used to signal phase termination, incurring practically zero overhead.

7.4.3 Discussion

Even though our exploration was not exhaustive and better ADM-based managers

may be possible, we draw some important insights about software scheduling for fine-

grain parallelism. First, for large-scale CMPs, distributed runtimes are necessary

even when ADM is available. Second, the availability of ADM allows all task queues

to be kept thread-local. Each queue is accessed by only one thread, either to retrieve

its own work or to serve steals. Hence, there is no need for locks or a few expensive

misses when stealing occurs between remote threads. For reference, a single remote L2

miss takes around 90 cycles on average in the large-scale CMPs we explored. Third,

the overhead of exchanging tasks or other scheduling information through ADM is

significantly lower. The latency through the interconnect (25 cycles on average) is

typically hidden as the messages are asynchronous. The message handlers in our

runtimes typically run in about 50 cycles (including interrupt overhead). Finally,

asynchronous messages allow us to overlap scheduling with useful computation.

Since ADM is a general messaging primitive, it could be used to implement other

synchronization or communication mechanisms, such as barriers, locks or fast IPC.

We leave these further uses to future work.

7.5 Experimental Methodology

Infrastructure: We perform execution-driven simulation of large-scale CMPs using

the M5 simulator [17] coupled with the Wisconsin GEMS toolset for memory hierarchy

modeling [112]. We simulate user-level application and library code, using detailed

microarchitectural models for both the memory hierarchy and the interconnect. All

the simulations are performed with warmed-up caches, and we introduce a small

random perturbation in the main memory latency and do multiple runs per workload

to obtain stable averages [8].
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Cores
32–128 cores, 1/2/4 threads per core, in-order, 2-way issue SMT, SPARCv9
ISA, 2 GHz

Coherence
Directory-based, MOESI among L1s-L2s and L2-directories, sequential
consistency

L1 caches 32KB, 4-way set associative, split D/I, 1-cycle latency, private per-core

L2 caches
1MB per bank, 4 banks/tile, 16-way set associative, non-inclusive, 5-cycle
tag / 10-cycle data latencies, pipelined, shared by the L1s of the 4 cores in a
tile, crossbar interconnect to L1s

L3 cache
3D-stacked, 16MB per bank, 1 bank/tile, 16-way set associative, shared
across the whole CMP, acts as victim cache for L2s, 10-cycle tag / 21-cycle
data latencies, pipelined

Directory 1 bank/tile, idealized 6-cycle latency

MCU 1 memory controller/tile, single DDR-3 channel

Interconnect 2D flattened butterfly, connects tiles of 4 cores

Routers
3-stage pipeline (look-ahead RC and VA, SA, ST [47]), 4 VCs/virtual
network, buffering of 8 flits/VC, 3 virtual networks (1 for coherence requests,
1 for ADM/Carbon requests, 1 for replies)

Links
18B flits, repeated and pipelined; 1 cycle latency in local interconnect, 2–11
cycles in global interconnect

Carbon 4-task LTUs, 32 tasks per GTU queue, pipelined GTU

ADM 64-word receive and send buffers (16 4-word messages), 32-entry TTBs

Table 7.3: Main characteristics of the simulated CMPs. The latencies assume a 32 nm
process at 2GHz.

Systems: We model tiled CMPs with directory-based cache coherence, focusing

on large-scale designs with 32 to 128 cores and a 3-level cache hierarchy, with the

parameters shown in Table 7.3. The cores are 2-way in-order similar to the Niagara-2

pipeline [65]. They are also multithreaded to reduce the effect of memory latency.

All components are sized to fit under reasonable area and power budgets at 32 nm

for the 64-core configuration (360mm2 and 55W). Area, latency and power of caches

and interconnect are estimated using CACTI 5.3 [152], ITRS 2007 predictions, and

the models in [12]. The L2s are sized to take 40% of the chip area. We include a

3D-stacked L3, implemented in a 32 nm DRAM process.

Our Carbon model follows the original ISA and microarchitecture [101]. The local

task units (LTUs) buffer up to 4 tasks per thread, and can have one task prefetched

from the global task unit (GTU). The GTU is located in the center of the CMP, can

serve one request per cycle, and holds 32 4-word tasks per thread queue (2KB per

thread). The per-core ADM unit uses 64-word send and receive buffers per thread
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Input
Type Instrs

Task Phase Pha-Stolen L1D L1 misses served by
set lengthlength ses tasks hits Loc L2RemL2 L3 Mem

canneal native Loop 2.1B 4.9K 657K 100 2.4% 94.3% 14.8% 34.4% 36.5%14.3%
mergesort 1M keys Task 346M 3.9K 4.6M 1 9.8% 97.3% 18.5% 66.1% 0.0% 15.4%
maxflow 4K RLG Task 1.5B 674 99M 1 8.5% 90.0% 22.3% 77.5% 0.0% 0.2%

ced nyc Task 381M 419 3.7M 2 13.1% 96.0% 37.6% 23.4% 6.5% 32.6%
cg bcsstk16 Loop 465M 976 21.8K 601 7.5% 90.9% 77.9% 20.0% 0.0% 2.1%

gtfold x54252 Loop 4.3B 14.8K 143K 693 22.2% 98.3% 87.1% 12.3% 0.0% 0.6%
hashjoin 100td3 Task 166M 1.6K 3.8M 1 75.3% 95.8% 24.1% 49.8% 0.0% 26.1%

Table 7.4: Main workload characteristics, using a 64-core CMP with Carbon. The
type column indicates whether the application is task or loop-parallel. The average
task and parallel phase lengths are in cycles. In loop-parallel applications, task length
means iteration length.

(same size as a Carbon queue) and a 32-entry TTB. All other queues for ADM-based

runtimes are in software.

Workloads: Our evaluation has three main goals. For balanced applications or

codes with sufficiently large tasks, we want to show that the ADM runtime does not

introduce any overheads and performs as well as an optimized software-only scheduler.

For irregular applications with small tasks that match the scheduling algorithm of

Carbon, we want to show that ADM performs and scales as well as Carbon despite

using less hardware (queue management and algorithm control in software). Finally,

for applications that perform best with other scheduling algorithms, we want to show

that the software-mostly nature of ADM runtimes allows us to match the application

characteristics and significantly outperform Carbon.

We have selected seven parallel workloads, summarized in Table 7.4. They cover a

wide set of domains, use programming models, and exhibit a varied behavior in terms

of miss rates, task granularities, available parallelism, and imbalance. They are:

• canneal: A loop-parallel circuit routing algorithm using simulated annealing,

refactored from the PARSEC suite [16].

• mergesort: A parallel implementation of the mergesort algorithm using spawn-

sync Cilk-style parallelism. It applies a divide-and-conquer strategy, resorting to

serial mergesort when the subarray fits in the L1 cache. Merging two subarrays

is parallelized as well.
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• maxflow: Computes the maximum flow of a graph using the push-relabel algo-

rithm. This graph problem is computationally intensive and has many applica-

tions in networking, computer vision, etc., but is hard to scale [11, 100]. It has

very short tasks and cores often exhaust their task queues, resulting in frequent

stealing.

• ced: Performs canny edge detection, a widely used algorithm in image processing

and computer vision [28]. Refactored from the OpenCV library.

• cg: An iterative solver for sparse linear systems using the conjugate gradient

method. Includes different types of phases: sparse matrix-vector multiplications

(long but irregular), scaled vector additions (short and regular), and dot products

with frequent reductions.

• gtfold: A bioinformatics application that predicts the secondary structure of

large RNA molecules [113]. It has dependencies between loop iterations and an

irregular iteration length, which results in short, imbalanced phases. Tuning the

scheduler to the characteristics of this application can yield large benefits.

• hashjoin: A hash-join algorithm implementation, common in database work-

loads [39].

7.6 Evaluation

7.6.1 Software, Carbon and ADM Schedulers

Figure 7.5 shows the performance of software, Carbon and ADM schedulers. Each

graph shows the speedup of a single application on CMPs with 32, 64, and 128

dual-threaded cores (64–256 threads). Speedups are normalized to the single-thread

software version. This experiment uses the regular software and ADM schedulers

explained in Section 7.4 (we only alter the scheduling algorithms in Section 7.6.4).

There are several things to observe. First, all applications except maxflow can scale

reasonably well. Second, five of the seven benchmarks show large performance dif-

ferences across the schedulers. Third, there is no single best scheduler across all

applications, but ADM performs best on average, being slower than Carbon only on
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Figure 7.5: Performance of the different fine-grain schedulers, software, Carbon,
and ADM, using CMPs with 32, 64 and 128 dual-threaded cores (64–256 threads).
Speedups are normalized to the single-thread software version. Higher numbers are
better.

Running Enqueue Dequeue Starved Succ. steal
(Software)

Failed steal
(Software)

Uflow. handler
(Carbon)

Worker handler
(ADM)

Manager handler
(ADM)

s c
32c2t

a s c
64c2t

a s c
128c2t

a
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 e

x
e
c.

 t
im

e

canneal

s c
32c2t

a s c
64c2t

a s c
128c2t

a
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 e

x
e
c.

 t
im

e

mergesort

s c
32c2t

a s c
64c2t

a s c
128c2t

a
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 e

x
e
c.

 t
im

e

maxflow

s c
32c2t

a s c
64c2t

a s c
128c2t

a
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 e

x
e
c.

 t
im

e

ced

s c
32c2t

a s c
64c2t

a s c
128c2t

a
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 e

x
e
c.

 t
im

e

cg

s c
32c2t

a s c
64c2t

a s c
128c2t

a
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 e

x
e
c.

 t
im

e

gtfold

s c
32c2t

a s c
64c2t

a s c
128c2t

a
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 e

x
e
c.

 t
im

e

hashjoin

Figure 7.6: Execution time breakdown for software (s) Carbon (c) and ADM (a),
using CMPs with 32, 64 and 128 dual-threaded cores (64–256 threads). Each result
is normalized to the execution time of the software version with the same number of
cores. Lower numbers are better.

mergesort.

To gain further insight into these results, Figure 7.6 breaks down execution time

into different components on 32–128 dual-threaded cores. Execution time is normal-

ized to the total running time of the software-scheduled version with the same number

of cores. There are four components common to all runtimes: running (executing non-

scheduler application code), enqueuing and dequeuing (from the thread’s own queue),

and starved (waiting for tasks to become available). For the software scheduler, we

also provide the time spent in steals, classified into successful steals (i.e., yielding

one or more tasks) and failed steals. For Carbon, we show the amount of time spent
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in the underflow handler. For ADM, we show the time spent in interrupt handlers,

broken down in the worker and manager portions. We can see some general trends:

for Carbon and ADM, most of the scheduling overhead comes from starvation. The

ADM overheads from handler code and local enqueues/dequeues are comparatively

small, and ADM often beats Carbon by reducing starvation time. For the software

scheduler, however, local enqueue/dequeue and stealing overheads can be major, due

to loss of locality in the task queues (the software scheduler is non-blocking, so there

is no lock contention). We now explain the behavior of each application in detail:

canneal is fairly balanced and coarse-grained, and shows minimal differences

between the runtimes.

mergesort, due to its tree-style parallelization, has regions with scarce paral-

lelism, with only a few threads generating new tasks that need to be redistributed

as quickly as possible. Thus, mergesort is latency-sensitive, i.e., it significantly bene-

fits from reducing the time that the scheduler takes to distribute work. ADM’s fast

directed stealing is able to perform within 5% of Carbon in these critical portions,

while the software runtime is up to 24% slower.

maxflow does not scale beyond 64 threads, but it is a good example of how

efficient scheduling can aid the performance of parallelism-constrained codes. Its tasks

are very small (a graph node traversal, ∼600 cycles) and steals are common. ADM

and Carbon achieve the same performance. The software runtime is 90% slower at 256

threads, due to enqueue/dequeue and stealing overheads, which become large due to

cache misses on queue accesses. Maxflow shows that software queues are inexpensive

if kept thread-local: even with 600-cycle tasks, at 64 threads the enqueue/dequeue

overheads are 5% in ADM and 4% in Carbon, but 20% in software.

ced has very small tasks (400 cycles), long phases with deep queues and a mild

imbalance. ADM and Carbon have similar overheads, both for queuing (because

Carbon often reverts to software queues) and load-balancing.

cg combines long (65K cycles at 128 threads), imbalanced phases, followed by

short (4K cycles at 128 threads), balanced phases, and reductions. ADM matches

the performance of Carbon in the short and long phases, but provides tree reductions

that are an order of magnitude faster (390 vs 4K cycles for 128 threads). Reductions
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become more important as we increase the number of cores (they are the portion

of running time over that of ADM). Additionally, the GTU saturates in the short

phases with small tasks, as we will see in Section 7.6.2. These issues cause ADM to

outperform Carbon by 70% at 256 threads.

gtfold has relatively large loop iterations: 15K cycles on average, with a bimodal

distribution (either 1K or 40K cycles), and has many short, imbalanced parallel

phases. Carbon performs sensibly worse than ADM because, even with the GTU

disallowing prefetches when there are few tasks, an LTU sometimes prefetches a long

task while executing another long task, leading to imbalance since tasks cannot be

reclaimed from LTUs. The software and ADM schedulers do not have this problem,

but ADM scales better than software.

hashjoin has a large load imbalance (about half of the threads enqueue most of

the tasks), causing frequent steals from the empty threads. This frequent stealing

saturates the GTU at 256 threads (note the increased overheads due to starvation

and overflow handler). Hashjoin also has significant inter-task locality, and since the

GTU only steals a small number of tasks per steal (half of the hardware queue size),

it produces larger fragmentation, degrading locality and increasing the time spent per

task by up to 20%.

To conclude, we discuss the effects of having different stealing policies. In the-

ory, since we use nearest-neighbor stealing in Carbon and software, but hierarchical

stealing in ADM, there could be differences in the application locality seen with each

runtime. However, excluding hashjoin, the stealing policy has a negligible effect on

the execution time of our applications. The only other cases in Figure 7.6 with signif-

icant differences in running (non-scheduler) time are maxflow and cg. For maxflow,

this is due to algorithmic effects as the amount of work depends on the amount of

parallelism. Carbon and ADM can keep more threads busy and end up with more

running time on average. For cg, it is due to the faster reductions with ADM. In the

remaining applications, the maximum difference between non-scheduler times is 4%

(ced), where ADM is slightly faster.
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Figure 7.7: Performance of software, Carbon and ADM schedulers on a 64-core CMP
with 1, 2 and 4 threads/core.

7.6.2 Sensitivity to Hardware Parameters

Multithreading: Figure 7.7 shows the performance of mergesort, maxflow, and cg

using a 64-core CMP with 1, 2 or 4 threads/core (other applications behave similarly).

In general, the relative performance differences between software, Carbon, and ADM

schedulers remain the same, despite the better latency tolerance with more threads. In

mergesort, we note a slight performance reduction for ADM with 4 threads per core.

This happens because mergesort is particularly latency-sensitive. With 4 threads,

interrupt handlers take more time to execute due to contention in the core’s pipeline.

This could be addressed by scheduling fewer threads on cores with ADM managers,

or prioritizing interrupt handler execution.

Idealized interconnect: Figure 7.8 shows the performance of Carbon and ADM

when their traffic is not routed through the conventional interconnect, but through an

idealized interconnect with a fixed 25-cycle latency between any source-destination

pair and infinite bandwidth. Coherence traffic still uses the conventional interconnect.

Additionally, the ideal Carbon GTU serves any number of requests in a single cycle.

This allows us to evaluate the effect of contention in the GTU. Differences between
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Figure 7.8: Performance of software, Carbon and ADM schedulers when the Car-
bon/ADM traffic is routed through an idealized network, eliminating contention in
the GTU.

ideal and non-ideal configurations are marginal on all applications except hashjoin

and cg, where Carbon improves its speed by up to 25% and 55%, respectively, at

256 threads. hashjoin requires very frequent stealing, and the GTU cannot keep

up distributing tasks at the required rate. cg has short phases, and the termination

messages that the GTU sends at the end of each phase become the bottleneck. Due to

its distributed nature, the ADM scheduler is insensitive to these issues. These results

indicate that, even with fast hardware, having centralized queues leads to contention

with small tasks.

7.6.3 Analysis of ADM Benefits

Since the software and ADM schedulers are fundamentally different, it is hard to un-

derstand whether the benefits of ADM come from being able to implement a better

scheduling algorithm or from bypassing the memory hierarchy. However, the soft-

ware runtime cannot be structured in an asynchronous worker/manager organization
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Figure 7.9: Speedup and execution time breakdowns of software (s), ULI (u) and
ADM (a) runtimes, with 32–128 cores (64–256 threads).

Operation
ULI ADM

Best Avg Worst Best Avg Worst

Enqueue 41 66 84 34 57 72
Dequeue 39 60 94 32 37 44

Recv. update (mgr) 240 263 278 49 52 55
Steal match (mgr) 589 630 703 262 310 365
Send task (victim) 256 403 549 50 76 96

Recv. task (stealer) 259 300 326 40 47 56

Table 7.5: Cost breakdown for ULI and ADM schedulers using a 64-core, 128-thread
CMP. The cost for each scheduler operation is given in cycles. Each cost is the average
of a specific workload, and includes interrupt overheads for operations triggered by
a ULI/message reception. The table includes the best and worst application’s costs,
and the average cost across all workloads.

without some hardware support. The minimal hardware required is to have user-

level interrupts (ULI), supported in several recent proposals by monitoring updates

to specific cache lines [23, 117, 144]. ULI allows an asynchronous worker/manager

scheduler, where one thread can cheaply interrupt another to indicate the availability

of a message that includes a task or information on the load of a worker. However,

the actual message payload goes through the cache hierarchy. ADM provides both

asynchronous user-level interrupts and register-to-register messaging.

To understand the benefits of ADM, we implement the same ADM task-parallel

scheduler using ULI: threads communicate scheduling events through previously-

known cache lines, and notify each other that a message is available using an ULI.
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Figure 7.9 shows the speedups and execution time breakdowns of the software, ULI

and ADM schedulers for maxflow, mergesort, and hashjoin. ADM always outperforms

ULI, since communicating through registers entails lower overheads than through the

cache hierarchy. Table 7.5 provides further detail with a cost breakdown of ULI and

ADM schedulers. We observe that in ADM schedulers all common operations are fast,

taking 37 to 72 cycles on average (matching two threads for a steal takes longer, but

occurs relatively rarely). With ULI, the costs for enqueuing and dequeuing are only

slightly higher than in ADM, since task queues are thread-local and update messages

are sent only at specific thresholds. However, costs for the other operations, which

always involve sending or receiving messages, are two to six times larger than with

ADM. Sending or receiving a message with ULIs requires at least two cache-to-cache

transfers (one for the data and one for the ULI), taking up to 200 cycles (the penalty

is lower if sender and receiver share the L2). Moreover, if the application is sensitive

to scheduler latency, these higher overheads will increase starvation. The results in

Figure 7.9 illustrate how these issues affect each application. In maxflow, which is

somewhat latency-sensitive, ULI is only 18% slower than ADM. In mergesort, ADM

achieves higher scalability than ULI because it can perform steals faster, reducing

starvation. Finally, in hashjoin the ADM/ULI schedulers typically steal several tasks

at once, causing multiple messages to be sent per handler execution. As a result, the

handler overhead increases by up to 4× in ULI, being even slower than the software

scheduler.

In conclusion, while ULI can be a useful mechanism for schedulers, ADM out-

performs ULI by large margins. Moreover, the benefits of ADM versus a normal,

synchronous software scheduler come from both being able to implement an asyn-

chronous scheduler and bypassing the cache hierarchy, with the relative importance

of each cause being application-dependent.

7.6.4 Using Custom Scheduling Algorithms

We now use gtfold to illustrate the potential of adapting the scheduling algorithm

to the application. This application operates over an upper triangular matrix, and
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Figure 7.10: Speedup and execution time breakdowns of software (s), Carbon (c) and
ADM (a) runtimes for the task-parallel version of gtfold, with 32–128 dual-thread
CPUs (64–256 threads). Software and ADM schedulers are modified to use FIFO
queues.

has non-trivial dependencies: task (i, j) depends on (i, j − 1) and (i + 1, j). The

original application is loop-parallel, scheduling one diagonal per phase to avoid these

dependencies. Since tasks also have a bimodal distribution (being either 1K or 38K

cycles), this leads to short, imbalanced phases. However, we can avoid having multiple

parallel phases by refactoring gtfold as a task-parallel application: each task works

on a single element of the matrix, and every time a task completes, it checks if it is

the last dependent task to complete for each of its successors, and enqueues them if

so. This can be done at low overhead with counters and atomic operations through

shared memory, since tasks are 15K cycles on average. Ideally, we want to execute

the tasks that have a longer dependence chain first, which roughly corresponds to a

FIFO enqueuing policy. LIFO will do poorly, since it keeps older tasks (with higher

potential to clear critical dependencies) at the bottom of the queue.

Figure 7.10 shows the speedups and execution time breakdowns for the refactored

gtfold. The software and ADM schedulers are modified to perform FIFO enqueues

and dequeues, while Carbon retains its LIFO policy. Software and ADM achieve
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significant performance improvements over the loop-parallel versions in Figure 7.5

(35% for ADM at 256 threads). ADM still outperforms software by 40%. In contrast,

Carbon achieves a maximum speedup of only 3× over the sequential version, being

40× slower than ADM. With 256 threads, the task-parallel version of gtfold on ADM

outperforms the loop-parallel version on Carbon by 50%.

This example demonstrates the benefits of being able to implement scheduling al-

gorithms in software. While Carbon could also implement FIFO queues in hardware,

this would increase its design and verification complexity. Given the large number of

scheduling algorithms that can be useful, supporting them all in hardware is infea-

sible. For instance, hashjoin benefits from directed hierarchical stealing, cg requires

fast reductions, and other programming models need more complex queuing poli-

cies (e.g., our GRAMPS runtime from Chapter 6 requires one task queue per stage

for the scheduler, and one packet queue per size bin for the buffer manager). Our

results show that supporting a simple, yet flexible primitive like ADM and leaving

algorithmic decisions to software is more practical and leads to better performance

than implementing them in hardware.

7.7 Additional Related Work

ADM is inspired by previous efforts in architectures that integrate shared memory

and message passing. UDM [111], the messaging system in Alewife/FUGU [1], imple-

ments a model similar to ADM in some aspects. UDM supports low-overhead short

messages, which can be received synchronously or asynchronously via user-level inter-

rupts (with around a 100-cycle interrupt overhead). User-level code can disable these

user-level interrupts, and threads transparently buffer received messages in memory

with a privileged interrupt that triggers when a handler or atomic section takes too

long. Like UDM, ADM includes asynchronous message receive through user-level in-

terrupts, but at a lower overhead since no privileged interrupt handling code needs to

run. ADM uses a similar mechanism to UDM to back the limited receive-side buffers

with unbounded queues in software, but it is based on receiver-side buffer occupancy,
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not on timeouts. Finally, in ADM messages are sent to virtual threads, not physi-

cal thread contexts, allowing the OS to perform thread migration and more flexible

scheduling. StarT-Voyager [9] implements user-level message passing by exposing

memory-mapped send and receive queues that can overflow to main memory, but

these memory-mapped queues entail additional overheads. The J-Machine [120] and

M-Machine [106] also include a set of flexible messaging mechanisms suitable for fine-

grain asynchronous communication, but unlike these message-driven architectures,

for which messaging is the main means of communication, we advocate introducing

messaging support in a shared-memory CMP.

Several recent architecture proposals target scheduling issues. Apart from Carbon,

researchers have proposed several hardware schedulers that are tailored to specific

applications or hardware [6, 56, 142]. Rigel [90] is a large-scale accelerator CMP

design with incoherent shared memory that includes a globally shared cache and

special support for atomic operations to improve the efficiency of task-parallel software

runtimes. However, Rigel targets task sizes one to two orders of magnitude larger than

we do (100K cycles per task). Pangaea [23, 160] is a tightly integrated small scale

CPU-GPU design in which a CPU core dispatches work to GPU cores using user-

level interrupts (ULIs). As we have shown, ULI-based schedulers can suffer large

performance penalties because communication still happens through shared memory.

In the context of shared memory multiprocessors and CMPs, there have been sev-

eral proposals to accelerate synchronization primitives using message-like constructs.

Decoupled software pipelining [131] uses synchronous producer-consumer queues be-

tween processors for fine-grain parallelization of sequential programs. HAQu [105] im-

plements hardware-accelerated single-producer single-consumer queues. QOLB [87]

focuses on reducing locking overhead, with hardware that maintains a distributed

queue and performs direct node-to-node lock transfers. Active Memory Operations [57]

use messages between cores and memory controllers, which are augmented with some

extra logic, to implement fast locks and barriers. We note that ADM could also be

used to implement these primitives, and leave the detailed evaluation to future work.
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7.8 Summary

This chapter has presented a hardware-software approach to build efficient fine-grain

schedulers on large-scale CMPs. We propose asynchronous direct messages (ADM),

a flexible and practical messaging mechanism that allows threads to communicate

scheduling information without going through the memory hierarchy. Using ADM,

we develop scalable schedulers that keep all scheduling data structures, such as task

queues, thread-local, even when stealing occurs, and overlap most communication

with useful computation. We show that ADM-based schedulers clearly outperform

software-only schedulers and match or exceed the performance of hardware-only Car-

bon. When the ADM scheduler tailors its scheduling algorithm to the application

characteristics, it exceeds Carbon’s performance by up to 70%. Our results show

that supporting a simple, yet flexible primitive like ADM and leaving the algorithmic

decisions to software is more practical and leads to better performance than imple-

menting scheduling in hardware.
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Conclusions and Future Work

This dissertation has presented hardware and software techniques to enable efficient,

scalable and easy to use CMPs with hundreds to thousands of cores. In particular,

we have made the following contributions:

• Scalable Memory Hierarchies: We have designed three techniques that, to-

gether, enable cache hierarchies to scale to thousands of cores efficiently. First,

ZCache (Chapter 3) provides high associativity at low cost and is characterized

with simple and accurate workload-independent models. We use the high asso-

ciativity and analytical models of ZCache to develop two techniques that solve

crucial scalability problems on the shared components of the memory hierarchy.

Vantage (Chapter 4) implements scalable and efficient fine-grain cache partition-

ing, which enables hundreds of threads to share caches in a controlled fashion,

providing configurability, isolation and QoS guarantees. SCD (Chapter 5) is a co-

herence directory that scales to thousands of cores efficiently and causes negligible

directory-induced invalidations with minimal overprovisioning, enabling efficient

cache coherence with QoS guarantees in large-scale CMPs.

• Scalable Dynamic Fine-Grain Runtimes: We have developed a set of tech-

niques that enable efficient dynamic runtimes and schedulers for programming

models with rich semantics that scale well. First, we have developed techniques

to perform dynamic fine-grain scheduling of streaming workloads, and evaluated

162
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them by building the first runtime for the GRAMPS programming model (Chap-

ter 6). This runtime leverages programming model information about parallelism,

task dependencies and priorities, and producer-consumer communication to im-

prove scheduling, guarantees memory footprint, and outperforms previous sched-

ulers (both static and dynamic) on a wide range of applications. Second, we

have developed a hybrid hardware-software scheme to accelerate dynamic sched-

ulers and make them scale efficiently into the hundreds of cores (Chapter 7), even

under frequent communication and synchronization. We have designed ADM, a

messaging primitive tailored to the needs of scheduling and control applications,

and used it to build scalable and efficient hardware-accelerated schedulers that

match or outperform hardware-only schedulers while retaining the flexibility of

software schedulers.

We believe that these contributions open several interesting avenues for future

research. Our work in scaling the memory hierarchy places an important emphasis

on using analytical models throughout the design process, and shows that, contrary

to conventional wisdom, this design style has several benefits over a purely empirical

approach: our techniques not only perform better in the common case, but can make

strict guarantees in all scenarios, which is crucial to provide performance isolation

and QoS guarantees. We hope that architects apply this design approach to other

system components, and especially shared resources, so that we can achieve comput-

ing systems that provide end-to-end QoS guarantees, enabling full isolation among

concurrent applications, predictable performance, and efficient and coordinated use

of shared resources. Additionally, several of our contributions provide new capabili-

ties to software, and enable interesting new schemes that are beyond the scope of this

dissertation. For example, a scheduler could use Vantage’s scalable cache partitioning

to strictly control its on-chip memory footprint, and use feedback from Vantage to

adapt its footprint (e.g., by changing queue sizes and partition sizes) to optimize its

performance. We leave all these endeavors to future work.
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