
SCALING HARDWARE AND SOFTWARE 
FOR THOUSAND-CORE SYSTEMS 

Daniel Sanchez 

 
Electrical Engineering 
Stanford University 



Multicore Scalability 
2 

  Multicore is key to future of computing 

  Scaling performance is hard, even with a lot of 
parallelism 

Transistors 
(Millions) 

Core performance  
(MIPS) 

Multicore performance 
(MIPS) 

1.E+00 

1.E+01 

1.E+02 

1.E+03 

1.E+04 

1.E+05 

1.E+06 

1990 2000 2010 2020 

Cores 

106 

105 

104 

103 

102 

10 

1 



Memory is Critical 
3 

  Memory limits performance and energy efficiency 

  Basic indicators: 

 64-bit FP op: ~1ns latency, ~20pJ energy 

 Shared cache access: ~10ns latency, ~1nJ energy 

 DRAM access: ~100ns latency, ~20nJ energy 

  HW & SW must optimize memory performance 



Multicore Memory Hierarchy 
4 

  Per-core private caches 

 Fast access to critical working set 

 Should satisfy most accesses 

  Shared last-level cache 

  Increases utilization 

 Accelerates communication 

 Can be partitioned for isolation 

  Coherence protocol 

 Makes caches transparent to SW 

 Uses directory to track sharers 

Shared Cache 

Core Core Core Core 

Coherence Directory 

Main Memory 

Private 
Cache 

Private 
Cache 

Private 
Cache 

Private 
Cache 



Memory Hierarchy Challenges at 1K Cores 
5 

  Cache hierarchy is hard to scale 

 

Shared Cache 

Core 
1 

Coherence Directory 

Main Memory 

Priv 
Cache 

Core 
2 

Priv 
Cache 

Core 
3 

Priv 
Cache 

Core 
4 

Priv 
Cache 

Core 
1024 

Priv 
Cache … 



Memory Hierarchy Challenges at 1K Cores 
6 

  Cache hierarchy is hard to scale 

1.  Directories scale poorly 

 Shared Cache 

Core 
1 

Coherence Directory 

Main Memory 

Priv 
Cache 

Core 
2 

Priv 
Cache 

Core 
3 

Priv 
Cache 

Core 
4 

Priv 
Cache 

Core 
1024 

Priv 
Cache … 



Memory Hierarchy Challenges at 1K Cores 
7 

  Cache hierarchy is hard to scale 

1.  Directories scale poorly 

2.  Conflicts in caches & directory 
are more frequent 

Core 
1 

Coherence Directory 

Main Memory 

Priv 
Cache 

Core 
2 

Priv 
Cache 

Core 
3 

Priv 
Cache 

Core 
4 

Priv 
Cache 

Core 
1024 

Priv 
Cache … 

Shared Cache 



Memory Hierarchy Challenges at 1K Cores 
8 

  Cache hierarchy is hard to scale 

1.  Directories scale poorly 

2.  Conflicts in caches & directory 
are more frequent 

3.  Shared cache cannot be 
partitioned efficiently 

 
Core 

1 

Coherence Directory 

Main Memory 

Priv 
Cache 

Core 
2 

Priv 
Cache 

Core 
3 

Priv 
Cache 

Core 
4 

Priv 
Cache 

Core 
1024 

Priv 
Cache … 

Shared Cache 



Memory Hierarchy Challenges at 1K Cores 
9 

  Cache hierarchy is hard to scale 

1.  Directories scale poorly 

2.  Conflicts in caches & directory 
are more frequent 

3.  Shared cache cannot be 
partitioned efficiently 

4.  No isolation or QoS due to 
shared cache and directory 

 

Shared Cache 

Core 
1 

Coherence Directory 

Main Memory 

Priv 
Cache 

Core 
2 

Priv 
Cache 

Core 
3 

Priv 
Cache 

Core 
4 

Priv 
Cache 

Core 
1024 

Priv 
Cache … 



Scaling Parallel Runtimes  
10 

  Parallel runtime maps application 
to hardware 

 Resource management 

 Scheduling 

  Runtime is fundamental to scale 
with manageable complexity 

Parallel Application 

Parallel Runtime 

Operating System 

Hardware 



Scheduling Parallel Applications 
11 

  Application  Parallel tasks 

 Different requirements 

 May have dependences 
Shared Cache 

Core 
1 

Coherence Directory 

Main Memory 

Priv 
Cache 

Core 
2 

Priv 
Cache 

Core 
3 

Priv 
Cache 

Core 
4 

Priv 
Cache 

Core 
1024 

Priv 
Cache … 

Application Tasks 



Scheduling Parallel Applications 
12 

  Application  Parallel tasks 

 Different requirements 

 May have dependences 

  Scheduler assigns tasks to cores 

Shared Cache 

Core 
1 

Coherence Directory 

Main Memory 

Priv 
Cache 

Core 
2 

Priv 
Cache 

Core 
3 

Priv 
Cache 

Core 
4 

Priv 
Cache 

Core 
1024 

Priv 
Cache … 

Application Tasks 



Runtime & Scheduling Challenges 
13 

  Constrained parallelism 

Shared Cache 

Core 
1 

Coherence Directory 

Main Memory 

Priv 
Cache 

Core 
2 

Priv 
Cache 

Core 
3 

Priv 
Cache 

Core 
4 

Priv 
Cache 

Core 
1024 

Priv 
Cache … 

Application Tasks 



Runtime & Scheduling Challenges 
14 

  Constrained parallelism 

 Coarser tasks 

 Unneeded serialization 

 

Shared Cache 

Core 
1 

Coherence Directory 

Main Memory 

Priv 
Cache 

Core 
2 

Priv 
Cache 

Core 
3 

Priv 
Cache 

Core 
4 

Priv 
Cache 

Core 
1024 

Priv 
Cache … 

Application Tasks 



Runtime & Scheduling Challenges 
15 

  Constrained parallelism 

  Increased cache misses 
Shared Cache 

Core 
1 

Coherence Directory 

Main Memory 

Priv 
Cache 

Core 
2 

Priv 
Cache 

Core 
3 

Priv 
Cache 

Core 
4 

Priv 
Cache 

Core 
1024 

Priv 
Cache … 

Application Tasks 



Runtime & Scheduling Challenges 
16 

  Constrained parallelism 

  Increased cache misses 

  Load imbalance 

 

Shared Cache 

Core 
1 

Coherence Directory 

Main Memory 

Priv 
Cache 

Core 
2 

Priv 
Cache 

Core 
3 

Priv 
Cache 

Core 
4 

Priv 
Cache 

Core 
1024 

Priv 
Cache … 

Application Tasks 



Runtime & Scheduling Challenges 
17 

  Constrained parallelism 

  Increased cache misses 

  Load imbalance 

  Scheduling overheads 

Shared Cache 

Core 
1 

Coherence Directory 

Main Memory 

Priv 
Cache 

Core 
2 

Priv 
Cache 

Core 
3 

Priv 
Cache 

Core 
4 

Priv 
Cache 

Core 
1024 

Priv 
Cache … 

Sched 

Application Tasks 

Sched 



Runtime & Scheduling Challenges 
18 

  Constrained parallelism 

  Increased cache misses 

  Load imbalance 

  Scheduling overheads 

  Excessive memory footprint 
(crash!) 

Shared Cache 

Core 
1 

Coherence Directory 

Main Memory 

Priv 
Cache 

Core 
2 

Priv 
Cache 

Core 
3 

Priv 
Cache 

Core 
4 

Priv 
Cache 

Core 
1024 

Priv 
Cache … 

Application Tasks 



Runtime & Scheduling Challenges 
19 

  Constrained parallelism 

  Increased cache misses 

  Load imbalance 

  Scheduling overheads 

  Excessive memory footprint 
(crash!) 

  Conflicting issues  Need smart 
algorithms! 

Shared Cache 

Core 
1 

Coherence Directory 

Main Memory 

Priv 
Cache 

Core 
2 

Priv 
Cache 

Core 
3 

Priv 
Cache 

Core 
4 

Priv 
Cache 

Core 
1024 

Priv 
Cache … 

Application Tasks 



Contributions 
20 

  Scalable cache hierarchies: 

 Efficient highly-associative caches [MICRO 10] 

 Scalable cache partitioning [ISCA 11, Top Picks 12] 

 Scalable coherence directories [HPCA 12] 

  Scalable scheduling: 

 Efficient dynamic scheduling by leveraging programming 
model information  [PACT 11] 

 Hardware-accelerated scheduling [ASPLOS 10] 



This Talk 
21 

  Scalable cache hierarchies: 

 Efficient highly-associative caches [MICRO 10] 

 Scalable cache partitioning [ISCA 11, Top Picks 12] 

 Scalable coherence directories [HPCA 12] 

  Scalable scheduling: 

 Efficient dynamic scheduling by leveraging programming 
model information  [PACT 11] 

 Hardware-accelerated scheduling [ASPLOS 10] 



Rethinking Common-Case Design 
22 

  Conventional approach: Make the common case fast 

 Based on patterns of past and current workloads 

 Overprovision to mitigate worst case or for future workloads 

  Multicore demands going beyond the common case 

 Shared resources  Need guarantees on all cases 

 Overprovisioning alone is insufficient and wasteful 

 Some overprovisioning simplifies design 

 Must provide guarantees with minimal overprovisioning 

 Root cause: Empirical design  Limited understanding of 
system behavior 



Solution: Analytical Design Approach 
23 

  Design basic components that are easily analyzable 

 Simple, accurate, workload-independent analytical models 

 Easy to understand, reason about behavior 

  Use models to design systems that work well in all cases 

 Scalability and QoS guaranteed in all scenarios 

 Outperform conventional techniques in the common case 

  Need to revisit fundamental aspects of our systems 
(associativity, coherence, …) 



Set-Associative Caches 
24 

  Basic building block of caches, directories 

  Problems: 

 Reducing conflicts (higher associativity)  more ways 

 Higher energy, latency, area 

 Conflicts depend on workload’s access patterns 

H 
Line 

address Index 

Hash 
Function 

Way 1 Way 2 Way 3 Way 4 

Set 1  
Set 2  
Set 3  
Set 4  
Set 5  
Set 6  
Set 7  
Set 8  



ZCache 

  One hash function per way 
  

  Hits require a single lookup  low hit energy and latency 

  Misses exploit the multiple hash functions to obtain an arbitrarily 
large number of replacement candidates 

  Multi-step process, draws on prior research on Cuckoo hashing 

  Happens infrequently (on misses) and off the critical path 

Indexes 

H1 

H2 

H3 

Line 
address 

25 

Way 1 Way 2 Way 3 



D 

M 

ZCache Replacement 

U 

F 

N 

B 

P 

A 

G 

V 

C 

D 

E 

K 

Z 

T 

M 

X 

J 

R 

H 

Q 

I 

H1 

H2 

H3 

L O S 

0 

1 

2 

3 

4 

5 

6 

7 

Y 

5 

4 

0 
A 

MISS 

Way 1 Way 2 Way 3 

26 



ZCache Replacement 

U 

F 

N 

B 

P 

A 

G 

V 

C 

D 

E 

K 

Z 

T 

M 

X 

J 

R 

H 

Q 

I 

H1 

H2 

H3 

L O S 

0 

1 

2 

3 

4 

5 

6 

7 

Y 

5 

4 

0 

Way 1 Way 2 Way 3 

D 

M 

A 

27 



ZCache Replacement 

  Instead of evicting A, can move it and evict K or X 

 Similarly, can move K or X  more candidates 

U 

F 

N 

B 

P 

A 

G 

V 

C 

D 

E 

K 

Z 

T 

M 

X 

J 

R 

H 

Q 

I 

H1 

H2 

H3 

L O S 

0 

1 

2 

3 

4 

5 

6 

7 

A 

5 

2 

1 

Way 1 Way 2 Way 3 

A 

K 

X 

28 



ZCache Replacement 

Y 

A 

K X 

L M N E 

D 

B Z 

T X G R 

M 

P S 

E Q F K 

Chosen by replacement policy (LRU/LFU/RRIP…) 

29 



ZCache Replacement 

Y 

A 

K X 

L M N E 

U 

F 

N 

B 

P 

A 

G 

V 

C 

D 

E 

K 

Z 

T 

M 

X 

J 

R 

H 

Q 

I 

L O S 

Y 

21 3

4

D 

B Z 

T X G R 

M 

P S 

E Q F K 

30 



ZCache Replacement 

Y 

A 

K X 

L M N E 

U 

F 

B 

P 

A 

G 

V 

C 

D 

E 

K 

Z 

T 

M 

X J 

R 

H 

Q 

I 

L O S 

Y 

D 

B Z 

T X G R 

M 

P S 

E Q F K 

31 



ZCache Replacement 

  Hits always take a single lookup 

U 

F 

B 

P 

A 

G 

V 

C 

D 

E 

K 

Z 

T 

M 

X J 

R 

H 

Q 

I 

L O S 

Y 

H1 

H2 

H3 

Y 

5 

4 

0 

D 

M 

Y 

0 

1 

2 

3 

4 

5 

6 

7 

Way 1 Way 2 Way 3 

  Replacements do not affect hit latency, are simple to 
implement 

32 

HIT 



Methodology 
33 

  zsim: A fast, 1000-core, microarchitectural x86 simulator 

 Fast: Parallel, leverages dynamic binary translation (Pin) 

 15-60 Minstrs/s per host core, 600 Minstrs/s on 12-core Xeon 

 Scalable: Phase-based sync, simulates thousands of cores 

 Validated: Within 10% of Atom and Nehalem systems 

 Simple: ~20 KLoC, used in research and courses at Stanford 

  Integrate zsim with existing area, energy, and latency 
models (McPAT, CACTI) 



ZCache Benefits 
34 

  ZCache = Scalable associativity at low cost 
 Cost of 4-way cache 

 Associativity > 64-way cache 

  8MB shared LLC optimized for area ∙ latency ∙ energy, 32nm: 

0 

1 

2 

3 

4 

5 

6 

SA   
4 

SA 
32 

Z 
4/52 

La
te

n
cy

 (
n
s)

 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

SA   
4 

SA 
32 

Z 
4/52 

H
it
 E

n
e
rg

y
 (

n
J)

 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

SA   
4 

SA 
32 

Z 
4/52 

P
e
rf

o
rm

a
n
ce

 v
s 

S
A

 4
  

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

SA   
4 

SA 
32 

Z 
4/52 

E
n
e
rg

y
 e

ff
. 
v
s 

S
A

 4
  



ZCache Associativity 
35 

  ZCache associativity depends only on the number of 
replacement candidates (R) 
  Independent of ways, workload, and replacement policy 

  Problems in defining associativity: Cache array + 
replacement policy 

  Insight 1: With ZCache, replacement candidates are very 
close to uniformly distributed over the array 

  Insight 2: All policies do the same thing, rank cache lines 
  Eviction priority: Rank of a line normalized to [0,1] 

  Example: With LRU policy, LRU line has 1.0 priority, MRU has 0.0 



ZCache Associativity 
36 

  Associativity: Probability distribution of eviction priorities of 
evicted lines 

  ZCache associativity depends only on the number of 
replacement candidates (R): 

With R=8, 2% of evictions in 
60% of least evictable lines 

With R=64, only 10-6 of evictions in 
80% of least evictable lines 

]1,0[,)Pr()( ∈=≤= xxxAxF
R

A



ZCache Analytical Models 
37 

  Analytical models are accurate in practice: 

14 workloads, 1024 cores 

Theory: 1 in a million 
Practice: 1 in 5 



Cache Partitioning 
38 

Shared Cache 

Core Core Core Core Core Core Core 

Directory 

Main Memory 

Private 
Cache 

Private 
Cache 

Private 
Cache 

Private 
Cache 

Private 
Cache 

Private 
Cache 

Private 
Cache 

Core 

Private 
Cache 



Cache Partitioning 
39 

  Cache partitioning techniques divide cache space explicitly 
  Isolation: Virtualize cache among applications, VMs 

  Efficiency: Improve performance, fairness 

 Configurability: SW-controlled buffers (performance, security) 

Core Core Core Core Core Core Core 

Directory 

Main Memory 

Private 
Cache 

Private 
Cache 

Private 
Cache 

Private 
Cache 

Private 
Cache 

Private 
Cache 

Private 
Cache 

Core 

Private 
Cache 

VM1 VM2 VM3 VM4 VM5 VM6 

L2 L2 L2 L2 L2 L2 L2 L2 
Private 
Cache 

Private 
Cache 

Private 
Cache 

Private 
Cache 

Private 
Cache 

Private 
Cache 

Private 
Cache 

Private 
Cache 

Shared Cache 



Cache Partitioning Techniques 
40 

  Strict partitioning schemes: Based on restricting line placement 
  Way partitioning: Restrict insertions to specific ways 
  Strict, but supports few partitions and degrades associativity 

 

  Soft partitioning schemes: Based on tweaking the replacement policy 
  PIPP: Insert and promote lines in LRU chain depending on their partition 

  Simple, but approximate partitioning and degrades replacement performance 

Way 1 Way 2 Way 3 Way 4 Way 5 Way 6 Way 7 Way 8 

Way 1 Way 2 Way 3 Way 4 Way 5 Way 6 Way 7 Way 8 



Cache Partitioning with Vantage 
41 

  Previous partitioning techniques have major drawbacks 

 Not scalable, support few partitions  

 Degrade performance 

  Vantage solves deficiencies of previous techniques 

 Scalable: Supports hundreds of fine-grain partitions 

 Maintains high associativity and strict isolation among 
partitions (QoS) 

 



Vantage Design 
42 

  Vantage partitions most of the cache logically by 
modifying the replacement process 

 No restrictions on line placement 

 

Managed 

region 

Unmanaged 

region 



Vantage Design 
43 

  Vantage partitions the managed region 
  Incoming lines (misses) inserted in partition 
  Each partition demotes least wanted lines to unmanaged region 
  Evict only from unmanaged region  no interference 

Insertions 

Partition 0 
Unmanaged 

region 
Partition 1 

Partition 2 

Partition 3 

Evictions 

Demotions 



Controlling Demotions 
44 

  Always demoting from inserting partition does not scale with 
number of partitions 

  Instead, maintain sizes by matching demotion rate to miss rate 

Access B (partition 0)  MISS 

Get replacement candidates (16) 

5 P1 2 P2 6 P3 3 unmgd 

Evict from unmanaged region 

Insert new line (in partition 0) 

Demote? 



No No No No No No No No No No No No 

Demoting with Apertures 
45 

  Aperture: Portion of candidates to demote from each partition  

Partition 0 MISS 

No No No No No No No No No No Yes No No 

Replacement candidates 

Over 
aperture? Evict 

Demote (in top 11% of P3) 

Partition 0 Partition 1 Partition 2 Partition 3 

23% 15% 5% 11% Apertures 

Over 
aperture? Evict 

Nothing is demoted (all candidates above apertures!) 

Over 
aperture? 

Evict 
Demote (in top 23% of P0) Demote (in top 15% of P1) 

No Yes No No No No No Yes No No No No 



Managing Apertures 
46 

  Partition apertures can be derived analytically: 

  Intuition: Aperture ~ miss rate (Mi)/size (Si) 

  Apertures are also capped to Amax 

 Higher aperture ↔ lower partition associativity 

 Amax ensures high minimum associativity 
 e.g., Amax =40% ~ R=16 associativity 

 We just let partitions that need Ai > Amax  grow 

A
i
=

M
i

M
k

k=1

P

∑

S
k

k=1

P

∑
S
i

1

R ⋅m



Bounds on Size and Interference 
47 

  The worst-case total growth of all partitions over their 
target sizes is bounded and small: 

  Intuition: A ∆-sized partition is always stable, and multiple 
unstable partitions help each other demote 

  Independent of the number of partitions! 

  Assign an extra ∆ to unmanaged region 
 With R=52 and Amax=0.4, ∆=5% of the cache 

 Bounded worst-case sizes & interference 

RA

11

max

=Δ



A Simple Vantage Controller 
48 

  Use negative feedback loop to derive apertures 

  Use timestamps to determine lines within aperture 

  Practical implementation that maintains analytical guarantees 

Cache Controller 

Partition 0 
state (256b) 

Partition P-1 
state (256b) 

… 

Data 
Array 

Tag 
Array 

256 bits of state per partition 

Line Address 
Coherence/
Valid Bits 

Timestamp 
(8b) 

Tags: Extra partition ID field 

Partition 
(6b) 

Vantage Replacement Logic 
Simple logic, ~10 adders and comparators 

Logic not on critical path 

~1% extra storage, grows with log(partitions) 



Vantage Evaluation 
49 

  350 mixes on a 32-core CMP with a shared LLC (32 partitions) 

  Partitions sized to maximize throughput (utility-based partitioning) 

  Each line shows throughput vs unpartitioned 64-way baseline 

  Way-partitioning, PIPP degrade throughput for most workloads 

Worse than 
unpartitioned 

Better than 
unpartitioned 



Vantage Evaluation 
50 

  Vantage improves throughput for most workloads using a 
4-way/52-candidate Zcache 

  Other schemes cannot scale beyond a few cores 

Worse than 
unpartitioned 

Better than 
unpartitioned 



Scaling Directories 
51 

  Scaling directories is hard: 

 Excessive latency, energy, area overheads, or too complex 

  Introduce invalidations  Interference 

Shared Cache 

Core Core Core Core Core Core Core 

Directory 

Main Memory 

Private 
Cache 

Private 
Cache 

Private 
Cache 

Private 
Cache 

Private 
Cache 

Private 
Cache 

Private 
Cache 

Core 

Private 
Cache 



Scalable Coherence Directory 
52 

  Insights: 

 Flexible sharer set encoding: Lines with few sharers use one 
entry, widely shared lines use multiple entries  Scalability 

 Use ZCache  Efficient high associativity, analytical models 

 Negligible invalidations with minimal overprovisioning (~10%) 

  SCD achieves scalability and performance guarantees 

 Area, energy grow with log(cores), constant latency 

 Simple: No modifications to coherence protocol 

 At 1024 cores, SCD is 13x smaller than a sparse directory, 
2x smaller, faster and simpler than a hierarchical directory 

 



Scalable Scheduling 
53 

  Scheduling requirements: 
  Expose enough parallelism 

  Locality-aware 

  Load balancing 

  Low overheads 

  Bounded memory footprint 

  Dynamic vs static schedulers: 
  Dynamic: Poor locality, footprint not 

bounded if non-trivial dependences 

  Static: Great compile-time schedules, but 
no load-balancing, only regular apps 

Shared Cache 

Core 
1 

Coherence Directory 

Main Memory 

Priv 
Cache 

Core 
2 

Priv 
Cache 

Core 
3 

Priv 
Cache 

Core 
4 

Priv 
Cache 

Core 
1024 

Priv 
Cache … 

Application Tasks 



Insight: Leverage Programming Model 
54 

  Solution: Dynamic fine-grain scheduling techniques that leverage 
programming model information to satisfy requirements 
  Expose all parallelism through fine-grain tasks 

  Locality-aware task queuing and load-balancing 

  Bounded footprint 

  Make dynamic scheduling practical in rich programming models 
(StreamIt, GRAMPS, Delite) 

  Significant improvements over state-of-the-art schedulers on 
existing 12-core, 24-thread Xeon SMP: 
  Up to 17x over dynamic (more parallelism, locality-aware, footprint) 

  Up to 5.3x over static (no load imbalance) 

  Scheduler choice becomes more critical as we scale up! 



Hardware-Accelerated Schedulers 
55 

  Fine-grain scheduling with 100+ threads is slow in software 

 Hardware schedulers (e.g., GPUs): Fast but inflexible 

  Insight: Software schedulers dominated by communication 

  Solution: Accelerate communication with simple hardware 

 ADM: Asynchronous, register-register messages between threads 

  Small and scalable costs (~1KB buffers per core), virtualizable 

 ADM-accelerated fine-grain schedulers: 

  Achieve speed and scalability of HW + flexibility of SW 

  At 512 threads, 6.4x faster than SW and 70% faster than HW 

 ADM can accelerate other primitives (e.g., barriers, IPC) 

 



Contributions 
56 

  Scalable cache hierarchies: 

 Efficient highly-associative caches [MICRO 10] 

 Scalable cache partitioning [ISCA 11, Top Picks 12] 

 Scalable coherence directories [HPCA 12] 

  Scalable scheduling: 

 Efficient dynamic scheduling by leveraging programming 
model information  [PACT 11] 

 Hardware-accelerated scheduling [ASPLOS 10] 



Conclusions 
57 

  Scaling to 1000 cores requires HW and SW techniques:  

 Scale hardware with highly efficient caches with scalable 
partitioning and coherence 

 Scale software with dynamic, fine-grain, HW-accelerated 
scheduling 

 



Acknowledgements 
58 

  Christos 

  Research group: Jacob, David, Richard, Christina, 
Woongki, Austen, Mike, Hari 

  PPL faculty: Kunle, Bill, Mark, Pat, Mendel, John, Alex 

  PPL students: George, Jeremy, … 

  Defense committee: Bill, Kunle, Nick 

  Family & friends 
 Borja, Gemma, Idoia, Carlos, Felix, Dani, Manuel, Gonzalo, 

Adrian, Christina, George, Yiannis, Sotiria, Alexandros, 
Nadine, Martin, Elliot, Nick, Steph, Olivier, Leen, John, Sam, 
Mario, Nicole, Cristina, Kshipra, Robert, Erik, … 



THANK YOU FOR 
YOUR ATTENTION 

QUESTIONS? 


