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Multicore Scalability 
2 

  Multicore is key to future of computing 

  Scaling performance is hard, even with a lot of 
parallelism 
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Memory is Critical 
3 

  Memory limits performance and energy efficiency 

  Basic indicators: 

 64-bit FP op: ~1ns latency, ~20pJ energy 

 Shared cache access: ~10ns latency, ~1nJ energy 

 DRAM access: ~100ns latency, ~20nJ energy 

  HW & SW must optimize memory performance 



Multicore Memory Hierarchy 
4 

  Per-core private caches 

 Fast access to critical working set 

 Should satisfy most accesses 

  Shared last-level cache 

  Increases utilization 

 Accelerates communication 

 Can be partitioned for isolation 

  Coherence protocol 

 Makes caches transparent to SW 

 Uses directory to track sharers 
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Memory Hierarchy Challenges at 1K Cores 
5 

  Cache hierarchy is hard to scale 

 

Shared Cache 

Core 
1 

Coherence Directory 

Main Memory 

Priv 
Cache 

Core 
2 

Priv 
Cache 

Core 
3 

Priv 
Cache 

Core 
4 

Priv 
Cache 

Core 
1024 

Priv 
Cache … 



Memory Hierarchy Challenges at 1K Cores 
6 

  Cache hierarchy is hard to scale 

1.  Directories scale poorly 
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Memory Hierarchy Challenges at 1K Cores 
7 

  Cache hierarchy is hard to scale 

1.  Directories scale poorly 

2.  Conflicts in caches & directory 
are more frequent 
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Memory Hierarchy Challenges at 1K Cores 
8 

  Cache hierarchy is hard to scale 

1.  Directories scale poorly 

2.  Conflicts in caches & directory 
are more frequent 

3.  Shared cache cannot be 
partitioned efficiently 
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Memory Hierarchy Challenges at 1K Cores 
9 

  Cache hierarchy is hard to scale 

1.  Directories scale poorly 

2.  Conflicts in caches & directory 
are more frequent 

3.  Shared cache cannot be 
partitioned efficiently 

4.  No isolation or QoS due to 
shared cache and directory 
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Scaling Parallel Runtimes  
10 

  Parallel runtime maps application 
to hardware 

 Resource management 

 Scheduling 

  Runtime is fundamental to scale 
with manageable complexity 
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Scheduling Parallel Applications 
11 

  Application  Parallel tasks 

 Different requirements 

 May have dependences 
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Scheduling Parallel Applications 
12 

  Application  Parallel tasks 

 Different requirements 

 May have dependences 

  Scheduler assigns tasks to cores 

Shared Cache 

Core 
1 

Coherence Directory 

Main Memory 

Priv 
Cache 

Core 
2 

Priv 
Cache 

Core 
3 

Priv 
Cache 

Core 
4 

Priv 
Cache 

Core 
1024 

Priv 
Cache … 

Application Tasks 



Runtime & Scheduling Challenges 
13 

  Constrained parallelism 
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Runtime & Scheduling Challenges 
14 

  Constrained parallelism 

 Coarser tasks 

 Unneeded serialization 

 

Shared Cache 

Core 
1 

Coherence Directory 

Main Memory 

Priv 
Cache 

Core 
2 

Priv 
Cache 

Core 
3 

Priv 
Cache 

Core 
4 

Priv 
Cache 

Core 
1024 

Priv 
Cache … 

Application Tasks 



Runtime & Scheduling Challenges 
15 

  Constrained parallelism 

  Increased cache misses 
Shared Cache 
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Runtime & Scheduling Challenges 
16 

  Constrained parallelism 

  Increased cache misses 

  Load imbalance 
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Runtime & Scheduling Challenges 
17 

  Constrained parallelism 

  Increased cache misses 

  Load imbalance 

  Scheduling overheads 
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Runtime & Scheduling Challenges 
18 

  Constrained parallelism 

  Increased cache misses 

  Load imbalance 

  Scheduling overheads 

  Excessive memory footprint 
(crash!) 
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Runtime & Scheduling Challenges 
19 

  Constrained parallelism 

  Increased cache misses 

  Load imbalance 

  Scheduling overheads 

  Excessive memory footprint 
(crash!) 

  Conflicting issues  Need smart 
algorithms! 
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Contributions 
20 

  Scalable cache hierarchies: 

 Efficient highly-associative caches [MICRO 10] 

 Scalable cache partitioning [ISCA 11, Top Picks 12] 

 Scalable coherence directories [HPCA 12] 

  Scalable scheduling: 

 Efficient dynamic scheduling by leveraging programming 
model information  [PACT 11] 

 Hardware-accelerated scheduling [ASPLOS 10] 



This Talk 
21 

  Scalable cache hierarchies: 

 Efficient highly-associative caches [MICRO 10] 

 Scalable cache partitioning [ISCA 11, Top Picks 12] 

 Scalable coherence directories [HPCA 12] 

  Scalable scheduling: 

 Efficient dynamic scheduling by leveraging programming 
model information  [PACT 11] 

 Hardware-accelerated scheduling [ASPLOS 10] 



Rethinking Common-Case Design 
22 

  Conventional approach: Make the common case fast 

 Based on patterns of past and current workloads 

 Overprovision to mitigate worst case or for future workloads 

  Multicore demands going beyond the common case 

 Shared resources  Need guarantees on all cases 

 Overprovisioning alone is insufficient and wasteful 

 Some overprovisioning simplifies design 

 Must provide guarantees with minimal overprovisioning 

 Root cause: Empirical design  Limited understanding of 
system behavior 



Solution: Analytical Design Approach 
23 

  Design basic components that are easily analyzable 

 Simple, accurate, workload-independent analytical models 

 Easy to understand, reason about behavior 

  Use models to design systems that work well in all cases 

 Scalability and QoS guaranteed in all scenarios 

 Outperform conventional techniques in the common case 

  Need to revisit fundamental aspects of our systems 
(associativity, coherence, …) 



Set-Associative Caches 
24 

  Basic building block of caches, directories 

  Problems: 

 Reducing conflicts (higher associativity)  more ways 

 Higher energy, latency, area 

 Conflicts depend on workload’s access patterns 
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ZCache 

  One hash function per way 
  

  Hits require a single lookup  low hit energy and latency 

  Misses exploit the multiple hash functions to obtain an arbitrarily 
large number of replacement candidates 

  Multi-step process, draws on prior research on Cuckoo hashing 

  Happens infrequently (on misses) and off the critical path 
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ZCache Replacement 
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ZCache Replacement 

  Instead of evicting A, can move it and evict K or X 

 Similarly, can move K or X  more candidates 
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ZCache Replacement 
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ZCache Replacement 
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ZCache Replacement 
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ZCache Replacement 

  Hits always take a single lookup 
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Methodology 
33 

  zsim: A fast, 1000-core, microarchitectural x86 simulator 

 Fast: Parallel, leverages dynamic binary translation (Pin) 

 15-60 Minstrs/s per host core, 600 Minstrs/s on 12-core Xeon 

 Scalable: Phase-based sync, simulates thousands of cores 

 Validated: Within 10% of Atom and Nehalem systems 

 Simple: ~20 KLoC, used in research and courses at Stanford 

  Integrate zsim with existing area, energy, and latency 
models (McPAT, CACTI) 



ZCache Benefits 
34 

  ZCache = Scalable associativity at low cost 
 Cost of 4-way cache 

 Associativity > 64-way cache 

  8MB shared LLC optimized for area ∙ latency ∙ energy, 32nm: 
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ZCache Associativity 
35 

  ZCache associativity depends only on the number of 
replacement candidates (R) 
  Independent of ways, workload, and replacement policy 

  Problems in defining associativity: Cache array + 
replacement policy 

  Insight 1: With ZCache, replacement candidates are very 
close to uniformly distributed over the array 

  Insight 2: All policies do the same thing, rank cache lines 
  Eviction priority: Rank of a line normalized to [0,1] 

  Example: With LRU policy, LRU line has 1.0 priority, MRU has 0.0 



ZCache Associativity 
36 

  Associativity: Probability distribution of eviction priorities of 
evicted lines 

  ZCache associativity depends only on the number of 
replacement candidates (R): 

With R=8, 2% of evictions in 
60% of least evictable lines 

With R=64, only 10-6 of evictions in 
80% of least evictable lines 
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ZCache Analytical Models 
37 

  Analytical models are accurate in practice: 

14 workloads, 1024 cores 

Theory: 1 in a million 
Practice: 1 in 5 



Cache Partitioning 
38 
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Cache Partitioning 
39 

  Cache partitioning techniques divide cache space explicitly 
  Isolation: Virtualize cache among applications, VMs 

  Efficiency: Improve performance, fairness 

 Configurability: SW-controlled buffers (performance, security) 
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Cache Partitioning Techniques 
40 

  Strict partitioning schemes: Based on restricting line placement 
  Way partitioning: Restrict insertions to specific ways 
  Strict, but supports few partitions and degrades associativity 

 

  Soft partitioning schemes: Based on tweaking the replacement policy 
  PIPP: Insert and promote lines in LRU chain depending on their partition 

  Simple, but approximate partitioning and degrades replacement performance 
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Cache Partitioning with Vantage 
41 

  Previous partitioning techniques have major drawbacks 

 Not scalable, support few partitions  

 Degrade performance 

  Vantage solves deficiencies of previous techniques 

 Scalable: Supports hundreds of fine-grain partitions 

 Maintains high associativity and strict isolation among 
partitions (QoS) 

 



Vantage Design 
42 

  Vantage partitions most of the cache logically by 
modifying the replacement process 

 No restrictions on line placement 
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Vantage Design 
43 

  Vantage partitions the managed region 
  Incoming lines (misses) inserted in partition 
  Each partition demotes least wanted lines to unmanaged region 
  Evict only from unmanaged region  no interference 
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Controlling Demotions 
44 

  Always demoting from inserting partition does not scale with 
number of partitions 

  Instead, maintain sizes by matching demotion rate to miss rate 

Access B (partition 0)  MISS 

Get replacement candidates (16) 
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Demoting with Apertures 
45 

  Aperture: Portion of candidates to demote from each partition  

Partition 0 MISS 

No No No No No No No No No No Yes No No 

Replacement candidates 

Over 
aperture? Evict 

Demote (in top 11% of P3) 

Partition 0 Partition 1 Partition 2 Partition 3 

23% 15% 5% 11% Apertures 

Over 
aperture? Evict 

Nothing is demoted (all candidates above apertures!) 

Over 
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Managing Apertures 
46 

  Partition apertures can be derived analytically: 

  Intuition: Aperture ~ miss rate (Mi)/size (Si) 

  Apertures are also capped to Amax 

 Higher aperture ↔ lower partition associativity 

 Amax ensures high minimum associativity 
 e.g., Amax =40% ~ R=16 associativity 

 We just let partitions that need Ai > Amax  grow 
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Bounds on Size and Interference 
47 

  The worst-case total growth of all partitions over their 
target sizes is bounded and small: 

  Intuition: A ∆-sized partition is always stable, and multiple 
unstable partitions help each other demote 

  Independent of the number of partitions! 

  Assign an extra ∆ to unmanaged region 
 With R=52 and Amax=0.4, ∆=5% of the cache 

 Bounded worst-case sizes & interference 
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A Simple Vantage Controller 
48 

  Use negative feedback loop to derive apertures 

  Use timestamps to determine lines within aperture 

  Practical implementation that maintains analytical guarantees 

Cache Controller 
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Vantage Evaluation 
49 

  350 mixes on a 32-core CMP with a shared LLC (32 partitions) 

  Partitions sized to maximize throughput (utility-based partitioning) 

  Each line shows throughput vs unpartitioned 64-way baseline 

  Way-partitioning, PIPP degrade throughput for most workloads 

Worse than 
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Better than 
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Vantage Evaluation 
50 

  Vantage improves throughput for most workloads using a 
4-way/52-candidate Zcache 

  Other schemes cannot scale beyond a few cores 

Worse than 
unpartitioned 

Better than 
unpartitioned 



Scaling Directories 
51 

  Scaling directories is hard: 

 Excessive latency, energy, area overheads, or too complex 

  Introduce invalidations  Interference 
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Scalable Coherence Directory 
52 

  Insights: 

 Flexible sharer set encoding: Lines with few sharers use one 
entry, widely shared lines use multiple entries  Scalability 

 Use ZCache  Efficient high associativity, analytical models 

 Negligible invalidations with minimal overprovisioning (~10%) 

  SCD achieves scalability and performance guarantees 

 Area, energy grow with log(cores), constant latency 

 Simple: No modifications to coherence protocol 

 At 1024 cores, SCD is 13x smaller than a sparse directory, 
2x smaller, faster and simpler than a hierarchical directory 

 



Scalable Scheduling 
53 

  Scheduling requirements: 
  Expose enough parallelism 

  Locality-aware 

  Load balancing 

  Low overheads 

  Bounded memory footprint 

  Dynamic vs static schedulers: 
  Dynamic: Poor locality, footprint not 

bounded if non-trivial dependences 

  Static: Great compile-time schedules, but 
no load-balancing, only regular apps 
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Insight: Leverage Programming Model 
54 

  Solution: Dynamic fine-grain scheduling techniques that leverage 
programming model information to satisfy requirements 
  Expose all parallelism through fine-grain tasks 

  Locality-aware task queuing and load-balancing 

  Bounded footprint 

  Make dynamic scheduling practical in rich programming models 
(StreamIt, GRAMPS, Delite) 

  Significant improvements over state-of-the-art schedulers on 
existing 12-core, 24-thread Xeon SMP: 
  Up to 17x over dynamic (more parallelism, locality-aware, footprint) 

  Up to 5.3x over static (no load imbalance) 

  Scheduler choice becomes more critical as we scale up! 



Hardware-Accelerated Schedulers 
55 

  Fine-grain scheduling with 100+ threads is slow in software 

 Hardware schedulers (e.g., GPUs): Fast but inflexible 

  Insight: Software schedulers dominated by communication 

  Solution: Accelerate communication with simple hardware 

 ADM: Asynchronous, register-register messages between threads 

  Small and scalable costs (~1KB buffers per core), virtualizable 

 ADM-accelerated fine-grain schedulers: 

  Achieve speed and scalability of HW + flexibility of SW 

  At 512 threads, 6.4x faster than SW and 70% faster than HW 

 ADM can accelerate other primitives (e.g., barriers, IPC) 

 



Contributions 
56 

  Scalable cache hierarchies: 

 Efficient highly-associative caches [MICRO 10] 

 Scalable cache partitioning [ISCA 11, Top Picks 12] 

 Scalable coherence directories [HPCA 12] 

  Scalable scheduling: 

 Efficient dynamic scheduling by leveraging programming 
model information  [PACT 11] 

 Hardware-accelerated scheduling [ASPLOS 10] 



Conclusions 
57 

  Scaling to 1000 cores requires HW and SW techniques:  

 Scale hardware with highly efficient caches with scalable 
partitioning and coherence 

 Scale software with dynamic, fine-grain, HW-accelerated 
scheduling 
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