
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2013-017 September 1, 2013

Jigsaw: Scalable Software-Defined Caches
(Extended Version)
Nathan Beckmann and Daniel Sanchez

Jigsaw: Scalable Software-Defined Caches
(Extended Version)

Nathan Beckmann and Daniel Sanchez
Massachusetts Institute of Technology
{beckmann, sanchez}@csail.mit.edu

Abstract—Shared last-level caches, widely used in chip-multi-
processors (CMPs), face two fundamental limitations. First, the
latency and energy of shared caches degrade as the system scales
up. Second, when multiple workloads share the CMP, they suffer
from interference in shared cache accesses. Unfortunately, prior
research addressing one issue either ignores or worsens the other:
NUCA techniques reduce access latency but are prone to hotspots
and interference, and cache partitioning techniques only provide
isolation but do not reduce access latency.

We present Jigsaw, a technique that jointly addresses the
scalability and interference problems of shared caches. Hardware
lets software define shares, collections of cache bank partitions
that act as virtual caches, and map data to shares. Shares give
software full control over both data placement and capacity
allocation. Jigsaw implements efficient hardware support for
share management, monitoring, and adaptation. We propose
novel resource-management algorithms and use them to develop
a system-level runtime that leverages Jigsaw to both maximize
cache utilization and place data close to where it is used.

We evaluate Jigsaw using extensive simulations of 16- and 64-
core tiled CMPs. Jigsaw improves performance by up to 2.2×
(18% avg) over a conventional shared cache, and significantly
outperforms state-of-the-art NUCA and partitioning techniques.

Index Terms—cache, memory, NUCA, partitioning, isolation

I. INTRODUCTION

Chip-multiprocessors (CMPs) rely on sophisticated on-chip
cache hierarchies to mitigate the high latency, high energy, and
limited bandwidth of off-chip memory accesses. Caches often
take over 50% of chip area [21], and, to maximize utilization,
most of this space is structured as a last-level cache shared
among all cores. However, as Moore’s Law enables CMPs with
tens to hundreds of cores, shared caches face two fundamental
limitations. First, the latency and energy of a shared cache
degrade as the system scales up. In large chips with distributed
caches, more latency and energy is spent on network traversals
than in bank accesses. Second, when multiple workloads
share the CMP, they suffer from interference in shared cache
accesses. This causes large performance variations, precludes
quality-of-service (QoS) guarantees, and degrades throughput.
With the emergence of virtualization and cloud computing,
interference has become a crucial problem in CMPs.

Ideally, a cache should both store data close to where it is
used, and allow its capacity to be partitioned, enabling soft-
ware to provide isolation, prioritize competing applications, or

A shorter version of this paper will appear in the proceedings
of the 22nd International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2013 [4]. This extended version
provides a more detailed analysis of Peekahead’s run-time and
correctness, and contains additional experiments and results.

increase cache utilization. Unfortunately, prior research does
not address both issues jointly. On one hand, prior non-uniform
cache access (NUCA) work [2, 3, 8, 10, 11, 14, 18, 31,
33, 46] has proposed a variety of placement, migration, and
replication policies to reduce network distance. However, these
best-effort techniques often result in hotspots and additional
interference [3]. On the other hand, prior work has proposed a
variety of partitioning techniques [9, 25, 28, 42, 44], but these
schemes only work on fully shared caches, often scale poorly
beyond few partitions, and degrade throughput.

We present Jigsaw, a design that jointly addresses the
scalability and interference problems of shared caches. On
the hardware side, we leverage recent prior work on efficient
fine-grained partitioning [37] to structure the last-level cache
as a collection of distributed banks, where each bank can be
independently and logically divided in many bank partitions.
Jigsaw lets software combine multiple bank partitions into a
logical, software-defined cache, which we call a share. By
mapping data to shares, and configuring the locations and sizes
of the individual bank partitions that compose each share,
software has full control over both where data is placed in
the cache, and the capacity allocated to it. Jigsaw efficiently
supports reconfiguring shares dynamically and moving data
across shares, and implements monitoring hardware to let
software find the optimal share configuration efficiently.

On the software side, we develop a lightweight system-
level runtime that divides data into shares and decides how to
configure each share to both maximize cache utilization and
place data close to where it is used. In doing so, we develop
novel and efficient resource management algorithms, including
Peekahead, an exact linear-time implementation of the pre-
viously proposed quadratic-time Lookahead algorithm [34],
enabling global optimization with non-convex utilities on very
large caches at negligible overheads.

We evaluate Jigsaw with simulations of 16- and 64-core
tiled CMPs. On multiprogrammed mixes of single-threaded
workloads, Jigsaw improves weighted speedup by up to 2.2×
(18.4% gmean) over a shared LRU LLC, up to 35% (9.4%
gmean) over Vantage partitioning [37], up to 2.05× (11.4%
gmean) over R-NUCA [14], and up to 24% (6.3% gmean)
over an idealized shared-private D-NUCA organization that
uses twice the cache capacity [16]. Jigsaw delivers similar
benefits on multithreaded application mixes, demonstrating
that, given the right hardware primitives, software can manage
large distributed caches efficiently.

1

Scheme H
ig

h
ca

pa
ci

ty

Lo
w

La
te

nc
y

Ca
pa

ci
ty

co
nt

ro
l

Is
ol

at
io

n

D
ire

ct
or

y-
le

ss

Private caches ✗ ✓ ✗ ✓ ✗
Shared caches ✓ ✗ ✗ ✗ ✓

Partitioned shared caches ✓ ✗ ✓ ✓ ✓

Private-based D-NUCA [✓ ✓ ✗ ✗
Shared-based D-NUCA [✓ ✗ ✗ ✓

Jigsaw ✓ ✓ ✓ ✓ ✓

Table 1. Desirable properties achieved by main cache organizations.

II. BACKGROUND AND RELATED WORK

This section presents the relevant prior work on multicore
caching that Jigsaw builds and improves on: techniques to
partition a shared cache, and non-uniform cache architectures.
Table 1 summarizes the main differences among techniques.

A. Cache Partitioning

Cache partitioning requires a partitioning policy to select
partition sizes, and a partitioning scheme to enforce them.

Partitioning schemes: A partitioning scheme should support
a large number of partitions with fine-grained sizes, disallow
interference among partitions, strictly enforce partition sizes,
avoid hurting cache associativity or replacement policy perfor-
mance, support changing partition sizes efficiently, and require
small overheads. Achieving these properties is not trivial.

Several techniques rely on restricting the locations where a
line can reside depending on its partition. Way-partitioning [9]
restricts insertions from each partition to its assigned subset
of ways. It is simple, but it supports a limited number of
coarsely-sized partitions (in multiples of way size), and parti-
tion associativity is proportional to its way count, sacrificing
performance for isolation. To avoid losing associativity, some
schemes can partition the cache by sets instead of ways [35,
43], but they require significant changes to cache arrays.
Alternatively, virtual memory and page coloring can be used
to constrain the pages of a process to specific sets [25, 42].
While software-only, these schemes are incompatible with
superpages and caches indexed using hashing (common in
modern CMPs), and repartitioning requires costly recoloring
(copying) of physical pages.

Caches can also be partitioned by modifying the allocation
or replacement policies. These schemes avoid the problems
with restricted line placement, but most rely on heuristics [28,
44, 45], which provide no guarantees and often require many
more ways than partitions to work well. In contrast, Van-
tage [37] leverages the statistical properties of skew-assoc-
iative caches [39] and zcaches [36] to implement partitioning
efficiently. Vantage supports hundreds of partitions, provides
strict guarantees on partition sizes and isolation, can resize
partitions without moves or invalidations, and is cheap to
implement (requiring ≈1% extra state and negligible logic).
For these reasons, Jigsaw uses Vantage to partition each cache
bank, although Jigsaw is agnostic to the partitioning scheme.

Partitioning policies: Partitioning policies consist of a mon-
itoring mechanism, typically in hardware, that profiles parti-
tions, and a controller, in software or hardware, that uses this
information and sets partition sizes to maximize some metric,
such as throughput [34], fairness [25, 41], or QoS [23].

Utility-based cache partitioning (UCP) is a frequently used
policy [34]. UCP introduces a utility monitor (UMON) per
core, which samples the address stream and measures the
partition’s miss curve, i.e., the number of misses that the
partition would have incurred with each possible number of
allocated ways. System software periodically reads these miss
curves and repartitions the cache to maximize cache utility
(i.e., the expected number of cache hits). Miss curves are often
not convex, so deriving the optimal partitioning is NP-hard.
UCP decides partition sizes with the Lookahead algorithm,
an O(N2) heuristic that works well in practice, but is too
slow beyond small problem sizes. Although UCP was designed
to work with way-partitioning, it can be used with other
schemes [37, 45]. Instead of capturing miss curves, some
propose to estimate them with analytical models [41], use
simplified algorithms, such as hill-climbing, that do not require
miss curves [28], or capture them offline [6], which simplifies
monitoring but precludes adaptation. Prior work has also
proposed approximating miss curves by their convex fits and
using efficient convex optimization instead of Lookahead [6].

In designing Jigsaw, we observed that miss curves are often
non-convex, so hill-climbing or convex approximations are
insufficient. However, UCP’s Lookahead is too slow to handle
large numbers of fine-grained partitions. To solve this problem,
we reformulate Lookahead in a much more efficient way,
making it linear-time (Sec. IV).

B. Non-Uniform Cache Access (NUCA) Architectures

NUCA techniques [20] reduce the access latency of large
distributed caches, and have been the subject of extensive
research. Static NUCA (S-NUCA) [20] simply spreads the
data across all banks with a fixed line-bank mapping, and
exposes a variable bank access latency. Commercial designs
often use S-NUCA [21]. Dynamic NUCA (D-NUCA) schemes
improve on S-NUCA by adaptively placing data close to
the requesting core [2, 3, 8, 10, 11, 14, 18, 31, 33, 46].
They involve a combination of placement, migration, and
replication strategies. Placement and migration dynamically
place data close to cores that use it, reducing access latency.
Replication makes multiple copies of frequently used lines,
reducing latency for widely read-shared lines (e.g., hot code),
at the expense of some capacity loss.
Shared- vs private-based NUCA: D-NUCA designs often
build on a private-cache baseline. Each NUCA bank is treated
as a private cache, lines can reside in any bank, and coherence
is preserved through a directory-based or snoopy protocol,
which is often also leveraged to implement NUCA techniques.
For example, Adaptive Selective Replication [2] controls repli-
cation by probabilistically deciding whether to store a copy of
a remotely fetched line in the local L2 bank; Dynamic Spill-
Receive [33] can spill evicted lines to other banks, relying on

2

remote snoops to retrieve them. These schemes are flexible, but
they require all LLC capacity to be under a coherence protocol,
so they are either hard to scale (in snoopy protocols), or incur
significant area, energy, latency, and complexity overheads (in
directory-based protocols).

In contrast, some D-NUCA proposals build on a shared-
cache baseline and leverage virtual memory to perform adap-
tive placement. Cho and Jin [11] use page coloring and
a NUCA-aware allocator to map pages to specific banks.
Hardavellas et al. [14] find that most applications have a few
distinct classes of accesses (instructions, private data, read-
shared, and write-shared data), and propose R-NUCA, which
specializes placement and replication policies for each class
of accesses on a per-page basis, and significantly outperforms
NUCA schemes without this access differentiation. Shared-
baseline schemes are simpler, as they require no coherence
for LLC data and have a simpler lookup mechanism. How-
ever, they may incur significant overheads if remappings are
frequent or limit capacity due to restrictive mappings (Sec. VI).

Jigsaw builds on a shared baseline. However, instead of
mapping pages to locations as in prior work [11, 14], we
map pages to shares or logical caches, and decide the physical
configuration of the shares independently. This avoids page ta-
ble changes and TLB shootdowns on reconfigurations, though
some reconfigurations still need cache invalidations.
Isolation and partitioning in NUCA: Unlike partitioning,
most D-NUCA techniques rely on best-effort heuristics with
little concern for isolation, so they often improve typical
performance at the expense of worst-case degradation, further
precluding QoS. Indeed, prior work has shown that D-NUCA
often causes significant bank contention and uneven distri-
bution of accesses across banks [3]. We also see this effect
in Sec. VI — R-NUCA has the highest worst-case degra-
dation of all schemes. Dynamic Spill-Receive mitigates this
problem with a QoS-aware policy that avoids spills to certain
banks [33]. This can protect a local bank from interference,
but does not provide partitioning-like capacity control. Virtual
Hierarchies rely on a logical two-level directory to partition a
cache at bank granularity [29], but this comes at the cost of
doubling directory overheads and making misses slower.

Because conventional partitioning techniques (e.g., way-par-
titioning) only provide few partitions and often degrade perfor-
mance, D-NUCA schemes seldom use them. ASP-NUCA [12],
ESP-NUCA [31], and Elastic Cooperative Caching [16] use
way-partitioning to divide cache banks between private and
shared levels. However, this division does not provide iso-
lation, since applications interfere in the shared level. In
contrast, Jigsaw partitions the cache into multiple isolated
virtual caches that, due to smart placement, approach the low
latency of private caches. These schemes often size partitions
using hill-climbing (e.g., shadow tags [12] or LRU way hit
counters [16]), which can get stuck in local optima, whereas
Jigsaw captures full miss curves to make global decisions.

CloudCache [22] implements virtual private caches that can
span multiple banks. Each bank is way-partitioned, and parti-
tions are sized with a distance-aware greedy algorithm based

on UCP with a limited frontier. Unfortunately, CloudCache
scales poorly to large virtual caches, as it uses N-chance
spilling on evictions, and relies on broadcasts to serve local
bank misses, reducing latency at the expense of significant
bandwidth and energy (e.g., in a 64-bank cache with 8-way
banks, in a virtual cache spanning all banks, a local miss
will trigger a full broadcast, causing a 512-way lookup and a
chain of 63 evictions). In contrast, Jigsaw implements single-
lookup virtual shared caches, providing coordinated placement
and capacity management without the overheads of a globally
shared directory or multi-level lookups, and performs global
(not limited-frontier) capacity partitioning efficiently using
novel algorithms (Sec. IV).

III. JIGSAW HARDWARE

Jigsaw exposes on-chip caches to software and enables their
efficient management using a small set of primitives. First,
Jigsaw lets software explicitly divide a distributed cache in
collections of bank partitions, which we call shares. Shares
can be dynamically reconfigured by changing the size of each
bank partition. Second, Jigsaw provides facilities to map data
to shares, and to quickly migrate data among shares. Third,
Jigsaw implements share monitoring hardware to let software
find the optimal share configuration efficiently.

A. Shares

Fig. 1 illustrates the overall organization of Jigsaw. Jigsaw
banks can be divided in bank partitions. Jigsaw is agnostic to
the partitioning scheme used, as well as the array type and
replacement policy. As discussed in Sec. II, in our evaluation
we select Vantage partitioning due to its ability to partition
banks at a fine granularity with minimal costs.

Shares are configurable collections of bank partitions, visi-
ble to software. Each share has a unique id number and com-
prises a set of bank partitions that can be sized independently.
The share size is the sum of its bank partition sizes. The share
id is independent from the individual partition ids.

We could exploit shares in two ways. On the one hand,
we could assign cores to shares, having shares behave as
virtual private caches. This is transparent to software, but
would require a coherence directory for LLC data. On the
other hand, we can map data to shares. This avoids the need
for coherence beyond the private (L2) caches, as each line
can only reside in a single location. Mapping data to shares
also enables specializing shares to different types of data (e.g.,
shared vs thread-private [14]). For these reasons, we choose
to map data to shares.

Jigsaw leverages the virtual memory subsystem to map data
to shares. Fig. 1 illustrates this implementation, highlighting
the microarchitectural structures added and modified. Specifi-
cally, we add a share id to each page table entry, and extend the
TLB to store the share id. Active shares must have unique ids,
so we model 16-bit ids. Share ids are needed in L2 accesses,
so these changes should not slow down page translations.

On a miss on the private cache levels, a per-core share-
bank translation buffer (STB) finds the bank the line maps

3

M
e
m

 / IO

Tile Organization 64-tile CMP

Jigsaw L3 Bank

NoC Router

Bank partitioning HW

Bulk inv HW Monitoring HW

Core

STB

TLBs

L1I L1D

L2

Modified structures
New/added structures

Mem / IO

M
e
m

 /
 I

O

Mem / IO

Tile NoC (Mesh)

Share-bank Translation Buffer

STB Entry

Address (from L1 miss) Share Id (from TLB)

1/3 3/5 1/3

H

0/8 …
1

Bank/

Part 0

Bank/

Part N-1

0x5CA1AB1E maps to

bank 3, bank part 5

2706

4 entries, associative,
exception on miss

Share

Config

0x5CA1AB1E

Figure 1. Jigsaw overview: target tiled CMP, tile configuration with microarchitectural changes
and additions introduced by Jigsaw, and Share-Bank Translation Buffer (STB).

Jigsaw L3 Bank 3

Core 0 1

2

LD 0x5CA1AB1E

L1D Miss L2 and
STB lookup

Tile 0

Tile 3

L3 Hit
Update part 5 counters
Add core 0 sharer

4

L1D L1D

TLBs

L2 STB

NoC

3 L2 Miss Jigsaw L3
lookup, bank 3,
bank partition 5

5 Serve
line

3 5 GETS 0x5CA1AB1E

Figure 2. Jigsaw L3 access, including STB
lookup in parallel with L2 access.

to, as well as its bank partition. Fig. 1 depicts the per-core
STBs. Each STB has a small number of resident shares. Like
in a software-managed TLB, an access to a non-resident share
causes an exception, and system software can refill the STB.
As we will see in Sec. IV, supporting a small number of
resident shares per core (typically 4) is sufficient. Each share
descriptor consists of an array of N bank and bank partition
ids. To perform a translation, we hash the address, and use
the hash value to pick the array entry used. We take the
STB translation latency out of the critical path by doing it
speculatively on L2 accesses. Fig. 2 details the different steps
involved in a Jigsaw cache access.

There are several interesting design dimensions in the STB.
First, the hash function can be as simple as bit-selection.
However, to simplify share management, the STB should
divide the requests into sub-streams with statistically similar
access patterns. A more robust hash function can achieve this.
Specifically, we use an H3 hash function (H in Fig. 1), which
is universal and efficient to implement in hardware [7]. All
STBs implement the same hash function. Second, increasing
N, the number of entries in a share descriptor, lets us fine-
tune the load we put on each bank to adapt to heterogeneous
bank partition sizes. For example, if a share consists of two
bank partitions, one twice the size of the other, we’d like 66%
of the requests to go to the larger bank partition, and 33%
to the smaller one. N = 2 does not allow such division, but
N = 3 does. In our implementation, we choose N equal to the
number of banks, so shares spanning few bank partitions can
be finely tuned to bank partition sizes, but large shares that
span most banks can not. For a 64-core system with 64 banks
in which each bank has 64 partitions, bank and bank partition
ids are 6 bits, and each share descriptor takes 768 bits (96
bytes). Supporting four shares can be done with less than 400
bytes, a 0.2% storage overhead over the private cache sizes.
Alternatively, more complex weighted hash functions or more
restrictive mappings can reduce this overhead.

B. Dynamic Adaptation

So far we have seen how Jigsaw works on a static config-
uration. To be adaptive, however, we must also support both
reconfiguring a share and remapping data to another share.

Share reconfiguration: Shares can be changed in two di-
mensions. First, per-bank partition sizes can be dynamically

changed. This concerns the bank partitioning technique used
(e.g., in Vantage, this requires changing a few registers [37]),
and is transparent to Jigsaw. Second, the share descriptor (i.e.,
the mapping of lines to bank partitions) should also be changed
at runtime, to change either the bank partitions that conform
the share, or the load put on each bank partition.

To support share descriptor reconfiguration, we introduce
hardware support for bulk invalidations. On a reconfiguration,
the new STB descriptors are loaded and each bank walks the
whole array, invalidating lines from shares that have been
reassigned to other banks. When a bulk invalidation is in
progress, accesses to lines in the same bank partition are
NACKed, causing an exception at the requesting core. This
essentially quiesces the cores that use the bank partition until
the invalidation completes.

Bulk invalidations may seem heavy-handed, but they avoid
having a directory. We have observed that bulk invalidations
take 30-300 K cycles. Since we reconfigure every 50 M cycles,
and only a fraction of reconfigurations cause bulk invalida-
tions, this is a minor overhead given the hardware support. For
our benchmarks, more frequent reconfigurations show little
advantage, but this may not be the case with highly variable
workloads. We defer investigating additional mechanisms to
reduce the cost of bulk invalidations (e.g., avoiding stalls or
migrating instead of invalidating) to future work.

These tradeoffs explain why we have chosen partitionable
banks instead of a large number of tiny, unpartitionable banks.
Partitionable banks incur fewer invalidations, and addressing a
small number of banks reduces the amount of state in the share
descriptor and STB. Finally, increasing the number of banks
would degrade NoC performance and increase overheads [26].

Page remapping: To classify pages dynamically (Sec. IV),
software must also be able to remap a page to a different share.
A remap is similar to a TLB shootdown: the initiating core
quiesces other cores where the share is accessible with an IPI;
it then issues a bulk invalidation of the page. Once all the banks
involved finish the invalidation, the core changes the share in
the page table entry. Finally, quiesced cores update the stale
TLB entry before resuming execution. Page remaps typically
take a few hundred cycles, less than the associated TLB
shootdown, and are rare in our runtime, so their performance
effects are negligible.

Invalidations due to both remappings and reconfigurations

4

0x3DF7AB 0xFE3D98 0xDD380B 0x3930EA …

0xB3D3GA 0x0E5A7B 0x123456 0x7890AB …

0xCDEF00 0x3173FC 0xCDC911 0xBAD031 …

0x7A5744 0x7A4A70 0xADD235 0x541302 …

717,543 117,030 213,021 32,103 …

…

…

Hit

Counters

Tag

Array

Way 0 Way N-1 …

Address

H3

Limit

<
True

Figure 3. Jigsaw monitoring hardware. As in UMON-DSS [34], the
tag array samples accesses and counts hits per way to produce miss
curves. The limit register finely controls the UMON’s sampling rate.

could be avoided with an extra directory between Jigsaw and
main memory. Sec. VI shows that this is costly and not needed,
as reconfiguration overheads are negligible.

C. Monitoring

In order to make reasonable partitioning decisions, software
needs monitoring hardware that gives accurate, useful and
timely information. As discussed in Sec. II, utility monitors
(UMONs) [34] are an efficient way to gather miss curves. Prior
partitioning schemes use per-core UMONs [34, 37], but this is
insufficient in Jigsaw, as shares can be accessed from multiple
cores, and different cores often have wildly different access
patterns to the same data. Instead, Jigsaw generates per-share
miss curves by adding UMONs to each bank.

UMONs were originally designed to work with set-associa-
tive caches, and worked by sampling a small but statistically
significant number of sets. UMONs can also be used with other
cache designs [37] by sampling a fraction of cache accesses at
the UMON. Given high enough associativity, a sampling ratio
of UMON lines : S behaves like a cache of S lines. Moreover,
the number of UMON ways determines the resolution of the
miss curve: an N -way UMON yields N+1-point miss curves.

Partitioning schemes with per-core UMONs implicitly use a
fixed sampling ratio UMON lines : cache lines. This is insuf-
ficient in Jigsaw, because shares can span multiple banks. To
address this, we introduce an adaptive sampling mechanism,
shown in Fig. 3. Each UMON has a 32-bit limit register,
and only addresses whose hash value is below this limit are
inserted into the UMON. Changing the limit register provides
fine control over the UMON’s sampling rate.

For single-bank shares, a ratio r0 = UMON lines : LLC lines
lets Jigsaw model the full cache, but this is inadequate for
multi-bank shares. To see why, consider a share allocated
100 KB, split between two bank partitions allocated 67 KB
and 33 KB. The STB spreads accesses across banks, so each
bank sees a statistically similar request stream, but sampled
proportionally to bank partition size: 2/3 of the accesses are
sent to the first partition, and 1/3 to the second. Consequently,
the first bank partition’s UMON would behave like a cache of
1.5× the LLC size, and the second as a cache of 3× the LLC
size. Using a fixed sampling ratio of r0 would be wasteful.
By using r1 = 3/2 · r0 and r2 = 3 · r0, Jigsaw counters the
sampling introduced by the STB, and both UMONs model LLC
size precisely.

Combined miss curve
2/3

accesses

1/3
accesses

STB

Misses

Size
Cache Size

Misses

Size

Misses

Size

Misses

Size
Cache Size

Bank 2

Bank 1

Actual miss curve

With limit filtering
Without limit filtering

Figure 4. Example sampling for a share with two bank partitions,
where the first bank receives twice the traffic. Configuration and
combining are done in software at reconfiguration time.

These issues appear visually in the miss curves, shown in
Fig. 4. The miss curve of the application is shown on the left in
black. Following the previous example, bank one receives 2/3
of accesses and, without correcting the sampling ratio, models
a 1.5× larger cache. As a result, the application’s miss curve
would be scaled (dashed lines) and terminate at two-thirds
of cache size. By correcting the sampling ratio (solid line),
Jigsaw reverses this effect and re-scales the miss curve to its
true dimensions. Bank two is a more extreme example since
it receives 1/3 of accesses, and its sampled miss curve would
be scaled 3× smaller. These problems could be corrected by
upsampling in software, but doing so would lessen sampling
quality (by wasting UMON ways) and unnecessarily complicate
re-combination.

In general, if the STB sends a fraction fi of requests to
bank partition i, then a sampling ratio ri = r0/fi models
LLC capacity, and Jigsaw produces the share’s miss curve by
averaging the bank partitions’ curves. Moreover, when shares
span multiple banks, one or a few UMONs suffice to capture
accurate miss curves. Jigsaw therefore only implements a few
UMONs per bank (four in our evaluation) and dynamically as-
signs them to shares using a simple greedy heuristic, ensuring
that each share has at least one UMON. This makes the number
of UMONs scale with the number of shares, not bank partitions.

Finally, in order to make sound partitioning decisions, miss
curves must have sufficiently high resolution, which is deter-
mined by the number of UMON ways. While a small number
of UMON ways is sufficient to partition small caches as in prior
work [34, 37], partitioning a large, multi-banked cache among
many shares requires higher resolution. For example, for a
1 MB cache, a 32-way UMON has a resolution of 32 KB. In a
64-bank cache with 1 MB banks, on the other hand, the same
UMON’s resolution is 2 MB. This coarse resolution affects
partitioning decisions, hurting performance, as our evaluation
shows (Sec. VI-D). For now, we ameliorate this problem by
implementing 128-way UMONs and linearly interpolating miss
curves. Though high, this associativity is still practical since
UMONs only sample a small fraction of accesses. Results show
that even higher associativities are beneficial, although this
quickly becomes impractical. We defer efficient techniques for
producing higher-resolution miss curves to future work.

5

A B

C

D
E

F

G

IH

Cache Size�

M
is
s
e
s
�

Figure 5. Non-convex miss curve (blue), and its convex hull (red).

Maximum allocation, S′
S′ < D D ≤ S′ < F F ≤ S′ < G G ≤ S′ < H H ≤ S′

St
ar

t A S′ D D D D
D - S′ F S′ H
F - - S′ - -
H - - - - S′

Table 2. Maximal utility allocations for Fig. 5 across the entire
domain from all possible starting positions.

IV. JIGSAW SOFTWARE

Shares are a general mechanism with multiple potential uses
(e.g., maximizing throughput or fairness, providing strict pro-
cess isolation, implementing virtual local stores, or avoiding
side-channel attacks). In this work, we design a system-level
runtime that leverages Jigsaw to jointly improve cache utiliza-
tion and access latency transparently to user-level software.
The runtime first classifies data into shares, then periodically
decides how to size and where to place each share.

A. Shares and Page Mapping

Jigsaw defines three types of shares: global, per-process, and
per-thread. Jigsaw maps pages accessed by multiple processes
(e.g., OS code and data, library code) to the (unique) global
share. Pages accessed by multiple threads in the same process
are mapped to a per-process share. Finally, each thread has a
per-thread share. With this scheme, each core’s STB uses three
entries, but there are a large number of shares in the system.

Similar to R-NUCA [14], page classification is done incre-
mentally and lazily, at TLB/STB miss time. When a thread
performs the first access to a page, it maps it to its per-thread
share. If another thread from the same process tries to access
the page, the page is remapped to the per-process share. On
an access from a different process (e.g., due to IPC), the page
is remapped to the global share. When a process finishes, its
shares are deallocated and bulk-invalidated.

B. Share Sizing: Peekahead

The Jigsaw runtime first decides how to size each share,
then where to place it. This is based on the observation that
reducing misses often yields higher benefits than reducing
access latency, and considering sizing and placement inde-
pendently greatly simplifies allocation decisions. Conceptually,
sizing shares is no different than in UCP: the runtime computes
the per-share miss curves as explained in Sec. III, then runs
Lookahead (Sec. II) to compute the share sizes that maximize
utility, or number of hits.

Cache Size�

M
is
s
e
s
�

Figure 6. Points of interest (POIs) for several example miss curves.
Dashed lines denote their convex hulls.

Unfortunately, using Lookahead is unfeasible. Lookahead
greedily allocates space to the partition that provides the
highest utility per unit (hits per allocation quantum). Because
miss curves are not generally convex, on each step Lookahead
traverses each miss curve looking for the maximum utility
per unit it can achieve with the remaining unallocated space.
This results in an O(P ·S2) run-time, where P is the number
of partitions and S is the cache size in allocation quanta, or
“buckets”. With way-partitioning, S is small (the number of
ways) and this is an acceptable overhead. In Jigsaw, banks can
be finely partitioned, and we must consider all banks jointly.
Lookahead is too inefficient at this scale.

To address this, we develop the Peekahead algorithm, an
exact O(P · S) implementation of Lookahead. We leverage
the insight that the point that achieves the maximum utility
per unit is the next one in the convex hull of the miss curve.
For example, Fig. 5 shows a non-convex miss curve (blue)
and its convex hull (red). With an unlimited budget, i.e.,
abundant unallocated cache space, and starting from A, D
gives maximal utility per unit (steepest slope); starting from
D, H gives the maximal utility per unit; and so on along
the convex hull. With a limited budget, i.e. if the remaining
unallocated space limits the allocation to S′, the point that
yields maximum utility per unit is the next one in the convex
hull of the miss curve in the region [0, S′]. For example, if we
are at D and are given limit S′ between F and G, the convex
hull up to S′ is the line DFS′ and F yields maximal utility
per unit. Conversely, if S′ lies between G and H , then the
convex hull is DS′, S′ is the best option, and the algorithm
terminates (all space is allocated).

If we know these points of interest (POIs), the points that
constitute all reachable convex hulls, traversing the miss curves
on each allocation becomes unnecessary: given the current
allocation, the next relevant POI always gives the maximum
utility per unit. For example, in Fig. 5, the only POIs are A,
D, F , and H; Table 2 shows all possible decisions. Fig. 6
shows several example miss curves and their POIs. Note that
some POIs do not lie on the full convex hull (dashed lines),
but are always on the convex hull of some sub-domain.

Peekahead first finds all POIs in O(S) for each partition.
This is inspired by the three coins algorithm [30]. For example,
we construct the convex hull ADHI in Fig. 5 by considering

6

Algorithm 1. The Peekahead algorithm. Compute all reachable
convex hulls and use the convexity property to perform Lookahead
in linear time. Letters in comments refer to points in Fig. 5. AB is
the line connecting A and B.

Inputs: A single miss curve: M , Cache size: S
Returns: POIs comprising all convex hulls over [0, X] ∀ 0 ≤ X ≤ S

1: function ALLHULLS(M , S)
2: start ← (0, M(0),∞) ⊲ POIs are (x, y, horizon)
3: pois[...] ← {start} ⊲ Vector of POIs
4: hull[...] ← {pois.HEAD} ⊲ Current convex hull; references pois
5: for x← 1 to S :
6: next ← (x, M(x),∞)
7: for i← hull.LENGTH − 1 to 1 : ⊲ Backtrack?
8: candidate ← hull[i]
9: prev ← hull[i− 1]

10: if candidate is not BELOW prev next :
11: hull.POPBACK() ⊲ Remove from hull
12: if candidate.x ≥ x− 1 :
13: pois.POPBACK() ⊲ Not a POI (C, G)
14: else :
15: candidate.horizon← x−1 ⊲ POI not on hull (F)
16: else :
17: break ⊲ POI and predecessors valid (for now)
18: pois.PUSHBACK(next) ⊲ Add POI
19: hull.PUSHBACK(pois.TAIL)
20: return pois

Inputs: Partition miss curves: M1...MP , Cache size: S
Returns: Partition allocations: A[...]
21: function PEEKAHEAD(M1...MP , S)
22: pois[...] ← {ALLHULLS(M1, S)...ALLHULLS(MP , S)}
23: current[...] ← {pois[1].HEAD...pois[p].HEAD} ⊲ Allocations

24: A[...] ←
P times
︷ ︸︸ ︷

{0...0}
25: heap ← MAKEHEAP() ⊲ Steps sorted by ∆U
26: function NEXTPOI(p)
27: for i← current[p] + 1 to pois[p].TAIL :
28: if i.x > current[p].x + S : break ⊲ No space left
29: if i.horizon > current[p].x + S : return i ⊲ Valid POI
30: x ← current[p].x + S ⊲ Concave region; take S
31: return (x, Mp(x),∞)

32: function ENQUEUE(p)
33: next ← NEXTPOI(p)
34: ∆S ← next.x− current[p].x
35: ∆U ← (current[p].y − next.y) /∆S
36: heap.PUSH((p, ∆U, ∆S, next))
37: ENQUEUE([1...P])
38: while S > 0 : ⊲ Main loop
39: (p, ∆U, ∆S, next) ← heap.POP()
40: if S ≥ ∆S : ⊲ Allocate if we have space
41: current[p] ← next
42: A[p] ← A[p] + ∆S
43: S ← S −∆S
44: ENQUEUE(p)
45: return A[...]

points from left to right. At each step, we add the next point
to the hull, and then backtrack to remove previous points that
no longer lie on the hull. We begin with the line AB. C is
added to form ABC, and then we backtrack. Because B lies
above AC, it is removed, leaving AC. Similarly, D replaces
C, leaving AD. Next, E is added to form ADE, but since D
lies below AE, it is not removed. Continuing, F replaces E,
G replaces F , H replaces G, and finally I is added to give
the convex hull ADHI .

We extend this algorithm to build all convex hulls over
[0, X] for any X up to S, which produces all POIs. We

Algorithm 2. Jigsaw’s partitioning policy. Divide the LLC into shares
to maximize utility and locality. Shares use budgets produced by
Peekahead to claim capacity in nearby bank partitions in increments
of ∆0.
Inputs: Partition miss curves: M1...MP , Cache size: S, Num. banks: B,

Banks sorted by distance: D1...DP

Returns: Share allocation matrix:
[
Ap,b

]
where 1 ≤ p ≤ P and 1 ≤ b ≤ B

1: function PARTITION(M1...MP , S, B)
2: budget[...] ← PEEKAHEAD(M1...MP , S)

3: inventory[...] ←

B times
︷ ︸︸ ︷{

S

B
,

S

B
,

S

B
...

S

B

}

4: d[...] ← {D1.HEAD...DP .HEAD} ⊲ Prefer closer banks
5: A ← [0]1≤p≤P

1≤b≤B
6: while

∑
budget > 0 :

7: for s← 1 to P :
8: b ← d[i] ⊲ Closest bank
9: if inventory[b] > ∆0 :

10: ∆ ← ∆0 ⊲ Have space; take ∆0

11: else :
12: ∆ ← inventory[b] ⊲ Empty bank; move to next closest
13: d[i] ← d[i]+1
14: Ap,b ← Ap,b + ∆
15: budget[s] ← budget[s]−∆
16: inventory[b] ← inventory[b]−∆

17: return A

achieve this in O(S) by not always deleting points during
backtracking. Instead, we mark points in convex regions with
the x-coordinate at which the point becomes obsolete, termed
the horizon (e.g., F ’s horizon is G). Such a point is part of
the convex hull up to its horizon, after which it is superseded
by the higher-utility-per-unit points that follow. However, if a
point is in a concave region then it is not part of any convex
hull, so it is deleted (e.g., C and G).

1) Algorithm Listings: Algorithm 1 shows the complete
Peekahead algorithm. First, ALLHULLS preprocesses each
share’s miss curve and computes its POIs. Then, PEEKAHEAD
divides cache space across shares iteratively using a max-heap.
In practice, ALLHULLS dominates the run-time of Algorithm 1
at O(P · S), as Sec. VI-D confirms.
AllHulls: In ALLHULLS, the procedure is as described pre-
viously: Two vectors are kept, pois and hull. pois is the full
list of POIs whereas hull contains only the points along the
current convex hull. Each POI is represented by its coordinates
and its horizon, which is initially ∞.

The algorithm proceeds as described in the example. Points
are always added to the current hull (lines 18-19). Previous
points are removed from hull by backtracking (lines 7-17). A
point (x, y) is removed from pois when it lies in a concave
region. This occurs when it is removed from hull at x+1 (line
13). Otherwise, the point lies in a convex region and is part
of a sub-hull, so it its horizon is set to x, but it is not deleted
from pois (line 15).
Peekahead: PEEKAHEAD uses POIs to implement lookahead.
POIs for partition p are kept in vector pois[p], and current[p]
tracks its current allocation. heap is a max-heap of the
maximal utility per unit steps for each partition, where a step
is a tuple of: (partition, utility per unit, step size, POI).

PEEKAHEAD uses two helper routines. NEXTPOI gives the

7

next relevant POI for a partition from its current allocation
and given remaining capacity. It simply iterates over the POIs
following current[p] until it reaches capacity (line 28), a valid
POI is found (line 29), or no POIs remain (line 31) which
indicates a concave region, so it claims all remaining capacity.
ENQUEUE takes the next POI and pushes a step onto heap.
This means simply computing the utility per unit and step size.

The main loop repeats until capacity is exhausted taking
steps from the top of heap. If capacity has dropped below the
best next step’s requirements, then the step is skipped and the
best next step under current capacity enqueued (line 40).

2) Correctness: The correctness of Algorithm 1 relies on
ALLHULLS constructing all relevant convex hulls and PEEKA-
HEAD always staying on a convex hull. The logic is as follows:
• The highest utility per unit step for a miss curves comes

from the next point on its convex hull.
• If a point (x, y) is on the convex hull of [0, Y], then it is

also on the convex hull of [0, X] for any x ≤ X ≤ Y .
• POIs from ALLHULLS and repeated calls to NEXTPOI with

capacity 0 ≤ S′ ≤ S produce the convex hull over [0, S′].
• Remaining capacity S′ is decreasing, so current[p] always

lies on the convex hull over [0, S′].
• Therefore PEEKAHEAD always makes the maximum-utility

move, and thus correctly implements lookahead.

Definition 1. A miss curve is a decreasing function M :
[0, S] → R.

Definition 2. Given a miss curve M and cache sizes x, y, the
utility per unit between x and y is defined as:

∆U(M, x, y) =
M(y)−M(x)

x− y

Which in plain language is simply the number of additional
hits per byte gained between x and y.

We now define what it means to implement the lookahead
algorithm. Informally, a lookahead algorithm is one that suc-
cessively chooses the maximal utility per unit allocation until
all cache space is exhausted.

Definition 3. Given P partitions, miss curves M1...MP ,
remaining capacity, S′ and current allocations x1...xP , a
lookahead move is a pair (p, s) such that partition p and
allocation 0 < s ≤ S′ give maximal utility per unit:

∀q : ∆U(Mp, xp, xp + s) ≥ ∆U(Mq, xq, xq + s)

Definition 4. Given P partitions, miss curves M1...MP ,
cache size S, a lookahead sequence is a sequence L =
(p1, s1), (p2, s2)...(pN , sN) such that the allocations for p at
i, xp,i =

∑N
i=1{si : pi ≡ p}, and remaining capacity at i,

Si =
∑N

i=1 si, satisfy the following:
1) For all i, (pi, si) is a lookahead move for M1...MP , S′ =

S − Si, and x1,i...xP,i.
2) SN = S.

Definition 5. A lookahead algorithm is one that produces a
lookahead sequence for all valid inputs: M1...MP , and S.

Theorem 1. UCP Lookahead is a lookahead algorithm.

Proof: UCP Lookahead is the literal translation of the
definition. At each step, it scans each partition to compute
the maximum utility per unit move from that partition. It then
takes the maximum utility per unit move across all partitions.
Thus at each step is makes lookahead moves, and proceeds
until capacity is exhausted.

We now show that PEEKAHEAD implements lookahead.

Lemma 1. Given a miss curve M and starting from point
A on the convex hull over [0, S], the first point on the miss
curve that yields maximal utility per unit is the next point on
the miss curve’s convex hull.

Proof: Let the convex hull be H and the next point on
the convex hull be B.

Utility per unit is defined as negative slope. Thus, maximal
utility per unit equals minimum slope. Convex hulls are
by definition convex, so their slope is non-decreasing. The
minimum slope of the convex hull therefore occurs at A.
Further, the slope of the hull between A and B is constant, so
B yields the maximal utility per unit.

To see why it is the first such point, consider that all points
on M between A and B lie above H . If this were not the case
for some C, then the slope between A and C would be less
than or equal to that between A and B, and C would lie on
H . Therefore since all points lie above H , none can yield the
maximal utility per unit.

Lemma 2. For any miss curve M , if (x, y) is on HY , the
convex hull of M over [0, Y] then it is also on HX , the convex
hull of M over [0, X], for any x ≤ X ≤ Y .

Proof: By contradiction. Assume (x, y) is on HY but not
on HX . Then there must exist on M : [0, X] → R points
A = (a, M(a)) and B = (b, M(b)) such that a < x < b and
(x, y) lies above the line AB. But [0, X] ⊂ [0, Y] so A and
B are also in [0, Y]. Thus (x, y) is not on HY .

Lemma 3. In ALLHULLS on a miss curve M over domain
[0, S], upon completion of iteration x ≡ X , hull contains HX ,
the convex hull of M over [0, X].

Proof: All points in [0, X] are added to hull, so we only
need to prove that all points not on the hull are removed. By
the definition of a convex hull, a point (a, M(a)) is on HX

iff it is not below the line connecting any two other points on
[0, X]. Now by induction:
Base case: At X = 1, hull contains the points (0, M(0))

and (1, M(1)). These are the only points on [0, 1], so hull
contains H1.

Induction: Assume that hull contains HX . Show that after
iteration X + 1, hull contains HX+1. This is guaranteed
by backtracking (lines 7-17), which removes all points on
HX not on HX+1.
Let HX = {h1, h2...hN} and hN+1 = (X +1, M(X +1)).
Then next ≡ hN+1 and, at the first backtracking iteration,
candidate ≡ hN and prev ≡ hN−1.

8

First note that HX+1 ⊂ HX ∪ {hN+1}. This follows from
Lemma 2; any point on HX+1 other than hN+1 must lie on
HX .
Next we show that backtracking removes all necessary
points by these propositions:
(i) If candidate lies is on HX+1 then all preceding points

are on HX+1.
Backtracking stops when a single point is valid (line 17).
We must show that no points that should be removed from
hull are missed by terminating the loop. This is equivalent
to showing

hi 6∈ HX+1 ⇒ hi+1...hN 6∈ HX+1

Let hi be the first point on HX not on HX+1. Then there
exists i < k ≤ N+1 such that hi lies above ℓk = hi−1hk.
Further, all hj for i < j ≤ N lie above ℓi = hi−1hi. But
since hi lies above ℓk, ℓi is above ℓk to the right of hi.
Since all i < j ≤ N lie above ℓi, k = N + 1. Therefore
all hj for i < j ≤ N lie above hi−1hN+1.

(ii) Points below prev next lie on HX+1.
Backtracking removes all points that do not lie below
prev next. We must show this is equivalent to testing all
pairs of points in [0, X].
Note that for all 1 ≤ i ≤ N , M : [0, X] → R lies on or
above hihi+1 by the definition of a convex hull.
Consider cases if candidate ∈ HX+1:
candidate ∈ HX+1: By the first proposition, prev is also

on HX+1. So by the previous note, M lies above
both prev candidate and candidate next. Therefore
candidate lies below prev next.

candidate 6∈ HX+1: If prev ∈ HX+1 then by definition
of a convex hull, candidate lies above prev next. If
not, then let hi be the last point on HX+1 before
candidate and hk the first point on HX+1 after
candidate. Then candidate lies above hihk. Note
that hk ≡ next by the previous proposition.
hi is also before prev because no points on HX lie
between candidate and prev. Furthermore, since next
lies below hihi+1 but above hi−1hi, hi+1 next lies
above hi next. HX has non-decreasing slope and M
is decreasing, so hj next lies above hj−1 next for all
i < j ≤ N . In particular, candidate next lies above
prev next and thus candidate lies above prev next.

∴ candidate ∈ HX+1 ⇔ candidate is below prev next
(iii) Backtracking removes all points on HX not on HX+1.

Backtracking continues until candidate is on HX+1 or
hull is empty. By the previous two propositions, this
removes all such points.

Finally, hN+1 is added to hull (line 19), and hull contains
HX+1.

∴ hull ≡ HX .

Lemma 4. ALLHULLS on a miss curve M over domain [0, S]
produces POIs for which HX , the convex hull over [0, X], is

equivalent to:

hi =

{
(0, M(0)) if i ≡ 1
NEXTPOI(hi−1) otherwise

Proof: Consider how NEXTPOI works. It simply filters
pois to the set

V ={p : p ∈ pois and p.x < X and p.horizon > X}
∪ {(X, M(X),∞)}

By Lemma 3, we must show V is the same as the contents of
hull at iteration x ≡ X .

First note that whenever points are removed from hull, they
are either removed from pois (line 13) or their horizon is set
(line 15). If a point obsolesces at x ≡ χ, then its horizon is
always χ− 1.
V ⊂ HX : Show that all points in [0, X] not in HX are either

deleted from pois or have their horizon set smaller than X .
By Lemma 3, at completion of iteration x ≡ X , hull
contains HX . Therefore all points not on HX have been
removed from hull and are either deleted from pois or have
horizon set to a value less than X .

HX ⊂ V : Show that no point in HX is deleted from pois or
has a horizon set smaller than X .
Points are only deleted or have their horizon set when they
are removed from hull. By Lemma 3, no point on HX is
removed from hull before x ≡ X . So the earliest a point in
HX could be removed from hull is at X +1, and its horizon
would be X .
Furthermore no point earlier than X will be deleted at X+1,
because ALLHULLS only deletes a point (a, M(a)) if it
obsolesces at x ≡ a + 1. If the point (X, M(X)) is deleted
from pois, then NEXTPOI will replace it (via the union in
V = ...).
∴ HX = V .

Lemma 5. current[p] in Algorithm 1 always lies on the convex
hull over [0, S] over all iterations.

Proof: current[p] is initially set to pois[p].HEAD, which
lies on all convex hulls for Mp. It is subsequently updated by
next = NEXTPOI (current[p]). Thus for some i, current[p] =
hi as in Lemma 4, and current[p] lies on the convex hull over
[0, S]. Note that S is decreasing over iterations of the main
loop, so by Lemma 2 it is on the hull for all iterations.

Theorem 2. PEEKAHEAD is a lookahead algorithm.

Proof: By Lemma 5, we know that NEXTPOI is called
always starting from a point on the convex hull over remaining
capacity, [0, S]. By Lemma 1 and Lemma 4, NEXTPOI
returns the maximal utility per unit move for the partition. By
Lemma 2 we know that so long as s ≤ S, this move remains
on the convex hull and by Lemma 1 remains the maximal
utility per unit move. If s > S then PEEKAHEAD recomputes
the best move.

Because heap is a max-heap, heap.POP is the maximal
utility per unit move across partitions. Thus each move made

9

by PEEKAHEAD is a lookahead move. PEEKAHEAD does
not terminate until S ≡ 0. Furthermore, PEEKAHEAD is
guaranteed forward progress, because at most P moves can
be skipped before a valid move is found and S is reduced.

Therefore for all inputs PEEKAHEAD produces a lookahead
sequence.

3) Asymptotic Run-time: ALLHULLS has asymptotic run-
time of O(S), using the standard argument for the three-coins
algorithm. All vector operations take constant time. Each point
is added at most once in the main loop to pois and hull, giving
O(S). Finally backtracking removes points from hull at most
once (and otherwise checks only the tail in O(1)), so over the
lifetime of the algorithm backtracking takes O(S). The overall
run-time is thus O(S + S) = O(S).

Now consider the run-time of PEEKAHEAD. Line 22 alone
is O(P ·S) (P invocations of ALLHULLS). The run-time of the
remainder is complicated by the possibility of skipping steps
(line 40). We first compute the run-time assuming no steps
are skipped. In this case, NEXTPOI iterates over POIs at most
once during the lifetime of the algorithm in O(P · S) total.
PUSH (line 36) takes O(log P), and the main loop invokes
O(S) iterations for O(log P ·S). Thus altogether the run-time
is O(P · S + log P · S) = O(P · S).

If steps are skipped, then NEXTPOI can take O(S) per skip
to find the next POI. Further, O(P) steps can be skipped per
decrement of S. So it may be possible to construct worst-case
miss curves that run in O(P · S2). Note, however, that the
number of skips is bounded by the number of concave regions.
Miss curves seen in practice have at most a few concave
regions and very few skips. The common case run-time is
therefore bounded by ALLHULLS at O(P · S).

Indeed, Table 4 shows that the main loop (lines 38-44) runs
in sub-linear time and ALLHULLS dominates, taking over 99%
of execution time for large problem sizes. Contrast this with
the common-case O(P · S2) performance of UCP.

C. NUCA-Aware Share Placement

Once the Jigsaw runtime sizes all shares, it places them
over cache banks using a simple greedy heuristic. Each share
starts with its allocation given by PEEKAHEAD, called the
budget. The goal of the algorithm is for each share to exhaust
its budget on banks as close to the source as possible. The
source is the core or “center of mass” of cores that generate
accesses to a share. The distance of banks from the source
is precomputed for each partition and passed as the lists
D1...DP . Each bank is given an inventory of space, and shares
simply take turns making small “purchases” from banks until
all budgets are exhausted, as Algorithm 2 shows. PEEKAHEAD
dominates the run-time of the complete algorithm at O(P ·S).

V. EXPERIMENTAL METHODOLOGY

Modeled systems: We perform microarchitectural, execution-
driven simulation using zsim [38], an x86-64 simulator based
on Pin [27], and model tiled CMPs with 16 and 64 cores and a
3-level cache hierarchy, as shown in Fig. 1. We use both simple
in-order core models, and detailed OOO models validated

Cores 64 cores, x86-64 ISA, in-order IPC=1 except on memory
accesses / Westmere-like OOO, 2 GHz

L1 caches 32 KB, 8-way set-associative, split D/I, 1-cycle latency

L2 caches
128 KB private per-core, 8-way set-associative, inclusive,
6-cycle latency

L3 cache
512 KB/1 MB per tile, 4-way 52-candidate zcache, 9 cycles,
inclusive, LRU/R-NUCA/Vantage/Jigsaw, or idealized
shared-private D-NUCA with 2× capacity (IdealSPD)

Coherence
protocol

MESI protocol, 64 B lines, in-cache directory, no silent
drops; sequential consistency

Global
NoC

8×8 mesh, 128-bit flits and links, X-Y routing, 3-cycle
pipelined routers, 1-cycle links

Memory
controllers

4 MCUs, 1 channel/MCU, 120 cycles zero-load latency,
12.8 GB/s per channel

Table 3. Configuration of the simulated 64-core CMP.

against a real Westmere system [38]. The 64-core CMP,
with parameters shown in Table 3, is organized in 64 tiles,
connected with an 8×8 mesh network-on-chip (NoC), and has
4 memory controllers at the edges. The scaled-down 16-core
CMP has 16 tiles, a 4×4 mesh, and a single memory con-
troller. The 16-core CMP has a total LLC capacity of 16 MB
(1 MB/tile), and the 64-core CMP has 32 MB (512 KB/tile).
We use McPAT [24] to derive the area and energy numbers of
chip components (cores, caches, NoC, and memory controller)
at 22 nm, and Micron DDR3L datasheets [32] to compute main
memory energy. With simple cores, the 16-core system is im-
plementable in 102 mm2 and has a typical power consumption
of 10-20 W in our workloads, consistent with adjusted area and
power of Atom-based systems [13].

Cache implementations: Experiments use an unpartitioned,
shared (static NUCA) cache with LRU replacement as the
baseline. We compare Jigsaw with Vantage, a representative
partitioned design, and R-NUCA, a representative shared-
baseline D-NUCA design. Because private-baseline D-NUCA
schemes modify the coherence protocol, they are hard to
model. Instead, we model an idealized shared-private D-
NUCA scheme, IdealSPD, with 2× the LLC capacity. In
IdealSPD, each tile has a private L3 cache of the same size as
the LLC bank (512 KB or 1 MB), a fully provisioned 5-cycle
directory bank that tracks the L3s, and a 9-cycle exclusive
L4 bank (512 KB or 1 MB). Accesses that miss in the private
L3 are serviced by the proper directory bank (traversing the
NoC). The L4 bank acts as a victim cache, and is accessed in
parallel with the directory to minimize latency. This models
D-NUCA schemes that partition the LLC between shared and
private regions, but gives the full LLC capacity to both the
private (L3) and shared (L4) regions. Herrero et al. [16] show
that this idealized scheme always outperforms several state-of-
the-art private-baseline D-NUCA schemes that include shared-
private partitioning, selective replication, and adaptive spilling
(DCC [15], ASR [2], and ECC [16]), often by significant
margins (up to 30%).

Vantage and Jigsaw both use 512-line (4 KB) UMONs with
128 ways (Sec. III-C), and reconfigure every 50 M cycles.
Jigsaw uses 4 UMONs per 1 MB L3 bank, a total storage over-
head of 1.4%. Vantage uses utility-based cache partitioning
(UCP) [34]. R-NUCA is configured as proposed [14] with

10

0 20 40 60 80 100 120 140

Workload

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6
T

h
ro

u
g
h
p
u
t
v
s
 L

R
U

Jigsaw

IdealSPD

R-NUCA

Vantage

0 20 40 60 80 100 120 140

Workload

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

W
.
S

p
e
e
d
u
p
 v

s
 L

R
U

Jigsaw

IdealSPD

R-NUCA

Vantage

Figure 7. Throughput and weighted speedup of Jigsaw, Vantage, R-
NUCA, and IdealSPD (with 2× cache) over LRU baseline, for 140
SPEC CPU2006 mixes on the 16-core chip with in-order cores.

4-way rotational interleaving and page-based reclassification.
Jigsaw and R-NUCA use the page remapping support dis-
cussed in Sec. III, and Jigsaw implements bulk invalidations
with per-bank pipelined scans of the tag array (with 1 MB 4-
way banks, a scan requires 4096 tag array accesses). Jigsaw
uses thread-private and per-process shares. In all configu-
rations, banks use 4-way 52-candidate zcache arrays [36]
with H3 hash functions, though results are similar with more
expensive 32-way set-associative hashed arrays.

Workloads and Metrics: We simulate mixes of single and
multi-threaded workloads. For single-threaded mixes, we use
a similar methodology to prior partitioning work [34, 37]. We
classify all 29 SPEC CPU2006 workloads into four types ac-
cording to their cache behavior: insensitive (n), cache-friendly
(f), cache-fitting (t), and streaming (s) as in [37, Table 2],
and build random mixes of all the 35 possible combinations
of four workload types. We generate four mixes per possible
combination, for a total of 140 mixes. We pin each application
to a specific core, and fast-forward all applications for 20
billion instructions. We use a fixed-work methodology and
equalize sample lengths to avoid sample imbalance, similar
to FIESTA [17]: First, we run each application in isolation,
and measure the number of instructions Ii that it executes
in 1 billion cycles. Then, in each experiment we simulate
the full mix until all applications have executed at least Ii

instructions, and consider only the first Ii instructions of each
application when reporting aggregate metrics. This ensures
that each mix runs for at least 1 billion cycles. Our per-
workload performance metric is perf i = IPCi.

For multi-threaded mixes, we use ten parallel benchmarks
from PARSEC [5] (blackscholes, canneal, fluidanim-
ate, swaptions), SPLASH-2 (barnes, ocean, fft, lu,
radix), and BioParallel [19] (svm). We simulate 40 random
mixes of four workloads. Each 16-thread workload is sched-
uled in one quadrant of the 64-core chip. Since IPC can be a
misleading proxy for work in multithreaded workloads [1], we
instrument each application with heartbeats that report global
progress (e.g., when each timestep finishes in barnes). The ten
applications we use are the ones from these suites for which
we can add heartbeats without structural changes. For each
application, we find the smallest number of heartbeats that
complete in over 1 billion cycles from the start of the parallel

0 50 100 150

LRU AMAT

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

T
h
ro

u
g
h
p
u
t
v
s
 L

R
U

Jigsaw
IdealSPD
R-NUCA
Vantage

Figure 8. Performance with increasing memory intensity. Throughput
is plotted against LRU’s average memory access time for each mix
on the 16-core chip. Lines indicate the best-fit linear regression.

region when running alone. This is the region of interest (ROI).
We then run the mixes by fast-forwarding all workloads until
the start of their parallel regions, running until all applications
complete their ROI, and keep all applications running to avoid
a lighter load on longer-running applications. To avoid biasing
throughput by ROI length, our per-application performance
metric is perf i = ROItimei,alone/ROItimei.

We report throughput and fairness metrics: normalized
throughput,

∑
i perf i/

∑
i perf i,base, and weighted speedup,

(
∑

i perf i/perf i,base)/Napps, which accounts for fairness [34,
40]. To achieve statistically significant results, we introduce
small amounts of non-determinism [1], and perform enough
runs to achieve 95% confidence intervals ≤1% on all results.

VI. EVALUATION

We first compare Jigsaw against alternative cache organiza-
tions and then present a focused analysis of Jigsaw.

A. Single-threaded mixes on 16-core CMP

We first present results with in-order cores, as they are easier
to understand and analyze, then show OOO results.

Performance across all mixes: Fig. 7 summarizes both
throughput and weighted speedup for the cache organizations
we consider across the 140 mixes. Each line shows the perfor-
mance improvement of a single organization against the shared
LRU baseline. For each line, workload mixes (the x-axis)
are sorted according to the improvement achieved. Lines are
sorted independently, so these graphs give a concise summary
of improvements, but should not be used for workload-by-
workload comparisons among schemes.

Fig. 7 shows that Jigsaw is beneficial for all mixes,
and achieves large throughput and fairness gains: up to
50% higher throughput, and up to 2.2× weighted speedup
over an unpartitioned shared cache. Overall, Jigsaw achieves
gmean throughput/weighted speedups of 14.3%/18.4%, Van-
tage achieves 5.8%/8.2%, R-NUCA achieves 8.2%/6.3%, and
IdealSPD achieves 10.7%/11.4%. Partitioning schemes benefit
weighted speedup more than throughput, improving fairness
(despite using UCP, which optimizes throughput). R-NUCA
favors throughput but not fairness, and IdealSPD favors both,
but note this is an upper bound with twice the cache capacity.

11

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
C

y
c
le

s
 v

s
 L

R
U

L V R I J L V R I J L V R I J L V R I J L V R I J L V R I J L V R I J L V R I J L V R I J L V R I J L V R I J

fffn0 sfff3 snnn3 stnn0 ftnn2 sssf3 ttnn2 tttt3 fttt2 All Top MPKI Quintile

Exec L2 Net LLC Reconf DRAM

Figure 9. Execution time breakdown of LRU (L), Vantage (V), R-NUCA (R), IdealSPD (I), and Jigsaw (J), for representative 16-core
single-thread mixes. Cycles are normalized to LRU’s (lower is better).

Performance of memory-intensive mixes: These mixes have
a wide range of behaviors, and many access memory in-
frequently. For the mixes with the highest 20% of memory
intensities (aggregate LLC MPKIs in LRU), where the LLC
organization can have a large impact, the achieved gmean
throughputs/weighted speedups are 21.2%/29.2% for Jigsaw,
11.3%/19.7% for Vantage, 5.8%/4.8% for R-NUCA, and
8.6%/14% for IdealSPD. Jigsaw and Vantage are well above
their average speedups, R-NUCA is well below, and IdealSPD
is about the same. Most of these mixes are at the high end
of the lines in Fig. 7 for Jigsaw and Vantage, but not for R-
NUCA. R-NUCA suffers on memory-intensive mixes because
its main focus is to reduce LLC access latency, not MPKI, and
IdealSPD does not improve memory-intensive mixes because
it provides no capacity control in the shared region.

Fig. 8 illustrates this observation, showing the performance
of each mix versus memory intensity. Performance is measured
by throughput normalized to LRU, and memory intensity
is measured by LRU’s average memory access time. The
figure also includes the best-fit linear regression, which shows
the performance-memory intensity correlation for each cache
organization. Jigsaw and Vantage both perform increasingly
well with increasing memory intensity, exhibiting similar,
positive correlation. Vantage is the worst-performing scheme at
low memory intensity, but under high intensity it is only bested
by Jigsaw. In constract, R-NUCA’s performance degrades
with increasing memory intensity due to its limited capacity.
Finally, IdealSPD shows only slightly increasing performance
versus LRU despite having twice the cache capacity. In [16]
IdealSPD was (predictably) shown to outperform other D-
NUCA schemes by the largest amount on mixes with high
memory intensity. Therefore, it’s unclear if actual D-NUCA
schemes would realize even the modest improvement with
increasing memory intensity seen in Fig. 8. Jigsaw performs
similarly to D-NUCA schemes at low memory intensity, and
at high intensities is clearly the best organization.

Performance breakdown: To gain more insight into these
differences, Fig. 9 shows a breakdown of execution time for
nine representative mixes. Each bar shows the total number
of cycles across all workloads in the mix for a specific
configuration, normalized to LRU’s (the inverse of each bar is
throughput over LRU). Each bar further breaks down where

cycles are spent, either executing instructions or stalled on a
memory access. Memory accesses are split into their L2, NoC,
LLC, and memory components. For R-NUCA and Jigsaw, we
include time spent on reconfigurations and remappings, which
is negligible. For IdealSPD, the LLC contribution includes
time spent in private L3, directory, and shared L4 accesses.

We see four broad classes of behavior: First, in capacity-
insensitive mixes (e.g., fffn0, sfff3, and snnn3) partitioning
barely helps, either because applications have small working
sets that fit in their local banks or have streaming behavior.
Vantage thus performs much like LRU on these mixes. R-
NUCA improves performance by keeping data in the closest
bank (with single-threaded mixes, R-NUCA behaves like a
private LLC organization without a globally shared directory).
Jigsaw maps shares to their closest banks, achieving similar
improvements. IdealSPD behaves like R-NUCA on low mem-
ory intensity mixes (e.g., fffn0) where the shared region is
lightly used so all data lives in local banks. With increasing
memory intensity (e.g. sfff3 and snnn3) its directory over-
heads (network and LLC) begin to resemble LRU, so much
so that its overall performance matches LRU at snnn3. For
all remaining mixes in Fig. 9, IdealSPD has similar network
and LLC overheads to LRU.

Second, capacity-critical mixes (e.g., stnn0) contain appli-
cations that do not fit within a single bank, but share the cache
effectively without partitioning. Here, Vantage and IdealSPD
show no advantage over LRU, but R-NUCA in particular
performs poorly, yielding higher MPKI than the shared LRU
baseline. Jigsaw gets the benefit of low latency, but without
sacrificing the MPKI advantages of higher capacity.

Third, in partitioning-friendly mixes (e.g., ftnn2, sssf3,
and ttnn2) each application gets different utility from the
cache, but no single application dominates LLC capacity. Par-
titioning reduces MPKI slightly, whereas R-NUCA gets MPKI
similar to the shared LRU baseline, but with lower network
latency. IdealSPD performs somewhere between Vantage and
LRU because it does not partition within the shared region.
Jigsaw captures the benefits of both partitioning and low
latency, achieving the best performance of any scheme.
ftnn2 is typical, where Vantage gives modest but non-

negligible gains, and IdealSPD matches this performance by
allowing each application a private bank (capturing high-

12

0 20 40 60 80 100 120 140

Workload

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4
E

n
e
rg

y
 v

s
 L

R
U

Jigsaw

IdealSPD

R-NUCA

Vantage

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
n
e
rg

y
 v

s
 L

R
U

L V R I J L V R I J

All Top MPKI Quintile

Static

Core

Net

LLC

DRAM

Figure 10. System energy across LLC organizations on 16-core, in-
order chip: per-mix results, and average energy breakdown across
mixes. Results are normalized to LRU’s energy (lower is better).

locality accesses) and dividing shared capacity among appli-
cations (giving additional capacity to high-intensity apps). R-
NUCA gets very low latency, but at the cost of additional
MPKI which makes it ultimately perform worse than Vantage.
Jigsaw gets the benefits of both partitioning and low latency,
and achieves the best performance. sssf3 shows a similar pat-
tern, but IdealSPD’s directory overheads (specifically directory
accesses, included in LLC access time) hurt its performance
compared to Vantage.
ttnn2 demonstrates the importance of capacity control.

Vantage shows significant reductions in DRAM time, but Ide-
alSPD resembles (almost identically) the shared LRU baseline.
This performance loss is caused by the lack of capacity control
within the shared region.

Fourth, partitioning-critical mixes (e.g., tttt3 and fttt2)
consist of cache-fitting apps that perform poorly below a
certain capacity threshold, after which their MPKI drops
sharply. In these mixes, a shared cache is ineffective at dividing
capacity, and partitioning achieves large gains. R-NUCA limits
apps to their local bank and performs poorly. Jigsaw is able to
combine the advantages of partitioning with the low latency
of smart placement, achieving the best performance.

In some mixes (e.g., fttt2), IdealSPD achieves a lower
MPKI than Vantage and Jigsaw, but this is an artifact of
having twice the capacity. Realistic shared-private D-NUCA
schemes will always get less benefit from partitioning than
Vantage or Jigsaw, as they partition between shared and
private regions, but do not partition the shared region among
applications. This effect is fairly common, indicating that our
results may overestimate the top-end performance of private-
baseline NUCA schemes.

Finally, Fig. 9 shows the average breakdown of cycles across
all mixes and for the mixes with the top 20% of memory
intensity. They follow the trends already discussed: Vantage re-
duces DRAM time but not network latency. R-NUCA reduces
network latency significantly, but at the cost of additional
DRAM time. IdealSPD performs similarly to Vantage; in
particular, its global directory overheads are significant. Jigsaw
is the only organization to achieve both low DRAM time and
low network latency. The main difference on high memory
intensity mixes is that Vantage and Jigsaw reduce DRAM time
significantly more than other organizations.

0 20 40 60 80 100 120 140

Workload

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T
h
ro

u
g
h
p
u
t
v
s
 L

R
U

Jigsaw

IdealSPD

R-NUCA

Vantage

0 20 40 60 80 100 120 140

Workload

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

W
.
S

p
e
e
d
u
p
 v

s
 L

R
U

Jigsaw

IdealSPD

R-NUCA

Vantage

Figure 11. Throughput and weighted speedup of Jigsaw, Vantage, R-
NUCA, and IdealSPD (2× cache) over LRU, for 140 SPEC CPU2006
mixes on 16-core chip with OOO cores and 4× memory bandwidth.

Energy: Fig. 10 shows the system energy (full chip and main
memory) consumed by each cache organization for each of
the 140 mixes, normalized to LRU’s energy. Lower numbers
are better. Jigsaw achieves the largest energy reductions, up
to 72%, 10.6% on average, and 22.5% for the mixes with the
highest 20% of memory intensities. Fig. 10 also shows the per-
component breakdown of energy consumption for the different
cache organizations, showing the reasons for Jigsaw’s savings:
its higher performance reduces static (leakage and refresh)
energy, and Jigsaw reduces both NoC and main memory
dynamic energy. These results do not model UMON or STB
energy overheads because they are negligible. Each UMON is
4 KB and is accessed infrequently (less than once every 512
accesses). STBs are less than 400 bytes, and each STB lookup
reads only 12 bits of state.
Performance with OOO cores: Fig. 11 shows throughputs
and weighted speedups for each organization when using
Westmere-like OOO cores. We also quadruple the memory
channels (51.2 GB/s) to maintain a balanced system given the
faster cores. Jigsaw still provides the best gmean through-
put/weighted speedup, achieving 9.9%/10.5% over the LRU
baseline. Vantage achieves 3.2%/2.7%, R-NUCA achieves
-1.4%/1.3%, and IdealSPD achieves 3.6%/2.2%. OOO cores
tolerate memory stalls better, so improvements are smaller
than with in-order cores. Additionally, OOO cores hide short
latencies (e.g., LLC) better than long latencies (e.g., main
memory), so reducing MPKI (Jigsaw/Vantage) becomes more
important than reducing network latency (R-NUCA). Finally,
R-NUCA underperforms LRU on 25% of the mixes, with up
to 42% lower throughput. These are memory-intensive mixes,
where R-NUCA’s higher MPKIs drive main memory close to
saturation, despite the much higher bandwidth. With infinite
memory bandwidth, R-NUCA achieves 4.5%/7.1% average
improvements with a worst-case throughput degradation of
15% vs LRU, while Jigsaw achieves 11.1%/11.8%.

B. Multi-threaded mixes on 64-core CMP

Fig. 12 shows throughput and weighted speedup results
of different organizations on 40 random mixes of four 16-
thread workloads in the 64-core CMP with in-order cores. We
include two variants of Jigsaw: one with a single per-process
share (Jigsaw (P)), and another with additional thread-private
shares as discussed in Sec. IV (Jigsaw). Jigsaw achieves

13

0 5 10 15 20 25 30 35 40

Workload

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30
T

h
ro

u
g
h
p
u
t
v
s
 L

R
U

Jigsaw

Jigsaw (P)

IdealSPD

R-NUCA

Vantage

0 5 10 15 20 25 30 35 40

Workload

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

W
.
S

p
e
e
d
u
p
 v

s
 L

R
U

Jigsaw

Jigsaw (P)

IdealSPD

R-NUCA

Vantage

Figure 12. Throughput and weighted speedup of Jigsaw (w/ and w/o
per-thread shares), Vantage, R-NUCA, and IdealSPD (2× cache) over
LRU, for 40 4×16-thread mixes on 64-core chip with in-order cores.

the highest improvements of all schemes. Overall, gmean
throughput/weighted speedup results are 9.1%/8.9% for Jig-
saw, 1.9%/2.6% for Vantage, 5.0%/4.7% for R-NUCA, and
4.5%/5.5% for IdealSPD.

Unlike the single-threaded mixes, most applications are
capacity-insensitive and have low memory intensity; only
canneal is cache-friendly, and ocean is cache-fitting. This
is why we model a 32 MB LLC: a 64 MB LLC improves
throughput by only 3.5%. Longer network latencies emphasize
smart placement, further de-emphasizing MPKI reduction.
Consequently, Vantage yields small benefits except on the few
mixes that contain canneal or ocean. IdealSPD enjoys the
low latency of large local banks as well as a large shared
cache, but read-write sharing is slower due to the deeper
private hierarchy and global directory, ultimately yielding
modest improvements. This drawback is characteristic of all
private-based D-NUCA schemes. On the other hand, R-NUCA
achieves low latency and, unlike the single-threaded mixes,
does not suffer from limited capacity. This is both because
of lower memory intensity and because R-NUCA uses shared
cache capacity for data shared among multiple threads.

Jigsaw (P) does better than Vantage, but worse than Jigsaw
due to the lack of per-thread shares. Jigsaw achieves lower
network latency than R-NUCA and outperforms it further
when partitioning is beneficial. Note that R-NUCA and Jig-
saw reduce network latency by different means. R-NUCA
places private data in the local bank, replicates instructions,
and spreads shared data across all banks. Jigsaw just does
placement: per-thread shares in the local bank, and per-
process shares in the local quadrant of the chip. This reduces
latency more than placing data throughout the chip and avoids
capacity loss from replication. Because there is little capacity
contention, we tried a modified R-NUCA that replicates read-
only data (i.e., all pages follow a Private→Shared Read-
only→Shared Read-write classification). This modified R-
NUCA achieves 8.6%/8.5% improvements over LRU, bridging
much of the gap with Jigsaw. While Jigsaw could implement
fixed-degree replication a là R-NUCA, we defer implementing
an adaptive replication scheme (e.g., using cost-benefit analy-
sis and integrating it in the runtime) to future work.

Though not shown, results with OOO cores follow the
same trends, with gmean throughput/weighted speedup im-
provements of 7.6%/5.7% for Jigsaw, 3.0%/3.7% for Vantage,

0.0 0.5 1.0 1.5 2.0 2.5 3.0

LLC+DRAM Latency

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
e
t
L
a
te

n
c
y

(a) Single-threaded mixes, 16 cores

0.0 0.2 0.4 0.6 0.8 1.0 1.2

LLC+DRAM Latency

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
e
t
L
a
te

n
c
y

(b) Multi-threaded mixes, 64 cores

Jigsaw IdealSPD R-NUCA Vantage

Figure 13. Intrinsic MPKI and network latency reduction benefits
of Jigsaw, Vantage, R-NUCA, and IdealSPD (with 2× cache) over
LRU. Each point shows the average LLC + memory latency (x) and
network latency (y) of one mix normalized to LRU’s (lower is better).
4.6%/2.1% for R-NUCA, and 4.4%/5.4% for IdealSPD.

C. Summary of results

Fig. 13 summarizes LLC performance for both 16- and 64-
core mixes. For each cache organization, each mix is repre-
sented by a single point. Each point’s x-coordinate is its LLC
and main memory latency (excluding network) normalized to
LRU, and the y-coordinate is its network latency normalized to
LRU; lower is better in both dimensions. This representation
tries to decouple each organization’s intrinsic benefits in MPKI
and latency reduction from the specific timing of the system.
Overall, we draw the following conclusions:
• Vantage is able to significantly reduce MPKI, but has no

impact on network latency. Vantage partitions within each
bank, but does not trade capacity between banks to improve
locality. In many mixes, network time far exceeds the
savings in DRAM time, and a scheme that benefited locality
could yield much greater improvements.

• R-NUCA achieves low network latency, but at the cost of
increased MPKI for a significant portion of mixes. Often
the losses in MPKI exceed the savings in network latency,
so much so that R-NUCA has the worst-case degradation of
all schemes.

• IdealSPD is able to act as either a private-cache or shared-
cache organization, but cannot realize their benefits simulta-
neously. IdealSPD can match the main memory performance
of Vantage on many mixes (albeit with twice the capac-
ity) and R-NUCA’s low latency on some mixes. However,
IdealSPD struggles to do both due to its shared/private
dichotomy, shown by its

L

-shape in Fig. 13a. Mixes can
achieve low latency only by avoiding the shared region. With
high memory intensity, global directory overheads become
significant, and it behaves as a shared cache.

• Jigsaw combines the latency reduction of D-NUCA schemes
with the miss reduction of partitioning, achieving the best
performance on a wide range of workloads.

D. Jigsaw analysis

Lookahead vs Peekahead: Table 4 shows the average core
cycles required to perform a reconfiguration using both the
UCP Lookahead algorithm and Peekahead as presented in
Sec. IV. To run these experiments, we use the miss curves from

14

1.00

1.05

1.10

1.15

1.20

T
h
ro

u
g
h
p
u
t
v
s
 L

R
U

5 10 25 50 100 250 500

M cycles / interval

Jigsaw Vantage

1.00

1.05

1.10

1.15

1.20

W
.
S

p
e
e
d
u
p
 v

s
 L

R
U

5 10 25 50 100 250 500

M cycles / interval

Jigsaw Vantage

Figure 14. Mean improvements of Jigsaw and Vantage over LRU on
the 140 16-core runs for a range of reconfiguration intervals.

Buckets 32 64 128 256 512 1024 2048 4096 8192

Lookahead 0.87 2.8 9.2 29 88 280 860 2,800 10,000
Peekahead 0.18 0.30 0.54 0.99 1.9 3.6 7.0 13 26

Speedup 4.8× 9.2× 17× 29× 48× 77× 125× 210× 380×
ALLHULLS % 87 90 92 95 96 98 99 99 99.5

Table 4. Performance of Peekahead and UCP’s Lookahead [34].
Results given in M cycles per invocation.

the 140 16-core mixes at different resolutions. Conventional
Lookahead scales near quadratically (3.2× per 2× buckets),
while Peekahead scales sublinearly (1.9× per 2× buckets).
ALLHULLS dominates Peekahead’s run-time, confirming lin-
ear asymptotic growth. All previous results use 128 buck-
ets (128-way UMONs), where Peekahead is 17× faster than
Lookahead. Peekahead’s advantage increases quickly with
resolution. Overall, Jigsaw spends less than 0.1% of system
cycles in reconfigurations at both 16 and 64 cores, imposing
negligible overheads.

Sensitivity to reconfiguration interval: All results presented
so far use a reconfiguration interval of 50 M cycles. Smaller
intervals could potentially improve performance by adapting
more quickly to phase changes in applications, but also incur
higher reconfiguration overheads. Fig. 14 shows the gmean
throughputs and weighted speedups achieved by both Jigsaw
and Vantage on the 140 16-core mixes, for reconfiguration
intervals of 5, 10, 25, 50, 100, 250, and 500 M cycles. Vantage
is fairly insensitive to interval length, which is expected since
its reconfigurations are fast and incur no invalidations, but also
shows that for our target workloads there is little to gain from
more frequent repartitionings. In contrast, Jigsaw benefits from
longer intervals, as reconfigurations involve bulk invalidations.
Performance quickly degrades below 10-25 M cycle intervals,
and at 5 M cycles, the overheads from invalidations negate
Jigsaw’s benefits over Vantage. Both Jigsaw and Vantage
degrade substantially with long intervals (250 and 500), but
this may be an artifact of having few reconfigurations per run.

To elucidate this further, we also evaluated backing Jigsaw
with a directory. We optimistically model an ideal, 0-cycle,
fully-provisioned directory that causes no directory-induced
invalidations. The directory enables migrations between lines
in different banks after a reconfiguration, and avoids all bulk
and page remapping invalidations. At 50 M cycles, directory-
backed Jigsaw improves gmean throughput by 1.7%. We con-

1.00

1.05

1.10

1.15

1.20

T
h
ro

u
g
h
p
u
t
v
s
 L

R
U

32 64 128 256 512 512 2K

Associativity

4KB 32KB 64KB

1.00

1.05

1.10

1.15

1.20

W
.
S

p
e
e
d
u
p
 v

s
 L

R
U

32 64 128 256 512 512 2K

Associativity

4KB 32KB 64KB

Figure 15. Mean improvements of Jigsaw over LRU on 140 single-
threaded, 16-core runs for different UMON configurations.

clude that a directory-backed Jigsaw would not be beneficial.
Even efficient implementations of this directory would require
multiple megabytes and add significant latency, energy, and
complexity. However, our workloads are fairly stable, we pin
threads to cores, and do not overcommit the system. Other use
cases (e.g., overcommitted systems) may change the tradeoffs.
Sensitivity to UMON configuration: Fig. 15 shows Jigsaw’s
performance over the 140 16-core mixes with different UMON
configurations. These results show the impact of both asso-
ciativity, which determines miss curve resolution, and UMON
size, which determines sampling error. The blue bars show a
sweep over associativity at 32, 64, 128, 256, and 512 ways
for a 4 KB UMON (results use 128-way 4 KB UMONs). The
red bar shows the impact of increasing UMON size 8× to
32 KB holding associativity at 512 ways; and the green bar
is an idealized configuration with 2048-way, 64 KB UMONs
shared among all bank partitions, eliminating sampling issues
for multi-bank shares (Sec. III-C).

These results demonstrate a consistent performance im-
provement, in both throughput and weighted speedup, from
32 to 512 ways. Increasing associativity from 32 to 64 ways
improves throughput/weighted speedup by 1.1%/1.4% over
LRU. This benefit comes from being able to partition the
cache at finer granularity. With low resolution, the runtime
overallocates space to applications with sharp knees in their
miss curves. This is because UMON data is missing around the
knee in the curve, so the runtime cannot tell precisely where
the knee occurs. Increasing UMON associativity improves
resolution, and frees this space for other shares that make
better use of it. Increasing to 128 ways improves performance
by 0.8%/1.2%. Subsequent doublings of associativity improve
performance by only 0.1%/0.4% over LRU on average. This
indicates that while performance increases are steady, there
are significantly diminishing returns. In contrast, increasing
UMON size by 8× (red bar) improves throughput by just 0.1%.
Clearly, sampling error is not a significant problem in Jigsaw.
Finally, the ideal configuration (green bar) shows that while
more performance is possible with ideal UMONs, the 128-way,
4 KB configuration comes within 0.8%/1.5%.

VII. CONCLUSIONS

We have presented Jigsaw, a cache organization that ad-
dresses the scalability and interference issues of distributed on-
chip caches. Jigsaw lets software define shares, virtual caches

15

of guaranteed size and placement, and provides efficient
mechanisms to monitor, reconfigure, and map data to shares.
We have developed an efficient, novel software runtime that
uses these mechanisms to achieve both the latency-reduction
benefits of NUCA techniques and the hit-maximization ben-
efits of controlled capacity management. As a result, Jigsaw
significantly outperforms state-of-the-art NUCA and partition-
ing techniques over a wide range of workloads. Jigsaw can
potentially be used for a variety of other purposes, including
maximizing fairness, implementing process priorities or tiered
quality of service, or exposing shares to user-level software to
enable application-specific optimizations.

ACKNOWLEDGMENTS

We sincerely thank Deirdre Connolly, Christina Delimitrou,
Srini Devadas, Frans Kaashoek, Harshad Kasture, and the
anonymous reviewers for their useful feedback on earlier
versions of this manuscript. This work was supported in
part by DARPA PERFECT contract HR0011-13-2-0005 and
Quanta Computer.

REFERENCES
[1] A. Alameldeen and D. Wood, “IPC considered harmful for

multiprocessor workloads,” IEEE Micro, vol. 26, no. 4, 2006.
[2] B. Beckmann, M. Marty, and D. Wood, “ASR: Adaptive selec-

tive replication for CMP caches,” in Proc. MICRO-39, 2006.
[3] B. Beckmann and D. Wood, “Managing wire delay in large

chip-multiprocessor caches,” in Proc. MICRO-37, 2004.
[4] N. Beckmann and D. Sanchez, “Jigsaw: Scalable Software-

Defined Caches,” in Proc. PACT-22, 2013.
[5] C. Bienia et al., “The PARSEC benchmark suite: Characteriza-

tion and architectural implications,” in Proc. PACT-17, 2008.
[6] S. Bird and B. Smith, “PACORA: Performance aware convex

optimization for resource allocation,” in Proc. HotPar-3, 2011.
[7] J. L. Carter and M. N. Wegman, “Universal classes of hash

functions (extended abstract),” in Proc. STOC-9, 1977.
[8] J. Chang and G. Sohi, “Cooperative caching for chip multipro-

cessors,” in Proc. ISCA-33, 2006.
[9] D. Chiou et al., “Application-specific memory management for

embedded systems using software-controlled caches,” in Proc.
DAC-37, 2000.

[10] Z. Chishti, M. Powell, and T. Vijaykumar, “Optimizing replica-
tion, communication, and capacity allocation in cmps,” in ISCA-
32, 2005.

[11] S. Cho and L. Jin, “Managing distributed, shared L2 caches
through OS-level page allocation,” in Proc. MICRO-39, 2006.

[12] H. Dybdahl and P. Stenstrom, “An adaptive shared/private nuca
cache partitioning scheme for chip multiprocessors,” in Proc.
HPCA-13, 2007.

[13] G. Gerosa et al., “A sub-1w to 2w low-power processor for
mobile internet devices and ultra-mobile PCs in 45nm hi-k metal
gate CMOS,” in ISSCC, 2008.

[14] N. Hardavellas et al., “Reactive NUCA: near-optimal block
placement and replication in distributed caches,” in Proc. ISCA-
36, 2009.

[15] E. Herrero, J. González, and R. Canal, “Distributed Cooperative
Caching,” in Proc. PACT-17, 2008.

[16] E. Herrero, J. González, and R. Canal, “Elastic cooperative
caching: an autonomous dynamically adaptive memory hierar-
chy for chip multiprocessors,” in Proc. ISCA-37, 2010.

[17] A. Hilton, N. Eswaran, and A. Roth, “FIESTA: A sample-
balanced multi-program workload methodology,” in Proc.
MoBS, 2009.

[18] J. Jaehyuk Huh et al., “A NUCA substrate for flexible CMP
cache sharing,” IEEE Trans. Par. Dist. Sys., vol. 18, no. 8, 2007.

[19] A. Jaleel, M. Mattina, and B. Jacob, “Last Level Cache (LLC)
Performance of Data Mining Workloads On A CMP,” in HPCA-
12, 2006.

[20] C. Kim, D. Burger, and S. Keckler, “An adaptive, non-uniform
cache structure for wire-delay dominated on-chip caches,” in
ASPLOS-10, 2002.

[21] N. Kurd et al., “Westmere: A family of 32nm IA processors,”
in ISSCC, 2010.

[22] H. Lee, S. Cho, and B. R. Childers, “CloudCache: Expanding
and shrinking private caches,” in Proc. HPCA-17, 2011.

[23] B. Li et al., “CoQoS: Coordinating QoS-aware shared resources
in NoC-based SoCs,” J. Par. Dist. Comp., vol. 71, no. 5, 2011.

[24] S. Li et al., “McPAT: an integrated power, area, and timing
modeling framework for multicore and manycore architectures,”
in MICRO-42, 2009.

[25] J. Lin et al., “Gaining insights into multicore cache partitioning:
Bridging the gap between simulation and real systems,” in
HPCA-14, 2008.

[26] P. Lotfi-Kamran, B. Grot, and B. Falsafi, “NOC-Out: Microar-
chitecting a Scale-Out Processor,” in Proc. MICRO-45, 2012.

[27] C.-K. Luk et al., “Pin: building customized program analysis
tools with dynamic instrumentation,” in Proc. PLDI, 2005.

[28] R. Manikantan, K. Rajan, and R. Govindarajan, “Probabilistic
shared cache management (PriSM),” in Proc. ISCA-39, 2012.

[29] M. Marty and M. Hill, “Virtual hierarchies to support server
consolidation,” in Proc. ISCA-34, 2007.

[30] A. A. Melkman, “On-line construction of the convex hull of a
simple polyline,” Information Processing Letters, vol. 25, no. 1,
1987.

[31] J. Merino, V. Puente, and J. Gregorio, “ESP-NUCA: A low-cost
adaptive non-uniform cache architecture,” in Proc. HPCA-16,
2010.

[32] Micron, “1.35V DDR3L power calculator (4Gb x16 chips),”
2013.

[33] M. Qureshi, “Adaptive Spill-Receive for Robust High-
Performance Caching in CMPs,” in Proc. HPCA-10, 2009.

[34] M. Qureshi and Y. Patt, “Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to parti-
tion shared caches,” in Proc. MICRO-39, 2006.

[35] P. Ranganathan, S. Adve, and N. Jouppi, “Reconfigurable caches
and their application to media processing,” in Proc. ISCA-27,
2000.

[36] D. Sanchez and C. Kozyrakis, “The ZCache: Decoupling Ways
and Associativity,” in Proc. MICRO-43, 2010.

[37] D. Sanchez and C. Kozyrakis, “Vantage: Scalable and Efficient
Fine-Grain Cache Partitioning,” in Proc. ISCA-38, 2011.

[38] D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate
Microarchitectural Simulation of Thousand-Core Systems,” in
Proc. ISCA-40, 2013.

[39] A. Seznec, “A case for two-way skewed-associative caches,” in
ISCA-20, 1993.

[40] A. Snavely and D. M. Tullsen, “Symbiotic jobscheduling for
a simultaneous multithreading processor,” in Proc. ASPLOS-8,
2000.

[41] S. Srikantaiah, M. Kandemir, and Q. Wang, “SHARP control:
Controlled shared cache management in chip multiprocessors,”
in MICRO-42, 2009.

[42] D. Tam et al., “Managing shared l2 caches on multicore systems
in software,” in WIOSCA, 2007.

[43] K. Varadarajan et al., “Molecular caches: A caching structure
for dynamic creation of app-specific heterogeneous cache re-
gions,” in MICRO-39, 2006.

[44] C. Wu and M. Martonosi, “A Comparison of Capacity Manage-
ment Schemes for Shared CMP Caches,” in WDDD-7, 2008.

[45] Y. Xie and G. H. Loh, “PIPP: promotion/insertion pseudo-
partitioning of multi-core shared caches,” in Proc. ISCA-36,
2009.

[46] M. Zhang and K. Asanovic, “Victim replication: Maximizing
capacity while hiding wire delay in tiled chip multiprocessors,”
in ISCA-32, 2005.

16

