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Motivation 
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 Low server utilization in datacenters is a major source of 

inefficiency 

L. Barroso and U. Hölzle, The Case for Energy-Proportional Computing 
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Latency Critical Application 

 Dedicated machines for latency-critical applications 
guarantees QoS 

 Under utilization of machine resources 
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Colocation to Improve Utilization 
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Latency Critical Applications 

 Can utilize spare resources by colocating batch apps 
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Sharing Causes Interference! 
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Latency Critical Applications 

 Can utilize spare resources by colocating batch apps 

 Contention in shared resources degrades QoS 



Outline 
7 

 Introduction 

 Analysis of latency-critical apps 

 Inertia-oblivious cache management schemes 

 Ubik: Inertia-aware cache management 

 Evaluation 



Understanding Latency-Critical Applications 
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 Large number of backend servers participate in handling 
every user request 

 Total service time determined by tail latency behavior of 
backend 
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Understanding Latency-Critical Applications 
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 Service latency highly sensitive to changes in load 



Understanding Latency-Critical Applications 
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 Short bursts of activity interspersed with idle periods 

 Need guaranteed high performance during active periods 
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Inertia and Transient Behavior 
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Inertia and Transient Behavior 
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 Transient lengths can dominate tail latency! 

 Any dynamic reconfiguration scheme has to be inertia-aware 

 Many hardware resources exhibit inertia 

 branch predictors, prefetchers, memory bandwidth… 

 LLCs are one of the biggest sources of inertia 
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 Introduction 

 Analysis of latency-critical apps 

 Inertia-oblivious cache management schemes 

 Ubik: Inertia-aware cache management 

 Evaluation 



Inertia-Oblivious Cache Management 
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Unmanaged LLC (LRU Replacement) 
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✖ Unconstrained interference 

results in poor tail-latency 

behavior 



Utility Based Cache Partitioning (UCP) 
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✔ High batch throughput 

 

✖ Poor tail latency (low allocation) 



OnOff: Efficient but Unsafe 
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Last Level Cache (LLC) 
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✔ High batch throughput 



Cross-Request LLC Inertia 
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 Other applications qualitatively similar (see paper for details) 

Shore-MT, 2 MB LLC 
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StaticLC: Safe but Inefficient 
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✔ Low tail latency (preserve LLC state) 

 

✖ Low batch throughput (poor space 

utilization) 



Outline 
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 Introduction 

 Analysis of latency-critical apps 

 Inertia-oblivious cache management schemes 

 Ubik: Inertia-aware cache management 

 Evaluation 



Ubik: Performance Guarantee 
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 Performance as well as overall progress under Ubik after 

the deadline is identical to static partitioning  
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Ubik: Overview 
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Ubik: Overview 
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 Constraint: Cycles lost during     should be compensated 

for by the cycles gained during      before the deadline 
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Analyzing Transients 
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Hardware Support 
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 Utility monitors to measure per-application miss curves 

 

 

 

 

 

 

 

 Fine grained cache partitioning 

 

 Memory Level Parallelism (MLP) profiler 
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Bounds on Transient Behavior 
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Ubik: Partition Sizing 
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 Use transient analysis to identify feasible (idle size, 

boosted size) pairs 
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 Use transient analysis to identify feasible (idle size, 

boosted size) pairs 
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Ubik: Partition Sizing 
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 Use transient analysis to identify feasible (idle size, 

boosted size) pairs 
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Ubik: Partition Sizing 
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 Use transient analysis to identify feasible (idle size, 

boosted size) pairs 

 Choose the pair that yields the maximum batch throughput 
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Workloads 
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 Five diverse latency-critical apps 

 xapian (search engine) 

 masstree (in-memory key-value store) 

 moses (statistical machine translation) 

 shore-mt (multi-threaded DBMS) 

 specjbb (java middleware) 

 

 

 Batch applications: random mixes of SPECCPU 2006 

benchmarks 



Target System 
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 6 OOO cores 

 Private L1I, L1D and L2 

caches 

 12MB shared LLC 

 

 400 6-app mixes: 3 

latency-critical + 3 batch 

apps 

 Apps pinned to cores 
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Metrics 
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 Baseline system has 

private LLCs 

 

 We report 

 Normalized tail latency 

 Throughput improvement 

for batch applications Core 0 
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Results: Unmanaged LLC (LRU) 
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Higher is better 
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Higher is better 



Results: OnOff 
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Higher is better 



Results: StaticLC 
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Higher is better 



Results: Ubik 
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Higher is better 



Results: Summary 
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Conclusions 
44 

 

 To guarantee tail latency, dynamic resource management 

schemes must be inertia-aware 

 

 Ubik: Inertia-aware cache capacity management 

 Preserves tail of latency-critical apps 

 Achieves high cache space utilization for batch apps 

 Requires minimal additional hardware 
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