
UBIK: EFFICIENT CACHE SHARING WITH STRICT QOS

FOR LATENCY CRITICAL WORKLOADS

HARSHAD KASTURE, DANIEL SANCHEZ

ASPLOS 2014

Motivation
2

 Low server utilization in datacenters is a major source of

inefficiency

L. Barroso and U. Hölzle, The Case for Energy-Proportional Computing

Common Industry Practice
3

Core 0

Last Level Cache

Core 1 Core 2

Core 3 Core 4 Core 5

Latency Critical Application

 Dedicated machines for latency-critical applications

guarantees QoS

Core 0

Last Level Cache

Core 1 Core 2

Core 3 Core 4 Core 5

Common Industry Practice
4

Latency Critical Application

 Dedicated machines for latency-critical applications
guarantees QoS

 Under utilization of machine resources

Core 0

Last Level Cache

Core 1 Core 2

Core 3 Core 4 Core 5

Colocation to Improve Utilization
5

Latency Critical Applications

 Can utilize spare resources by colocating batch apps

Core 0

Last Level Cache

Core 1 Core 2

Core 3 Core 4 Core 5

Sharing Causes Interference!
6

Latency Critical Applications

 Can utilize spare resources by colocating batch apps

 Contention in shared resources degrades QoS

Outline
7

 Introduction

 Analysis of latency-critical apps

 Inertia-oblivious cache management schemes

 Ubik: Inertia-aware cache management

 Evaluation

Understanding Latency-Critical Applications
8

 Large number of backend servers participate in handling
every user request

 Total service time determined by tail latency behavior of
backend

Client

Client

Client

Front End

Back End

Back End

Back End

Front End

Datacenter

Understanding Latency-Critical Applications
9

 Service latency highly sensitive to changes in load

Understanding Latency-Critical Applications
10

 Short bursts of activity interspersed with idle periods

 Need guaranteed high performance during active periods

Active

Idle

Time

Inertia and Transient Behavior
11

Core 0 Core 1

Last Level Cache

Core 2

Core 3 Core 4 Core 5

Time

IPC

Inertia and Transient Behavior
12

 Transient lengths can dominate tail latency!

 Any dynamic reconfiguration scheme has to be inertia-aware

 Many hardware resources exhibit inertia

 branch predictors, prefetchers, memory bandwidth…

 LLCs are one of the biggest sources of inertia

Core 0 Core 1

Last Level Cache

Core 2

Core 3 Core 4 Core 5

Time

IPC

Transient begin Transient end

Outline
13

 Introduction

 Analysis of latency-critical apps

 Inertia-oblivious cache management schemes

 Ubik: Inertia-aware cache management

 Evaluation

Inertia-Oblivious Cache Management
14

Last Level Cache (LLC)

Core 2 Core 3

Core 0 Core 1

LC1 LC2

Batch1 Batch2

Active

Idle

Active

Idle

Active

Idle

Active

Idle
Time

Unmanaged LLC (LRU Replacement)
15

Last Level Cache (LLC)

Core 2 Core 3

Core 0 Core 1

LC1 LC2

Batch1 Batch2

Active

Idle

Active

Idle

Active

Idle

Active

Idle
Time

Time

LL
C

 S
p
a
ce

✖ Unconstrained interference

results in poor tail-latency

behavior

Utility Based Cache Partitioning (UCP)
16

Time

LL
C

 S
p
a
ce

Active

Idle

Active

Idle

Active

Idle

Active

Idle
Time

Reconfigure

Last Level Cache (LLC)

Core 2 Core 3

Core 0 Core 1

LC1 LC2

Batch1 Batch2

✔ High batch throughput

✖ Poor tail latency (low allocation)

OnOff: Efficient but Unsafe
17

Active

Idle

Active

Idle

Active

Idle

Active

Idle
Time

Batch Reconfigure Time

LL
C

 S
p
a
ce

Last Level Cache (LLC)

Core 2 Core 3

Core 0 Core 1

LC1 LC2

Batch1 Batch2

✔ High batch throughput

Cross-Request LLC Inertia
18

 Other applications qualitatively similar (see paper for details)

Shore-MT, 2 MB LLC

Cross-request hits

LL
C

 A
cc

e
ss

 B
re

a
kd

o
w

n
(%

)
Misses

Hits (same request)

StaticLC: Safe but Inefficient
19

Batch Reconfigure Time

LL
C

 S
p
a
ce

Active

Idle

Active

Idle

Active

Idle

Active

Idle
Time

Last Level Cache (LLC)

Core 2 Core 3

Core 0 Core 1

LC1 LC2

Batch1 Batch2

✔ Low tail latency (preserve LLC state)

✖ Low batch throughput (poor space

utilization)

Outline
20

 Introduction

 Analysis of latency-critical apps

 Inertia-oblivious cache management schemes

 Ubik: Inertia-aware cache management

 Evaluation

Ubik: Performance Guarantee
21

 Performance as well as overall progress under Ubik after

the deadline is identical to static partitioning

Instructions

Time

deadline

Progress

with constant

size

Progress

with Ubik

Request begins

Ubik: Overview
22

Activity

Time

Size

Time

nominal static

size

idle

size

Target Size

Actual Size

Ubik: Overview
23

Activity

Time

Size

Time

Target Size

Actual Size
nominal static

size

idle

size

boosted

size

Ubik: Overview
24

Activity

Time

Size

Time

Target Size

Actual Size
nominal static

size

idle

size

boosted

size

Ubik: Overview
25

 Constraint: Cycles lost during should be compensated

for by the cycles gained during before the deadline

Activit

y

Time
Size

Time

Target Size

Actual Size
nominal static size

idle size

boosted size

Analyzing Transients
26

s2

Size

Time

s1

Target

Size Actual

Size

Ttransient

 Need accurate predictions for

 The length of the transient from s1 to s2

 Cycles lost during the transient from s1 to s2

Instructions

Time

Progress with

constant size (s2)

Progress

with Ubik

Transient

begins
Transient ends

Lost

Performanc

e

Hardware Support
27

 Utility monitors to measure per-application miss curves

 Fine grained cache partitioning

 Memory Level Parallelism (MLP) profiler

pS2

Size s1

pS1

s2

Miss probability

Bounds on Transient Behavior
28

s2

Size

Time

s1

Target

Size Actual

Size

Ttransient

Instructions

Time

Progress with

constant size (s2)

Progress

with Ubik

Transient

begins
Transient ends

Lost

Performance (L)

฀

T
transient

 c

p
s

 M 
s  s

1

s
2
1 s

2
 s

1
  c

p
s
2

 M








฀

L  M 1  p
s
2

p
s

 M
s  s

1

s
2
1 s

2
 s

1
  1  p

s
2

p
s
1









Ubik: Partition Sizing
29

 Use transient analysis to identify feasible (idle size,

boosted size) pairs

Size

Time

1

deadline

Ubik: Partition Sizing
30

 Use transient analysis to identify feasible (idle size,

boosted size) pairs

Size

Time

1

2

deadline

Ubik: Partition Sizing
31

 Use transient analysis to identify feasible (idle size,

boosted size) pairs

Size

Time

1

2

3

deadline

Ubik: Partition Sizing
32

 Use transient analysis to identify feasible (idle size,

boosted size) pairs

I N F E A S I B L E
Size

Time

1

2

3

4

deadline

Ubik: Partition Sizing
33

 Use transient analysis to identify feasible (idle size,

boosted size) pairs

 Choose the pair that yields the maximum batch throughput

Size

Time
deadline

1

2

3

 See paper for details

Outline
34

 Introduction

 Analysis of latency-critical apps

 Inertia-oblivious cache management schemes

 Ubik: Inertia-aware cache management

 Evaluation

Workloads
35

 Five diverse latency-critical apps

 xapian (search engine)

 masstree (in-memory key-value store)

 moses (statistical machine translation)

 shore-mt (multi-threaded DBMS)

 specjbb (java middleware)

 Batch applications: random mixes of SPECCPU 2006

benchmarks

Target System
36

 6 OOO cores

 Private L1I, L1D and L2

caches

 12MB shared LLC

 400 6-app mixes: 3

latency-critical + 3 batch

apps

 Apps pinned to cores

Core 0

L3

Bank 0

Core 1

L3

Bank 1

Core 2

L3

Bank 2

Core 3

L3

Bank 3

Core 4

L3

Bank 4

Core 5

L3

Bank 5

Batch1 Batch2 Batch3

LC1 LC2 LC3

Metrics
37

 Baseline system has

private LLCs

 We report

 Normalized tail latency

 Throughput improvement

for batch applications Core 0

L3 0

Core 1

L3 1

Core 2

L3 2

Core 3

L3 3

Core 4

L3 4

Core 5

L3 5

Batch1 Batch2 Batch3

LC1 LC2 LC3

Results: Unmanaged LLC (LRU)
38

Higher is better

Results: UCP
39

Higher is better

Results: OnOff
40

Higher is better

Results: StaticLC
41

Higher is better

Results: Ubik
42

Higher is better

Results: Summary
43

Higher is better

OnOff

UCP

Ubik

LRU

StaticLC
Private LLC

Conclusions
44

 To guarantee tail latency, dynamic resource management

schemes must be inertia-aware

 Ubik: Inertia-aware cache capacity management

 Preserves tail of latency-critical apps

 Achieves high cache space utilization for batch apps

 Requires minimal additional hardware

THANKS FOR YOUR ATTENTION!

QUESTIONS?

