
Appears in the Proceedings of the 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2016

Data-Centric Execution of
Speculative Parallel Programs

Mark C. Jeffrey∗ Suvinay Subramanian∗ Maleen Abeydeera∗ Joel Emer† Daniel Sanchez∗
∗Massachusetts Institute of Technology †NVIDIA / MIT

{mcj, suvinay, maleen, emer, sanchez}@csail.mit.edu

Abstract—Multicore systems must exploit locality to scale,
scheduling tasks to minimize data movement. While locality-
aware parallelism is well studied in non-speculative systems, it
has received little attention in speculative systems (e.g., HTM or
TLS), which hinders their scalability.

We present spatial hints, a technique that leverages program
knowledge to reveal and exploit locality in speculative parallel
programs. A hint is an abstract integer, given when a speculative
task is created, that denotes the data that the task is likely to
access. We show it is easy to modify programs to convey locality
through hints. We design simple hardware techniques that allow
a state-of-the-art, tiled speculative architecture to exploit hints
by: (i) running tasks likely to access the same data on the same
tile, (ii) serializing tasks likely to conflict, and (iii) balancing
tasks across tiles in a locality-aware fashion. We also show that
programs can often be restructured to make hints more effective.

Together, these techniques make speculative parallelism prac-
tical on large-scale systems: at 256 cores, hints achieve near-
linear scalability on nine challenging applications, improving
performance over hint-oblivious scheduling by 3.3× gmean and
by up to 16×. Hints also make speculation far more efficient,
reducing wasted work by 6.4× and traffic by 3.5× on average.

I. INTRODUCTION

Speculative parallelization, e.g. through thread-level specula-

tion (TLS) or hardware transactional memory (HTM), has two

major benefits over non-speculative parallelism: it uncovers

abundant parallelism in many challenging applications [28, 37]

and simplifies parallel programming [59]. However, even with

scalable versioning and conflict detection techniques [14, 37,

56, 67], speculative systems scale poorly beyond a few tens of

cores. A key reason is that these systems do not exploit much

of the locality available in speculative programs.

To scale, parallelism must not come at the expense of locality:

tasks should be run close to the data they access to avoid global

communication and use caches effectively. The need for locality-

aware parallelism is well understood in non-speculative systems,

where abundant prior work has developed programming models

to convey locality [4, 69, 74], and runtimes and schedulers to

exploit it [2, 10, 15, 33, 50, 65, 76].

However, most prior work in speculative parallelization

has ignored the need for locality-aware parallelism: in TLS,

speculative tasks are executed by available cores without regard

for locality [27, 57, 66]; and conventional HTM programs

are structured as threads that execute a fixed sequence of

transactions. Prior work has observed that it is beneficial to

structure transactional code into tasks instead, and has proposed

transactional task schedulers that limit concurrency to reduce

aborts under high contention [5, 6, 8, 9, 19, 21, 35, 61, 77].

Limiting concurrency suffices for small systems, but scaling

to hundreds of cores also requires solving the spatial mapping

problem: speculative tasks must be mapped across the system

to minimize data movement.

To our knowledge, no prior work has studied the spatial

mapping problem for speculative architectures. This may be

because, at first glance, spatial mapping and speculation seem

to be at odds: achieving a good spatial mapping requires

knowing the data accessed by each task, but the key advantage

of speculation is precisely that one need not know the data

accessed by each task. However, we find that there is a wide

gray area: in many applications, most of the data accessed

is known at runtime when the task is created. Thus, there is

ample information to achieve high-quality spatial task mappings.

Beyond reducing data movement, high-quality mappings also

enhance parallelism by making most conflicts local.

To exploit this insight, we present spatial hints, a technique

that uses program knowledge to achieve high-quality task

mappings (Sec. III). A hint is an abstract integer, given at

runtime when a task is created, that denotes the data that the

task is likely to access. We show it is easy to modify programs

to convey locality through hints. We enhance a state-of-the-

art tiled speculative architecture, Swarm [37, 38], to exploit

hints by sending tasks with the same hint to the same tile and

running them serially.

We then analyze how task structure affects the effectiveness

of hints (Sec. V). We find that fine-grain tasks access less data,

and more of that data is known at task creation time, making

hints more effective. Although programs with fine-grain tasks

perform more work and stress scheduler overheads, hints make

fine-grain tasks a good tradeoff by reducing memory stalls

and conflicts further. We show that certain programs can be

easily restructured to use finer-grain tasks (Sec. V), improving

performance by up to 2.7×.

Finally, while hints improve locality and reduce conflicts,

they can also cause load imbalance. We thus design a load

balancer that leverages hints to redistribute tasks across tiles in

a locality-aware fashion (Sec. VI). Unlike non-speculative load

balancers, the signals to detect imbalance are different with

speculation (e.g., tiles do not run out of tasks, but run tasks

that are likely to abort), requiring a different approach. Our

load balancer improves performance by up to a further 27%.

In summary, we present four novel contributions:978-1-5090-3508-3/16/$31.00 c© 2016 IEEE

1

• Spatial hints, a technique that conveys program knowledge

to achieve high-quality spatial task mappings.

• Simple hardware mechanisms to exploit hints by sending

tasks likely to access the same data to the same place and

running them serially.

• An analysis of the relationship between task granularity and

locality, showing that programs can often be restructured to

make hints more effective.

• A novel data-centric load-balancer that leverages hints to

redistribute tasks without hurting locality.

Together, these techniques make speculative parallelism prac-

tical on large-scale systems: at 256 cores, hints achieve near-

linear scalability on nine challenging applications, outperform

the baseline Swarm system by 3.3× gmean and by up to 16×,

and outperform a work-stealing scheduler by a wider margin.

Hints also make speculation far more efficient, reducing wasted

work by 6.4× and network traffic by 3.5× on average.

II. BACKGROUND AND MOTIVATION

We demonstrate the benefits of spatial task mapping on

Swarm [37, 38], a recent architecture for speculative paralleliza-

tion. We choose Swarm as a baseline for two key reasons. First,

Swarm’s task-based execution model is general: it supports

ordered and unordered parallelism, subsuming both TLS and

TM, and allows more ordered programs to be expressed than

TLS. This allows us to test our techniques with a broader range

of speculative programs than alternative baselines. Second,

Swarm focuses on efficiently supporting fine-grain tasks, and

includes hardware support for task creation and queuing. This

allows us to study the interplay between task granularity and

spatial hints more effectively than alternative baselines with

software schedulers, which are limited to coarse-grain tasks.

We first present Swarm’s main features (please see prior

work [37, 38] for details). We then motivate the need for spatial

task mapping through a simple example.

A. Swarm Execution Model

Swarm programs consist of timestamped tasks. Each task

may access arbitrary data, and can create child tasks with any

timestamp greater than or equal to its own. Swarm guarantees

that tasks appear to run in timestamp order. If multiple tasks

have equal timestamp, Swarm chooses an order among them.

Swarm exposes its execution model through a simple

API. Listing 1 illustrates this API by showing the Swarm

implementation of des, a discrete event simulator for digital

circuits adapted from Galois [31, 54]. Note that parallelism is

implicit—there is no synchronization or thread management.

Each task runs a function that takes a timestamp and an arbi-

trary number of additional arguments. Listing 1 defines one task

function, desTask, which simulates a signal toggling at a gate

input. Tasks can create child tasks by calling swarm::enqueue

with the appropriate task function, timestamp, and arguments.

In our example, if an input toggle causes the gate output

to toggle, desTask enqueues child tasks for all the gates

connected to this output. Finally, a program invokes Swarm

by enqueuing some initial tasks with swarm::enqueue and

void desTask(Timestamp ts, GateInput* input) {

Gate* g = input->gate();

bool toggledOutput = g.simulateToggle(input);

if (toggledOutput) {

// Toggle all inputs connected to this gate

for (GateInput* i : g->connectedInputs())

swarm::enqueue(desTask, ts + delay(g, i), i);

}

}

void main() {

[...] // Set up gates and initial values

// Enqueue events for input waveforms

for (GateInput* i : externalInputs)

swarm::enqueue(inputWaveformTask , 0, i);

swarm::run(); // Start simulation

}

Listing 1. Swarm implementation of discrete event simulation for digital
circuits.

calling swarm::run, which returns control when all tasks

finish. For example, Listing 1 enqueues a task for each input

waveform, then starts the simulation.

Swarm’s execution model supports both TLS-style ordered

speculation by choosing timestamps that reflect the serial order

as in prior work [58], and TM-style unordered speculation by

using the same timestamp for all tasks. Moreover, Swarm’s

execution model generalizes TLS by decoupling task creation

and execution orders: whereas in prior TLS schemes tasks

could only spawn speculative tasks that were immediate

successors [27, 28, 58, 66, 67], Swarm tasks can create child

tasks with any timestamp equal or higher than their own. This

allows programs to convey new work to hardware as soon

as it is discovered instead of in the order it needs to run,

exposing a large amount of parallelism for ordered irregular

applications (typical in e.g., graph analytics, simulation, and

databases [37]). While in our prior work we used Swarm for

ordered speculation only [37], here we study both ordered and

unordered speculative programs.

B. Swarm Microarchitecture

The Swarm microarchitecture uncovers parallelism by exe-

cuting tasks speculatively and out of order. To uncover enough

parallelism, Swarm can speculate thousands of tasks ahead of

the earliest active task. Swarm introduces modest changes to a

tiled, cache-coherent multicore, shown in Fig. 1. Each tile has

a group of simple cores, each with its own private L1 caches.

All cores in a tile share an L2 cache, and each tile has a slice

of a fully-shared L3 cache. Every tile is augmented with a task

unit that queues, dispatches, and commits tasks.

Swarm efficiently supports fine-grain tasks and a large

speculation window through four main mechanisms: low-over-

head hardware task management, large task queues, scalable

speculation mechanisms, and high-throughput ordered commits.

Hardware task management: Each tile’s task unit queues

runnable tasks and maintains the speculative state of finished

tasks that cannot yet commit. Swarm executes every task

except the earliest active task speculatively. To uncover enough

parallelism, task units can dispatch any available task to cores,

2

64-tile, 256-core chip

Core Core Core Core

L1I/D L1I/D L1I/D L1I/D

L2

L3 slice Router

Tile organization

Task unit
Mem / IO

M
e
m

 /
 I
O

Mem / IO

M
e
m

 / IO

Tile

Fig. 1. Swarm system and tile configuration.

no matter how distant in program order. A task can run even

if its parent is still speculative.

Each task is represented by a task descriptor that contains

its function pointer, 64-bit timestamp, and arguments. Cores

dequeue tasks for execution in timestamp order from the local

task unit. Successful dequeues initiate speculative execution

at the task’s function pointer and make the task’s timestamp

and arguments available in registers. A core stalls if there is

no task to dequeue. Tasks create child tasks and enqueue them

to other tiles.

Large task queues: The task unit has two main structures: (i) a

task queue that holds task descriptors for every task in the

tile, and (ii) a commit queue that holds the speculative state

of tasks that have finished execution but cannot yet commit.

Together, these queues implement a task-level reorder buffer.

Task and commit queues support tens of speculative tasks per

core (e.g., 64 task queue entries and 16 commit queue entries

per core) to implement a large window of speculation (e.g., 16

thousand tasks in the 256-core chip in Fig. 1). Nevertheless,

because programs can enqueue tasks with arbitrary timestamps,

task and commit queues can fill up. This requires some simple

actions to ensure correct behavior. Specifically, tasks that have

not started execution and whose parent has committed are

spilled to memory to free task queue entries. For all other tasks,

queue resource exhaustion is handled by either stalling the

enqueuer or aborting higher-timestamp tasks to free space [37].

Scalable speculation: Swarm leverages previously proposed

speculation mechanisms and enhances them to support a large

number of speculative tasks. Swarm uses eager (undo-log-

based) version management and eager conflict detection using

Bloom filters, similar to LogTM-SE [75]. Swarm forwards still-

speculative data read by a later task; on an abort, Swarm aborts

only descendants and data-dependent tasks. Swarm features

several techniques to substantially reduce the number of conflict

checks and their cost [37].

High-throughput ordered commits: Finally, Swarm adapts the

virtual time algorithm [36] to achieve high-throughput ordered

commits. Tiles communicate with an arbiter periodically (e.g.,

every 200 cycles) to discover the earliest unfinished task in the

system. All tasks that precede this earliest unfinished task can

safely commit. This scheme achieves high commit rates, up to

multiple tasks per cycle on average, which allows fine-grain

ordered tasks, as short as a few tens of cycles.

1

128

256

S
p

e
e

d
u

p

1c 128c 256c

LBHints

Hints

Random

Stealing

(a) Speedup

0.0

0.2

0.4

0.6

0.8

1.0

A
g

g
re

g
a

te
 c

o
re

 c
y
c
le

s

R S H L

Other

Stall

Abort

Commit

(b) Cycle breakdown

Fig. 2. Performance of Random, Stealing, Hints, and LBHints schedulers on
des: (a) speedup relative to 1-core Swarm, and (b) breakdown of total core
cycles at 256 cores, relative to Random.

These techniques let us study a broad range of speculative

programs and harness the benefits of fine-grain tasks for

locality-aware parallelism, but are otherwise orthogonal to

the spatial mapping techniques we present in this paper.

C. Motivation for Spatial Task Mapping

To explore the impact of spatial task mapping, we compare

the performance of the des benchmark from Listing 1 under

different schedulers. We simulate systems of up to 256 cores

as shown in Fig. 1 (see Sec. IV-A for methodology details).

We compare four schedulers:

• Random is Swarm’s default task mapping strategy. New tasks

are sent to a random tile for load balance.

• Stealing is an idealized work-stealing scheduler, the most

common scheduler in non-speculative programs [2, 10]. New

tasks are enqueued to the local tile, and tiles that run out of

tasks steal tasks from a victim tile. To evaluate stealing in the

best possible light, we do not simulate any stealing overheads:

out-of-work tiles instantaneously find the tile with the most

idle tasks and steal the earliest-timestamp task. Work-stealing

is sensitive to the stealing policies used (Sec. VII-B). We

studied a wide range of policies, both in terms of victim tile

selection (random, nearest-neighbor, most-loaded) and task

selection within a victim tile (earliest-timestamp, random,

latest-timestamp) and empirically found the selected policies

to perform best overall for our benchmarks.

• Hints is our hint-based spatial task mapping scheme.

• LBHints is our hint-based load balancer.

In des, Hints maps each gate in the simulated circuit to a

specific, statically chosen tile. New tasks are sent to the tile

where the gate they operate on is mapped (Sec. III). LBHints

enhances Hints by periodically remapping gates across tiles to

equalize their load (Sec. VI).

Two factors make spatial mapping in des possible. First,

each task operates on a single gate. Second, this gate is known

at runtime when the task is created. As we will see later, good

spatial mappings are possible even when these conditions are

not completely met (i.e., tasks access multiple pieces of data,

or some of the data they access is not known at task creation

time). Also, note that even when we know all data accesses,

speculation is still needed, as tasks can be created out of order

and executed in the wrong order.

Fig. 2a compares the performance of different schemes on

1- to 256-core systems. Each line shows the speedup relative

to a 1-core Swarm system (all schedulers are equivalent at 1

3

core). Stealing performs worst, scaling to 52× at 256 cores.

Random peaks at 144 cores, scaling to 91×, and drops to 49×
at 256 cores. Hints scales to 186×, and LBHints performs best,

with a 236× speedup at 256 cores.

Fig. 2b yields further insights into these differences. The

height of each bar in Fig. 2b is the sum of cycles spent by all

cores, normalized to the cycles of Random (lower is better).

Each bar shows the breakdown of cycles spent executing tasks

that are ultimately committed, eventually aborted, cycles stalled

on a full queue, and spent in other overheads. Most cycles

are spent running committed tasks, aborted tasks, or in queue

stalls, and trends are widely different across schemes.

Committed cycles mainly depend on locality: in the absence

of conflicts, the only difference is memory stalls. Random has

the highest committed cycles (most stalls), while Hints and

LBHints have the lowest, as gates are held in nearby private

caches. Stealing has slightly higher committed cycles, as it

often keeps tasks for nearby gates in the same tile.

Differences in aborted cycles are higher. In des, conflict

frequency depends highly on how closely tasks from different

tiles follow timestamp order. Random and LBHints keep tiles

running tasks with close-by timestamps. However, conflicts in

LBHints are local, and thus much faster, and LBHints serializes

tasks that operate on the same gate. For these reasons, LBHints

spends the fewest cycles on aborts. Hints is less balanced, so

it incurs more conflicts than LBHints. Finally, in Stealing, tiles

run tasks widely out of order, as stealing from the most loaded

tile is not a good strategy to maintain order in des (as we

will see, this is a good strategy in other cases). This causes

both significant aborts and queue stalls in Stealing, as commit

queues fill up. These effects hinder Stealing’s scalability.

Overall, these results show that hints can yield significant

gains by reducing both aborts and data movement.

III. SPATIAL TASK MAPPING WITH HINTS

We now present spatial hints, a general technique that

leverages application-level knowledge to achieve high-quality

task mappings. A hint is simply an abstract integer value,

given at task creation time, that denotes the data likely to be

accessed by a task. Hardware leverages hints to map tasks

likely to access the same data to the same location.

We present the API and ISA extensions to support hints,

describe the microarchitectural mechanisms to exploit hints,

and show how to apply hints to a wide variety of benchmarks.

A. Hint API and ISA Extensions

We extend the swarm::enqueue function (Sec. II-A) with

one field for the spatial hint:

swarm::enqueue(taskFn, timestamp , hint, args...)

This hint can take one of three values:

• A 64-bit integer value that conveys the data likely to be

accessed. The programmer is free to choose what this

integer represents (e.g., addresses, object ids, etc.). The only

guideline is that tasks likely to access the same data should

have the same hint.

• NOHINT, used when the programmer does not know what

data will be accessed.

• SAMEHINT, which assigns the parent’s hint to the child task.

Code enqueues tasks with an enqueue task instruction

that takes the function pointer, timestamp, and arguments in

registers. We employ unused bits in the instruction opcode to

represent whether the new task is tagged with an integer hint,

NOHINT, or SAMEHINT. If tagged with an integer hint, we pass

that value through another register.

B. Hardware Mechanisms

Hardware leverages hints in two ways:

1. Spatial task mapping: When a core creates a new task, the

local task unit uses the hint to determine its destination tile.

The task unit hashes the 64-bit hint down to a tile ID (e.g., 6

bits for 64 tiles), then sends the task descriptor to the selected

tile. SAMEHINT tasks are queued to the local task queue, and

NOHINT tasks are sent to a random tile.

2. Serializing conflicting tasks: Since two tasks with the same

hint are likely to conflict, we enhance the task dispatch logic to

avoid running them concurrently. Specifically, tasks carry a 16-

bit hash of their hint throughout their lifetime. By default, the

task unit selects the earliest-timestamp idle task for execution.

Instead, we check whether that candidate task’s hint hash

matches one of the already-running tasks. If there is a match

and the already-running task has an earlier timestamp, the task

unit skips the candidate and tries the idle task with the next

lowest timestamp.

Using 16-bit hashed hints instead of full hints requires less

storage and simplifies the dispatch logic. Their lower resolution

introduces a negligible false-positive match probability (6·10−5

with four cores per tile).

Overheads: These techniques add small overheads:

• 6- and 16-bit hash functions at each tile to compute the tile

ID and hashed hint.

• An extra 16 bits per task descriptor. Descriptors are sent

through the network (so hints add some traffic) and stored

in task queues. In our chosen configuration, each tile’s task

queue requires 512 extra bytes.

• Four 16-bit comparators used during task dispatch.

C. Adding Hints to Benchmarks

We add hints to a diverse set of nine benchmarks. Table I

summarizes their provenance, input sets, and the strategies

used to assign hints to each benchmark.

Seven of our benchmarks are ordered:

• bfs finds the breadth-first tree of an arbitrary graph.

• sssp uses Dijkstra’s algorithm to find the shortest-path tree

of a weighted graph.

• astar uses the A∗ pathfinding algorithm [29] to find the

shortest route between two points in a road map.

• color uses the largest-degree-first heuristic [71] to assign

distinct colors to adjacent graph vertices. This heuristic

produces high-quality results and is thus most frequently

used, but it is hard to parallelize.

4

TABLE I
BENCHMARK INFORMATION: SOURCE IMPLEMENTATIONS, INPUTS, RUN-TIMES ON A 1-CORE SWARM SYSTEM,

1-CORE SPEEDUPS OVER TUNED SERIAL IMPLEMENTATIONS, NUMBER OF TASK FUNCTIONS, AND HINT PATTERNS USED.

Source Input
Swarm 1-core Task

Hint patterns
Run-time Perf vs serial Funcs

bfs PBFS [43] hugetric-00020 [7, 17] 3.59 Bcycles −18% 1 Cache line of vertex
sssp Galois [54] East USA roads [1] 3.21 Bcycles +33% 1 Cache line of vertex

astar [37] Germany roads [52] 1.97 Bcycles +1% 1 Cache line of vertex
color [30] com-youtube [45] 1.65 Bcycles +54% 3 Cache line of vertex

des Galois [54] csaArray32 1.92 Bcycles +70% 8 Logic gate ID
nocsim GARNET [3] 16x16 mesh, tornado traffic 22.37 Bcycles +68% 10 Router ID

silo [70] TPC-C, 4 whs, 32 Ktxns 2.83 Bcycles +16% 16 (Table ID, primary key)
genome STAMP [48] -g4096 -s48 -n1048576 2.30 Bcycles +1% 10 Elem addr, map key, NO/SAMEHINT
kmeans STAMP [48] -m40 -n40 -i rnd-n16K-d24-c16 8.56 Bcycles +2% 5 Cache line of point, cluster ID

• des is a simulator for digital circuits (Listing 1).

• nocsim is a detailed network-on-chip simulator derived from

GARNET [3]. Each task simulates an event at a component

of a router.

• silo is an in-memory OLTP database [70].

bfs, sssp, astar, des, and silo are from the original Swarm

paper [37]; we develop color and nocsim by porting existing

serial implementations. In either case, applications do not

change the amount of work in the serial code. As shown in

Table I, at 1 core, Swarm outperforms tuned serial versions in

all cases except bfs, where 1-core Swarm is 18% slower.

We also port two unordered benchmarks from STAMP [48]:

• genome performs gene sequencing.

• kmeans implements K-means clustering.

We implement transactions with tasks of equal timestamp,

so that they can commit in any order. As in prior work in

transaction scheduling [5, 77] (Sec. VII), we break the original

threaded code into tasks that can be scheduled asynchronously

and generate children tasks as they find more work to do.

We observe that a few common patterns arise naturally when

adding hints to these applications. We explain each of these

patterns through a representative application.

Cache-line address: Our graph analytics applications (bfs,

sssp, astar, and color) are vertex-centric [47]: each task

operates on one vertex and visits its neighbors. For example,

Listing 2 shows the single task function of sssp. Given the

distance to the source of vertex v, the task visits each neighbor

n; if the projected distance to n is reduced, n’s distance is

updated and a new task created for n. Tasks appear to execute

in timestamp order, i.e. the projected distance to the source.

void ssspTask(Timestamp pathDist, Vertex* v) {

if (pathDist == v->distance)

for (Vertex* n : v->neighbors) {

uint64_t projected = pathDist + length(v,n);

if (projected < n->distance) {

n->distance = projected;

swarm::enqueue(ssspTask,

projected /*Timestamp*/,

cacheLine(n) /*Hint*/, n);

}

}

}

Listing 2. Hint-tagged sssp task.

Each task’s hint is the cache-line address of the vertex it visits.

Every task iterates over its vertex’s neighbor list. This incurs

two levels of indirection: one from the vertex to walk its

neighbor list, and another from each neighbor to access and

modify the neighbor’s distance. Using the line address of the

vertex lets us perform all the accesses to each neighbor list

from a single tile, improving locality; however, each distance

is accessed from different tasks, so hints do not help with those

accesses. We use cache-line addresses because several vertices

reside on the same line, allowing us to exploit spatial locality.
bfs, astar, and color have similar structure, so we also

use the visited vertex’s line address as the hint. The limiting

aspect of this strategy is that it fails to localize a large fraction

of accesses (e.g., to distance in sssp), because each task

accesses state from multiple vertices. This coarse-grain structure

is natural for software implementations (e.g., sequential and

parallel Galois sssp are written this way), but we will later

see that fine-grain versions make hints much more effective.

Object IDs: In des and nocsim each task operates on one

system component: a logic gate (Listing 1), or an NoC router

component (e.g. its VC allocator), respectively. Similar to the

graph algorithms, a task creates children tasks for its neighbors.

In contrast to graph algorithms, each task only accesses state

from its own component.
We tag simulator tasks with the gate ID and router ID,

respectively. In des, using the gate ID is equivalent to using its

line address, as each gate spans one line. Since each nocsim

task operates on a router component, using component IDs or

addresses as hints might seem appealing. However, components

within the same router create tasks (events) for each other very

often, and share state (e.g., pipeline registers) frequently. We

find it is important to keep this communication local to a tile,

which we achieve by using the coarser router IDs as hints.

Abstract unique IDs: In silo, each database transaction

consists of tens of tasks. Each task reads or updates a tuple

in a specific table. This tuple’s address is not known at task

creation time: the task must first traverse a tree to find it. Thus,

unlike in prior benchmarks, hints cannot be concrete addresses.

However, we know enough information to uniquely identify the

tuple at task creation time: its table and primary key. Therefore,

we compute the task’s hint by concatenating these values. This

way, tasks that access same tuple map to the same tile.

5

TABLE II
CONFIGURATION OF THE 256-CORE SYSTEM.

Cores
256 cores in 64 tiles (4 cores/tile), 2 GHz, x86-64 ISA;
8B-wide ifetch, 2-level bpred with 256×9-bit BHSRs +
512×2-bit PHT, single-issue, 4-entry ld/st buffers

L1 caches 16 KB, per-core, split D/I, 8-way, 2-cycle latency

L2 caches 256 KB, per-tile, 8-way, inclusive, 7-cycle latency

L3 cache
64 MB, shared, static NUCA [39] (1 MB bank/tile),
16-way, inclusive, 9-cycle bank latency

Coherence MESI, 64 B lines, in-cache directories

NoC
16×16 mesh, 128-bit links, X-Y routing, 1 cycle/hop
when going straight, 2 cycles on turns (like Tile64 [72])

Main mem 4 controllers at chip edges, 120-cycle latency

Queues
64 task queue entries/core (16384 total),
16 commit queue entries/core (4096 total)

Swarm instrs 5 cycles per enqueue/dequeue/finish task

Conflicts

2 Kbit 8-way Bloom filters, H3 hash functions [12]
Tile checks take 5 cycles (Bloom filters) + 1 cycle per
timestamp compared in the commit queue

Commits Tiles send updates to GVT arbiter every 200 cycles

Spills
Coalescers fire when a task queue is 85% full
Coalescers spill up to 15 tasks each

NOHINT and SAMEHINT: In genome, we do not know the data

that one of its transactions, T, will access when the transaction

is created. However, T spawns other transactions that access

the same data as T. Therefore, we enqueue T with NOHINT,

and its children with SAMEHINT to exploit parent-child locality.

Multiple patterns: Several benchmarks have different tasks

that require different strategies. For instance, kmeans has

two types of tasks: findCluster operates on a single point,

determining its closest cluster centroid and updating the point’s

membership; and updateCluster updates the coordinates of

the new centroid. findCluster uses the point’s cache line as

a hint, while updateCluster uses the centroid’s ID. genome

also uses a variety of patterns, as shown in Table I.

In summary, a task can be tagged with a spatial hint when

some of the data it accesses can be identified (directly or

abstractly) at task creation time. In all applications, integer

hints are either addresses or IDs. Often, we can use either; we

use whichever is easier to compute (e.g., if we already have

a pointer to the object, we use addresses; if have its ID and

would e.g., need to index into an array to find its address, we

use IDs). It may be helpful to assign a coarse hint, i.e., one

that covers more data than is accessed by the specific task,

either to exploit spatial locality when tasks share the same

cache line (e.g. sssp, kmeans), or to group tasks with frequent

communication (e.g. nocsim).

IV. EVALUATION OF SPATIAL HINTS

A. Experimental Methodology

Modeled system: We use a cycle-accurate, event-driven simula-

tor based on Pin [46, 53] to model Swarm systems of up to

256 cores, as shown in Fig. 1, with parameters in Table II. We

use detailed core, cache, network, and main memory models,

and simulate all Swarm execution overheads (e.g., running

mispeculating tasks until they abort, simulating conflict check

and rollback delays and traffic, etc.). Our configuration is

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

c
ti
o
n

 o
f

A
c
c
e

s
s
e

s

bfs
sssp

astar
color

des

nocsim silo

genome

kmeans

Multi-Hint RO

Single-Hint RO

Multi-Hint RW

Single-Hint RW

Arguments

Fig. 3. Classification of memory accesses.

similar to the 256-core Kalray MPPA [18], though with a

faster clock (the MPPA is a low-power part) and about 2× on-

chip memory (the MPPA uses a relatively old 28 nm process).

We model in-order, single-issue cores. Cores run the x86-64

ISA. We use the decoder and functional-unit latencies of zsim’s

core model, which have been validated against Nehalem [62].

Cores are scoreboarded and stall-on-use, permitting multiple

memory requests in flight.

Benchmark configuration: Table I reports the input sets used.

We compile benchmarks with gcc 6.1. All benchmarks have 1-

core run-times of over 1.6 billion cycles (Table I). Benchmarks

from the original Swarm paper use the same inputs. color

operates on a YouTube social graph [45]. nocsim simulates a

16x16 mesh with tornado traffic at a per-tile injection rate of

0.06. STAMP benchmarks use inputs between the recommended

“+” and “++” sizes, to achieve a runtime large enough to

evaluate 256-core systems, yet small enough to be simulated

in reasonable time. We fix the number of kmeans iterations to

40 for consistency across runs.

For each benchmark, we fast-forward to the start of the

parallel region (skipping initialization), and report results for

the full parallel region. We perform enough runs to achieve

95% confidence intervals ≤ 1%.

B. Effectiveness of Hints

We first perform an architecture-independent analysis to

evaluate the effectiveness of hints. We profile all the memory

accesses made by committing tasks, and use this to classify each

memory location in two dimensions: read-only vs. read-write,

and single-hint vs. multi-hint. We classify data as read-only

if, during its lifetime (from allocation to deallocation time),

it is read at least 1000 times per write (this includes data

that is initialized once, then read widely); we classify data

as single-hint if more than 90% of accesses come from tasks

of a single hint. We select fixed thresholds for simplicity, but

results are mostly insensitive to their specific values.

Fig. 3 classifies data accesses according to these categories.

Each bar shows the breakdown of accesses for one application.

We classify accesses in five types: those made to arguments,1

1Swarm passes up to three 64-bit arguments per task through registers, and
additional arguments through memory; this analysis considers both types of
arguments equally.

6

1

256

512

S
p

e
e

d
u

p

bfs

1

256

512
sssp

1

128

256
astar

1

32

64

S
p

e
e

d
u

p

color

1

128

256
des

1

128

256
nocsim

1

128

256

S
p

e
e

d
u

p

1c 128c 256c

silo

1

32

64

1c 128c 256c

genome

1

128

256

1c 128c 256c

kmeans

Hints Random Stealing

Fig. 4. Speedup of different schedulers from 1 to 256 cores, relative to a
1-core system. We simulate systems with K ×K tiles for K ≤ 8.

and those made to non-argument data of each of the four

possible types (multi-/single-hint, read-only/read-write).

Fig. 3 reveals two interesting trends. First, on all applications,

a significant fraction of read-only data is single-hint. Therefore,

we expect hints to improve cache reuse by mapping tasks that

use the same data to the same tile. All applications except

nocsim also have a significant amount of multi-hint read-only

accesses; often, these are accesses to a small amount of global

data, which caches well. Second, hint effectiveness is more

mixed for read-write data: in des, nocsim, silo, and kmeans,

most read-write data is single-hint, while multi-hint read-write

data dominates in bfs, sssp, astar, color, and genome.

Read-write data is more critical, as mapping tasks that write

the same data to the same tile not only improves locality, but

also reduces conflicts.

In summary, hints effectively localize a significant fraction

of accesses to read-only data, and, in 4 out of 9 applications,

most accesses to read-write data (fine-grain versions in Sec. V

will improve this to 8 out of 9). We now evaluate the impact

of these results on performance.

C. Comparison of Schedulers

Fig. 4 compares the scalability of the Random, Stealing, and

Hints schedulers on 1–256-core systems, similar to Fig. 2a. As

we scale the number of cores, we keep per-core L2/L3 sizes

and queue capacities constant. This captures performance per

unit area. Note that larger systems have higher queue and cache

capacities, which sometimes causes superlinear speedups.2

Overall, at 256 cores, Hints performs at least as well as

Random (astar) or outperforms it by 16% (color) to 13×

2In our prior work [37, §6.3], we analyzed the contributions of scaling
queue/cache capacities in detail; here we observe the same trends.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
g

g
re

g
a

te
 c

o
re

 c
y
c
le

s

RSH RSH RSH RSH RSH RSH RSH RSH RSH

bfs
sssp

astar
color

des

nocsim silo

genome

kmeans

1.8 4.1 4.3 1.5

Commit Abort Spill Stall Empty

(a) Breakdown of total core cycles

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
C

 d
a
ta

 t
ra

n
s
fe

rr
e
d

R S H R S H R S H R S H R S H R S H R S H R S H R S H

bfs
sssp

astar
color

des

nocsim silo

genome

kmeans

2.0
Mem accs Aborts Tasks GVT

(b) Breakdown of total NoC data transferred

Fig. 5. Breakdown of (a) core cycles and (b) NoC data transferred at 256
cores, under Random, Stealing, and Hints schedulers. Each bar is normalized
to Random’s.

(kmeans). At 256 cores, Hints scales from 39.4× (color) to

279× (bfs). Hints outperforms Random across all core counts

except on kmeans at 16–160 cores, where Hints is hampered by

imbalance (hint-based load balancing will address this). While

Hints and Random follow similar trends, Stealing’s performance

is spotty. On the one hand, Stealing is the best scheduler in

bfs and sssp, outperforming Hints by up to 65%. On the other

hand, Stealing is the worst scheduler in most other ordered

benchmarks, and tracks Random on unordered ones.

Fig. 5 gives more insight into these results by showing core

cycle and network traffic breakdowns at 256 cores. Each bar

of Fig. 5a shows the breakdown of cycles spent (i) running

tasks that are ultimately committed, (ii) running tasks that are

later aborted, (iii) spilling tasks from the hardware task queues,

(iv) stalled on a full task or commit queue, or (v) stalled due

to lack of tasks. Each bar of Fig. 5b shows the breakdown of

data transferred over the NoC (in total flits injected), including

(i) memory accesses (between L2s and LLC, or LLC and main

memory), (ii) abort traffic (including child abort messages and

rollback memory accesses), (iii) tasks enqueued to remote tiles,

and (iv) GVT updates (for commits). In both cases, results

are relative to Random’s. We first compare Hints and Random,

then discuss Stealing.

Hints vs. Random: Beyond outperforming Random, Hints also

improves efficiency, substantially reducing cycles wasted to

aborted tasks and network traffic. Performance and efficiency

7

gains are highly dependent on the fraction of accesses to single-

hint data (Sec. IV-B).

In graph analytics benchmarks, Hints achieves negligible

(astar) to moderate improvements (bfs, sssp, color). bfs,

sssp, and color have a substantial number of single-hint read-

only accesses. These accesses cache well, reducing memory

stalls. This results in a lower number of committed-task cycles

and lower network traffic. However, cycles wasted on aborted

tasks barely change, because nearly all accesses to contentious

read-write data are multi-hint. In short, improvements in

these benchmarks stem from locality of single-hint read-only

accesses; since these are infrequent in astar, Hints barely

improves its performance.

In des, nocsim, and silo, Hints significantly outperforms

Random, from 1.4× (silo) to 3.8× (des). In these bench-

marks, many read-only and most read-write accesses are to

single-hint data. As in graph analytics benchmarks, Hints

reduces committed cycles and network traffic. Moreover,

aborted cycles and network traffic drop dramatically, by up to

6× and 7× (des), respectively. With Hints, these benchmarks

are moderately limited by load imbalance, which manifests as

stalls in nocsim and aborts caused by running too far-ahead

tasks in des and silo.

Hints has the largest impact on the two unordered bench-

marks, genome and kmeans. It outperforms Random by up

to 13× and reduces network traffic by up to 32× (kmeans).

For kmeans, these gains arise because Hints localizes and

serializes all single-hint read-write accesses to the small amount

of highly-contended data (the K cluster centroids). However,

co-locating the many accessor tasks of one centroid to one tile

causes imbalance. This manifests in two ways: (i) Random

outperforms Hints from 16–160 cores in Fig. 4, and (ii) empty

stalls are the remaining overhead at 256 cores. Hint-based

load balancing addresses this problem (Sec. VI). In contrast

to kmeans, genome has both single- and multi-hint read-write

data, but Hints virtually eliminates aborts. Accesses to multi-

hint read-write data rarely contend, while accesses to single-hint

read-write data are far more contentious. Beyond 64 cores, both

schedulers approach the limit of concurrency, dominated by an

application phase with low parallelism; this phase manifests

as empty cycles in Fig. 5a.

Stealing: Stealing shows disparate performance across bench-

marks, despite careful tuning and idealizations (Sec. II-C).

Stealing suffers from two main pathologies. First, Stealing

often fails to keep tiles running tasks of roughly similar

timestamps, which hurts several ordered benchmarks. Second,

when few tasks are available, Stealing moves tasks across tiles

too aggressively, which hurts the unordered benchmarks.

Interestingly, although they are ordered, bfs and sssp

perform best under Stealing. Because most visited vertices

expand the fringe of vertices to visit, Stealing manages to

keep tiles balanced with relatively few steals, and keeps most

tasks for neighboring nodes in the same tile. Because each

task accesses a vertex and its neighbors (Listing 2), Stealing

enjoys good locality, achieving the lowest committed cycles and

network traffic. bfs and sssp tolerate Stealing’s looser cross-

tile order well, so Stealing outperforms the other schedulers.

Stealing performs poorly in other ordered benchmarks. This

happens because stealing the earliest task from the most loaded

tile is insufficient to keep all tiles running tasks with close-by

timestamps. Instead, some tiles run tasks that are too far ahead

in program order. In astar and color, this causes a large

increase in commit queue stalls, which dominate execution. In

des and silo, this causes both commit queue stalls and aborts,

as tasks that run too early mispeculate frequently. nocsim also

suffers from commit queue stalls and aborts, but to a smaller

degree, so Stealing outperforms Random but underperforms

Hints at 256 cores.

By contrast, genome and kmeans are unordered, so they

do not suffer from Stealing’s loose cross-tile order. Stealing

tracks Random’s performance up to 64 cores. However, these

applications have few tasks per tile at large core counts, and

Stealing underperforms Random because it rebalances tasks

too aggressively. In particular, it sometimes steals tasks that

have already run, but have aborted. Rerunning these aborted

tasks at the same tile, as Random does, incurs fewer misses,

as the tasks have already built up locality at the tile.

V. IMPROVING LOCALITY AND PARALLELISM

WITH FINE-GRAIN TASKS

We now analyze the relationship between task granularity

and hint effectiveness. We show that programs can often be

restructured to use finer-grain tasks, which make hints more

effective.

For example, consider the coarse-grained implementation of

sssp in Listing 2. This implementation causes vertex distances

to be read and written from multiple tasks, which renders hints

ineffective for read-write data. Instead, Listing 3 shows an

equivalent version of sssp where each task operates on the

data (distance and neighbor list) of a single node.

void ssspTaskFG(Timestamp pathDist, Vertex* v) {

if (v->distance == UNSET) {

v->distance = pathDist;

for (Vertex* n : v->neighbors)

swarm::enqueue(ssspTaskFG ,

pathDist + length(v,n) /*Timestamp*/,

cacheLine(n) /*Hint*/, n);

}

}

Listing 3. Fine-grain sssp implementation.

Instead of setting the distances of all its neighbors, this task

launches one child task per neighbor. Each task accesses its

own distance. This transformation generates substantially more

tasks, as each vertex is often visited multiple times. In a serial

or parallel version with software scheduling, the coarse-grain

approach is more efficient, as a memory access is cheaper than

creating additional tasks. But in large multicores with hardware

scheduling, this tradeoff reverses: sending a task across the

chip is cheaper than incurring global conflicts and serialization.

We have also adapted three other benchmarks with significant

multi-hint read-write accesses. bfs and astar follow a similar

approach to sssp. In color, each task operates on a vertex,

8

0.0

0.5

1.0

1.5

2.0

2.5
F

ra
c
ti
o

n
 o

f
A

c
c
e

s
s
e

s

CG FG CG FG CG FG CG FG
bfs sssp astar color

4.6

Multi-Hint RO

Single-Hint RO

Multi-Hint RW

Single-Hint RW

Arguments

Fig. 6. Classification of memory accesses for coarse-grain (CG) and fine-grain
(FG) versions.

reads from all neighboring vertices, and updates its own; our

fine-grain version splits this operation into four types of tasks,

each of which reads or writes at most one vertex.
We do not consider finer-grain versions of des, nocsim,

silo, or kmeans because they already have negligible multi-

hint read-write accesses, and it is not clear how to make

their tasks smaller. We believe a finer-grain genome would be

beneficial, but this would require turning it into an ordered

program to be able to break transactions into smaller tasks

while retaining atomicity [37].

Tradeoffs: In general, fine-grain tasks yield two benefits: (i)

improved parallelism, and, (ii) with hints, improved locality

and reduced conflicts. However, fine-grain tasks also introduce

two sources of overhead: (i) additional work (e.g., when a

coarse-grain task is broken into multiple tasks, several fine-

grain tasks may need to read or compute the same data), and

(ii) more pressure on the scheduler.

Effectiveness of Hints: Fig. 6 compares the memory accesses

of coarse-grain (CG) and fine-grain (FG) versions. Fig. 6 is

similar to Fig. 3, but bars are normalized to the CG version,

so the height of each FG bar denotes how many more accesses

it makes. Fig. 6 shows that FG versions make hints much

more effective: virtually all accesses to read-write data become

single-hint, and more read-only accesses become single-hint.

Nevertheless, this comes at the expense of extra accesses (and

work): from 8% more accesses in sssp, to 4.6× more in color

(2.6× discounting arguments).

A. Evaluation

Fig. 7 compares the scalability of CG and FG versions under

the three schedulers. Speedups are relative to the CG versions

at one core. Fig. 8 shows cycle and network traffic breakdowns,

with results normalized to CG under Random (as in Fig. 5).

Overall, FG versions improve Hints uniformly, while they have

mixed results with Random and Stealing.
In bfs and sssp, FG versions improve scalability and reduce

data movement, compensating for their moderate increase

in work. Fig. 8a shows that Hints improve locality (fewer

committed cycles) and reduce aborts. As a result, FG versions

under Hints incur much lower traffic (Fig. 8b), up to 4.8×
lower than CG under Hints and 7.7× lower than CG under

Random in sssp.
astar’s FG version does not outperform CG: though it

reduces aborts, the smaller tasks stress commit queues more,

1

256

512

S
p

e
e

d
u

p

bfs

1

256

512
sssp

1

128

256

S
p

e
e

d
u

p

1c 128c 256c

astar

1

64

128

1c 128c 256c

color

FG Hints

FG Random

FG Stealing

CG Hints

CG Random

CG Stealing

Fig. 7. Speedup of fine-grain (FG) and coarse-grain (CG) versions, relative
to CG versions on a 1-core system.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

A
g

g
re

g
a

te
 c

o
re

 c
y
c
le

s
R S H R S H R S H R S H

bfs sssp astar color

2.4 7.1

Empty

Stall

Spill

Abort

Commit

(a) Breakdown of total core cycles

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o

C
 d

a
ta

 t
ra

n
s
fe

rr
e

d

R S H R S H R S H R S H

bfs sssp astar color

GVT

Tasks

Aborts

Mem accs

(b) Breakdown of total NoC data transferred

Fig. 8. Breakdown of (a) core cycles and (b) NoC data transferred in fine-
grain versions at 256 cores, under Random, Stealing, and Hints. Each bar is
normalized to the coarse-grain version under Random (as in Fig. 5).

increasing stalls (Fig. 8a). Nonetheless, FG improves efficiency

and reduces traffic by 61% over CG under Hints (Fig. 8b).

color’s FG version performs significantly more work than

CG, which is faster below 64 cores. Beyond 64 cores, however,

FG reduces aborts dramatically (Fig. 8a), outperforming CG

under Hints by 93%.

Finally, comparing the relative contributions of tasks sent in

Fig. 8b vs. Fig. 5b shows that, although the amount of task

data transferred across tiles becomes significant, the reduction

of memory access traffic more than offsets this scheduling

overhead.

In summary, fine-grain versions substantially improve the

performance and efficiency of Hints. This is not always the

case for Random or Stealing, as they do not exploit the locality

benefits of fine-grain tasks.

9

VI. DATA-CENTRIC LOAD-BALANCING

While hint-based task mapping improves locality and reduces

conflicts, it may cause load imbalance. For example, in nocsim,

routers in the middle of the simulated mesh handle more traffic

than edge routers, so more tasks operate on them, and their tiles

become overloaded. We address this problem by dynamically

remapping hints across tiles to equalize their load.
We have designed a new load balancer because non-spec-

ulative ones work poorly. For example, applying stealing to hint-

based task mapping hurts performance. The key reason is that

load is hard to measure: non-speculative schemes use queued

tasks as a proxy for load, but with speculation, underloaded

tiles often do not run out of tasks—rather, they run too far

ahead and suffer more frequent aborts or full-queue stalls.
Instead, we have found that the number of committed cycles

is a better proxy for load. Therefore, our load balancer remaps

hints across tiles to balance their committed cycles per unit

time. Our design has three components:

1. Configurable hint-to-tile mapping with buckets: Instead of

hashing a hint to produce a tile ID directly, we introduce a

reconfigurable level of indirection. As shown in Fig. 9(a), when

a new task is created, the task unit hashes its hint to produce

a bucket, which it uses to index into a tile map and obtain the

destination tile’s ID, to which it sends the task.
The tile map is a table that stores one tile ID for every

bucket. To achieve fine-enough granularity, the number of

buckets should be larger than the number of tiles. We find 16

buckets/tile works well, so at 256 cores (64 tiles) we use a 1024-

bucket tile map. Each tile needs a fixed 10-bit hint-to-bucket

hash function and a 1024×6-bit tile map (768 bytes).
We periodically reconfigure the tile map to balance load.

The mapping is static between reconfigurations, allowing tasks

to build locality at a particular tile.

2. Profiling committed cycles per bucket: Accurate reconfigu-

rations require profiling the distribution of committed cycles

across buckets. Each tile profiles cycles locally, using three

modifications shown in Fig. 9(b). First, like the hashed hint

(Sec. III-B), tasks carry their bucket value throughout their

lifetime. Second, when a task finishes execution, the task unit

records the number of cycles it took to run. Third, if the task

commits, the tile adds its cycles to the appropriate entry of the

per-bucket committed cycle counters.
A naive design would require each tile to have as many

committed cycle counters as buckets (e.g., 1024 at 256 cores).

However, each tile only executes tasks from the buckets that

map to it; this number of mapped buckets is 16 per tile on

average. We implement the committed cycle counters as a

tagged structure with enough counters to sample 2× this

average (i.e., 32 counters in our implementation). Overall,

profiling hardware takes ∼600 bytes per tile.

3. Reconfigurations: Initially, the tile map divides buckets

uniformly among tiles. Periodically (every 500 Kcycles in our

implementation), a core reads the per-bucket committed cycle

counters from all tiles and uses them to update the tile map,

which it sends to all tiles.

Commit

Queue
Task

Cycles Committed tasks

32 x 32 bits

1 7 1 … 61 63 63

H

Hint

Tile Map 2

Tile ID

0xF00

Bucket

Bucket

Cycle

Counters

Finished tasks

+

16 bits

(a) Configurable tile map (b) Profiling committed cycles

Fig. 9. Hardware modifications of hint-based load balancer.

The reconfiguration algorithm is straightforward. It computes

the total committed cycles per tile, and sorts tiles from least to

most loaded. It then greedily donates buckets from overloaded

to underloaded tiles. To avoid oscillations, the load balancer

does not seek to completely equalize load at once. Rather, an

underloaded tile can only reduce its deficit (difference from

the average load) by a fraction f (80% in our implementation).

Similarly, an overloaded tile can only reduce its surplus by a

fraction f . Reconfigurations are infrequent, and the software

handler completes them in ∼50 Kcycles (0.04% of core cycles

at 256 cores).

A. Evaluation

Fig. 10 reports the scalability of applications with our

hint-based load balancer, denoted LBHints. LBHints improves

performance on four applications, and neither helps nor hurts

performance on the other five.

In des, LBHints outperforms Hints by 27%, scaling to 236×.

As described in Sec. II-C, in des load imbalance causes aborts

as some tiles run too far ahead; LBHints’s gains come from

1

256

512

S
p

e
e

d
u

p

bfs

1

256

512
sssp

1

128

256
astar

1

64

128

S
p

e
e

d
u

p

color

1

128

256
des

1

256

512
nocsim

1

128

256

S
p

e
e

d
u

p

1c 128c 256c

silo

1

64

128

1c 128c 256c

genome

1

128

256

1c 128c 256c

kmeans

LBHints Hints Random Stealing

Fig. 10. Speedup of Random, Stealing, Hints, and LBHints schedulers from
1 to 256 cores, relative to a 1-core system. For applications with coarse- and
fine-grain versions, we report the best-performing version for each scheme.

10

0.0

0.2

0.4

0.6

0.8

1.0
A

g
g
re

g
a
te

 c
o
re

 c
y
c
le

s

R S H L R S H L R S H L R S H L

des nocsim silo kmeans

4.3 1.3

Empty

Stall

Spill

Abort

Commit

Fig. 11. Breakdown of total core cycles at 256 cores under Random, Stealing,
Hints, and LBHints.

reducing aborts, as shown in Fig. 11. In nocsim, LBHints

outperforms Hints by 27%, scaling to 325×, and in kmeans,

LBHints outperforms Hints by 17%, scaling to 192×. These

gains come from reducing empty stalls, commit queue stalls,

and aborts. Finally, LBHints improves silo by a modest 1.5%

at 256 cores, and by 18% at 144 cores. In all cases, LBHints

does not sacrifice locality (same committed cycles as Hints)

and yields smooth speedups.

Finally, we also evaluated using other signals as a proxy for

load in the hint-based load balancer. Using the number of idle

tasks in each tile to estimate load performs significantly worse

than LBHints. At 256 cores, this variant improves performance

over Hints by 12% on nocsim and 2% on silo, and degrades

performance by 9% on des and 1.2% on kmeans. This happens

because balancing the number of idle tasks does not always

balance the amount of useful work across tiles.

B. Putting It All Together

Together, the techniques we have presented make speculative

parallelism practical at large core counts. Across our nine

applications, Random achieves 58× gmean speedup at 256

cores; Hints achieves 146×; with the fine-grain versions from

Sec. V instead of their coarse-grain counterparts, Hints scales

to 179× (while Random scales to 62× only); and LBHints

scales to 193× gmean.3

VII. RELATED WORK

A. Scheduling in Speculative Parallelism

Speculative execution models have seen relatively little

attention with regards to optimizing locality.

Ordered parallelism: Thread-Level Speculation (TLS) schemes

dispatch tasks to threads as they become available, without

concern for locality [24, 27, 57, 58, 66, 68]. TLS schemes

targeted systems with few cores, but cache misses hinder TLS

scalability even at small scales [23].

Unordered parallelism: TM programs are commonly structured

as threads that execute a fixed sequence of transactions [13,

28, 49]. Prior work has observed that it is often beneficial

to structure code as a collection of transactional tasks, and

schedule them across threads using a variety of hardware and

software techniques [5, 6, 8, 9, 19, 21, 61, 77]. Prior trans-

actional schedulers focus on limiting concurrency, not spatial

3The corresponding harmonic-mean speedups are 25× for Random, 117×
for Hints, 146× for Hints with fine-grained versions, and 154× for LBHints.

task mapping. These schemes are either reactive or predictive.

ATS [77], CAR-STM [20], and Steal-on-Abort [5] serialize

aborted transactions after the transaction they conflicted with,

avoiding repeated conflicts. PTS [8], BFGTS [9], Shrink [21],

and HARP [6] instead predict conflicts by observing the read-

and write-sets of prior transactions, and serialize transactions

that are predicted to conflict. Unlike predictive schemes, we

avoid conflicts by leveraging program hints. Hints reduce

conflicts more effectively than prior predictive schedulers, and

require much simpler hardware. Moreover, unlike prior trans-

actional schedulers, our approach does not rely on centralized

scheduling structures or frequent broadcasts, so it scales to

hundreds of cores.

A limitation of our approach vs. predictive transaction

schedulers is that programmers must specify hints. We have

shown that it is easy to provide accurate hints. It may be

possible to automate this process, e.g. through static analysis

or profile-guided optimization; we defer this to future work.

Data partitioning: Kulkarni et al. [41] propose a software

speculative runtime that exploits partitioning to improve locality.

Data structures are statically divided into a few coarse partitions,

and partitions are assigned to cores. The runtime maps tasks that

operate on a particular partition to its assigned core, and reduces

overheads by synchronizing at partition granularity. Schism [16]

applies a similar approach to transactional databases. These

techniques work well only when data structures can be easily

divided into partitions that are both balanced and capture

most parent-child task relations, so that most enqueues do

not leave the partition. Many algorithms do not meet these

conditions. While we show that simple hint assignments

that do not rely on careful static partitioning work well,

more sophisticated mappings may help some applications. For

example, in des, mapping adjacent gates to nearby tiles may

reduce communication, at the expense of complicating load

balancing. We leave this exploration to future work.

Distributed transactional memory: Prior work has proposed

STMs for distributed systems [11, 32, 60]. Some of these

schemes, like ClusterSTM [11], allow migrating a transaction

across machines instead of fetching remotely-accessed data.

However, their interface is more onerous than hints: in Clus-

terSTM, programmers must know exactly how data is laid out

across machines, and must manually migrate transactions across

specific processors. Moreover, these techniques are dominated

by the high cost of remote accesses and migrations [11], so

load balancing is not an issue.

B. Scheduling in Non-Speculative Parallelism

In contrast to speculative models, prior work for non-

speculative parallelism has developed many techniques to

improve locality, often tailored to specific program traits [2,

4, 10, 15, 33, 50, 65, 74, 76]. Work-stealing [2, 10] is the

most widely used technique. Work-stealing attempts to keep

parent and child tasks together, which is near-optimal for divide-

and-conquer algorithms, and as we have seen, minimizes data

movement in some benchmarks (e.g., bfs and sssp in Sec. IV).

11

Due to its low overheads, work-stealing is the foundation

of most parallel runtimes [22, 34, 40], which extend it to

improve locality by stealing from nearby cores or limiting the

footprint of tasks [2, 26, 63, 76], or to implement priorities [44,

51, 63]. Prior work within the Galois project [31, 44, 54]

has found that irregular programs (including software-parallel

versions of several of our benchmarks) are highly sensitive to

scheduling overheads and policies, and has proposed techniques

to synthesize adequate schedulers [51, 55]. Likewise, we find

that work-stealing is sensitive to the specific policies it uses.

In contrast to these schemes, we have shown that a simple

hardware task scheduling policy can provide robust, high

performance across a wide range of benchmarks. Hints enable

high-quality spatial mappings and produce a balanced work

distribution. Hardware task scheduling makes hints practical.

Whereas a software scheduler would spend hundreds of cycles

per remote enqueue on memory stalls and synchronization,

a hardware scheduler can send short tasks asynchronously,

incurring very low overheads on tasks as small as few tens

of instructions. Prior work has also investigated hardware-

accelerated scheduling, but has done so in the context of work-

stealing [42, 64] and domain-specific schedulers [25, 73].

VIII. CONCLUSION

We have presented spatial hints, a general technique that

leverages application-level knowledge to achieve high-quality

spatial task mappings in speculative programs. A hint is an

abstract value, given at task creation time, that denotes the data

likely to be accessed by a task. We have enhanced Swarm, a

state-of-the-art speculative architecture, to exploit hints by (i)

running tasks likely to access the same data on the same tile,

(ii) serializing tasks likely to access the same data, and (iii)

balancing work across tiles in a locality-aware fashion. We

have also studied the relationship between task granularity and

locality, and shown that programs can often be restructured to

use finer-grain tasks to make hints more effective.

Together, these techniques make speculative parallelism

practical on large-scale systems: at 256 cores, the baseline

Swarm system accelerates nine challenging applications by

5–180× (gmean 58×). With our techniques, speedups increase

to 64–561× (gmean 193×). Beyond improving gmean perfor-

mance by 3.3×, our techniques make speculation more efficient,

reducing aborted cycles by 6.4× and network traffic by 3.5×
on average.

ACKNOWLEDGMENTS

We sincerely thank Nathan Beckmann, Harshad Kasture,

Po-An Tsai, Guowei Zhang, Anurag Mukkara, Li-Shiuan Peh,

Virginia Chiu, Yee Ling Gan, and the anonymous reviewers for

their helpful feedback. William Hasenplaugh and Chia-Hsin

Chen graciously shared the serial code for the color [30]

and nocsim benchmarks. This work was supported in part by

C-FAR, one of six SRC STARnet centers by MARCO and

DARPA, and by NSF grants CAREER-1452994 and CCF-

1318384. Mark Jeffrey was partially supported by an NSERC

postgraduate scholarship.

REFERENCES

[1] “9th DIMACS Implementation Challenge: Shortest Paths,” 2006.
[2] U. A. Acar, G. E. Blelloch, and R. D. Blumofe, “The data locality of

work stealing,” in SPAA, 2000.
[3] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GARNET: A detailed

on-chip network model inside a full-system simulator,” in ISPASS, 2009.
[4] S. Agarwal, R. Barik, D. Bonachea, V. Sarkar, R. K. Shyamasundar,

and K. Yelick, “Deadlock-free scheduling of X10 computations with
bounded resources,” in SPAA, 2007.

[5] M. Ansari, M. Luján, C. Kotselidis, K. Jarvis, C. Kirkham, and I. Watson,
“Steal-on-abort: Improving transactional memory performance through
dynamic transaction reordering,” in HiPEAC, 2009.

[6] A. Armejach, A. Negi, A. Cristal, O. Unsal, P. Stenstrom, and T. Harris,
“HARP: Adaptive abort recurrence prediction for hardware transactional
memory,” in HiPC-20, 2013.

[7] D. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, Eds., 10th DIMACS

Implementation Challenge Workshop, 2012.
[8] G. Blake, R. G. Dreslinski, and T. Mudge, “Proactive transaction

scheduling for contention management,” in MICRO-42, 2009.
[9] G. Blake, R. G. Dreslinski, and T. Mudge, “Bloom filter guided

transaction scheduling,” in MICRO-44, 2011.
[10] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded compu-

tations by work stealing,” J. ACM, vol. 46, no. 5, 1999.
[11] R. L. Bocchino, V. S. Adve, and B. L. Chamberlain, “Software

transactional memory for large scale clusters,” in PPoPP, 2008.
[12] J. Carter and M. Wegman, “Universal classes of hash functions (extended

abstract),” in STOC-9, 1977.
[13] L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval, “Bulk disambiguation of

speculative threads in multiprocessors,” in ISCA-33, 2006.
[14] H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald, C. C. Minh, W. Baek,

C. Kozyrakis, and K. Olukotun, “A scalable, non-blocking approach to
transactional memory,” in HPCA-13, 2007.

[15] S. Chen, P. B. Gibbons, M. Kozuch, V. Liaskovitis, A. Ailamaki, G. E.
Blelloch, B. Falsafi, L. Fix, N. Hardavellas et al., “Scheduling threads
for constructive cache sharing on CMPs,” in SPAA, 2007.

[16] C. Curino, E. Jones, Y. Zhang, and S. Madden, “Schism: a workload-
driven approach to database replication and partitioning,” VLDB, 2010.

[17] T. Davis and Y. Hu, “The University of Florida sparse matrix collection,”
ACM TOMS, vol. 38, no. 1, 2011.

[18] B. D. de Dinechin, R. Ayrignac, P.-E. Beaucamps, P. Couvert, B. Ganne,
P. G. de Massas, F. Jacquet, S. Jones, N. M. Chaisemartin et al., “A
clustered manycore processor architecture for embedded and accelerated
applications,” in HPEC, 2013.

[19] N. Diegues, P. Romano, and S. Garbatov, “Seer: Probabilistic Scheduling
for Hardware Transactional Memory,” in SPAA, 2015.

[20] S. Dolev, D. Hendler, and A. Suissa, “CAR-STM: scheduling-based
collision avoidance and resolution for software transactional memory,”
in PODC-27, 2008.

[21] A. Dragojević, R. Guerraoui, A. Singh, and V. Singh, “Preventing versus
curing: avoiding conflicts in transactional memories,” in PODC-28, 2009.

[22] A. Duran, J. Corbalán, and E. Ayguadé, “Evaluation of OpenMP task
scheduling strategies,” in IWOMP-4, 2008.

[23] S. L. Fung and J. G. Steffan, “Improving cache locality for thread-level
speculation,” in IPDPS, 2006.

[24] M. J. Garzarán, M. Prvulovic, J. M. Llaberı́a, V. Viñals, L. Rauchwerger,
and J. Torrellas, “Tradeoffs in buffering speculative memory state for
thread-level speculation in multiprocessors,” in HPCA-9, 2003.

[25] J. P. Grossman, J. S. Kuskin, J. A. Bank, M. Theobald, R. O. Dror, D. J.
Ierardi, R. H. Larson, U. B. Schafer, B. Towles et al., “Hardware support
for fine-grained event-driven computation in Anton 2,” in ASPLOS-XVIII,
2013.

[26] Y. Guo, J. Zhao, V. Cave, and V. Sarkar, “SLAW: A scalable locality-
aware adaptive work-stealing scheduler,” in IPDPS, 2010.

[27] L. Hammond, M. Willey, and K. Olukotun, “Data speculation support
for a chip multiprocessor,” in ASPLOS-VIII, 1998.

[28] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun,
“Transactional memory coherence and consistency,” in ISCA-31, 2004.

[29] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cybernetics,
vol. 4, no. 2, 1968.

[30] W. Hasenplaugh, T. Kaler, T. B. Schardl, and C. E. Leiserson, “Ordering
heuristics for parallel graph coloring,” in SPAA, 2014.

12

[31] M. A. Hassaan, M. Burtscher, and K. Pingali, “Ordered vs. unordered: a
comparison of parallelism and work-efficiency in irregular algorithms,”
in PPoPP, 2011.

[32] M. Herlihy and Y. Sun, “Distributed transactional memory for metric-
space networks,” in Distributed Computing, 2005.

[33] B. Holt, P. Briggs, L. Ceze, and M. Oskin, “Alembic: automatic locality
extraction via migration,” in OOPSLA, 2014.

[34] Intel TBB, “http://www.threadingbuildingblocks.org.”
[35] S. Jafri, G. Voskuilen, and T. Vijaykumar, “Wait-n-GoTM: improving

HTM performance by serializing cyclic dependencies,” in ASPLOS-XVIII,
2013.

[36] D. Jefferson, “Virtual time,” ACM TOPLAS, vol. 7, no. 3, 1985.
[37] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer, and D. Sanchez, “A

Scalable Architecture for Ordered Parallelism,” in MICRO-48, 2015.
[38] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer, and D. Sanchez,

“Unlocking Ordered Parallelism with the Swarm Architecture,” IEEE

Micro, vol. 36, no. 3, 2016.
[39] C. Kim, D. Burger, and S. Keckler, “An adaptive, non-uniform cache

structure for wire-delay dominated on-chip caches,” in ASPLOS-X, 2002.
[40] M. Kulkarni, P. Carribault, K. Pingali, G. Ramanarayanan, B. Walter,

K. Bala, and L. P. Chew, “Scheduling strategies for optimistic parallel
execution of irregular programs,” in SPAA, 2008.

[41] M. Kulkarni, K. Pingali, G. Ramanarayanan, B. Walter, K. Bala, and
L. P. Chew, “Optimistic parallelism benefits from data partitioning,” in
ASPLOS-XIII, 2008.

[42] S. Kumar, C. Hughes, and A. Nguyen, “Carbon: architectural support
for fine-grained parallelism on chip multiprocessors,” in ISCA-34, 2007.

[43] C. Leiserson and T. Schardl, “A work-efficient parallel breadth-first
search algorithm,” in SPAA, 2010.

[44] A. Lenharth, D. Nguyen, and K. Pingali, “Priority queues are not good
concurrent priority schedulers,” in Euro-Par, 2015.

[45] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, jun 2014.

[46] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood, “Pin: building customized program
analysis tools with dynamic instrumentation,” in PLDI, 2005.

[47] R. R. McCune, T. Weninger, and G. Madey, “Thinking like a vertex:
A survey of vertex-centric frameworks for large-scale distributed graph
processing,” ACM Computing Surveys, vol. 48, no. 2, 2015.

[48] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP: Stanford
Transactional Applications for Multi-Processing,” in IISWC, 2008.

[49] K. Moore, J. Bobba, M. Moravan, M. Hill, and D. Wood, “LogTM:
Log-based transactional memory,” in HPCA-12, 2006.

[50] J. E. Nelson, “Latency-Tolerant Distributed Shared Memory For Data-
Intensive Applications,” Ph.D. dissertation, 2015.

[51] D. Nguyen and K. Pingali, “Synthesizing concurrent schedulers for
irregular algorithms,” in ASPLOS-XVI, 2011.

[52] OpenStreetMap, “http://www.openstreetmap.org.”
[53] H. Pan, K. Asanović, R. Cohn, and C.-K. Luk, “Controlling program

execution through binary instrumentation,” SIGARCH Comput. Archit.

News, vol. 33, no. 5, 2005.
[54] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan,

R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich et al., “The tao of
parallelism in algorithms,” in PLDI, 2011.

[55] D. Prountzos, R. Manevich, and K. Pingali, “Synthesizing parallel graph
programs via automated planning,” in PLDI, 2015.

[56] X. Qian, W. Ahn, and J. Torrellas, “ScalableBulk: Scalable cache
coherence for atomic blocks in a lazy environment,” in MICRO-43,
2010.

[57] J. Renau, K. Strauss, L. Ceze, W. Liu, S. Sarangi, J. Tuck, and J. Torrellas,
“Thread-level speculation on a CMP can be energy efficient,” in ICS’05,
2005.

[58] J. Renau, J. Tuck, W. Liu, L. Ceze, K. Strauss, and J. Torrellas, “Tasking
with out-of-order spawn in TLS chip multiprocessors: microarchitecture
and compilation,” in ICS’05, 2005.

[59] C. J. Rossbach, O. S. Hofmann, and E. Witchel, “Is transactional
programming actually easier?” in PPoPP, 2010.

[60] M. M. Saad and B. Ravindran, “Hyflow: A high performance distributed
software transactional memory framework,” in HPDC-20, 2011.

[61] D. Sainz and H. Attiya, “RELSTM: A proactive transactional memory
scheduler,” in TRANSACT, 2013.

[62] D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate Microarchitec-
tural Simulation of Thousand-Core Systems,” in ISCA-40, 2013.

[63] D. Sanchez, D. Lo, R. M. Yoo, J. Sugerman, and C. Kozyrakis, “Dynamic
Fine-Grain Scheduling of Pipeline Parallelism,” in PACT-20, 2011.

[64] D. Sanchez, R. Yoo, and C. Kozyrakis, “Flexible architectural support
for fine-grain scheduling,” in ASPLOS-XV, 2010.

[65] H. Simhadri, G. Blelloch, J. Fineman, P. Gibbons, and A. Kyrola,
“Experimental analysis of space-bounded schedulers,” in SPAA, 2014.

[66] G. Sohi, S. Breach, and T. Vijaykumar, “Multiscalar processors,” in
ISCA-22, 1995.

[67] J. G. Steffan, C. Colohan, A. Zhai, and T. Mowry, “A scalable approach
to thread-level speculation,” in ISCA-27, 2000.

[68] J. G. Steffan and T. Mowry, “The potential for using thread-level data
speculation to facilitate automatic parallelization,” in HPCA-4, 1998.

[69] J. Sugerman, K. Fatahalian, S. Boulos, K. Akeley, and P. Hanrahan,
“GRAMPS: A programming model for graphics pipelines,” ACM Trans.

Graph., vol. 28, no. 1, 2009.

[70] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden, “Speedy
transactions in multicore in-memory databases,” in SOSP-24, 2013.

[71] D. J. Welsh and M. B. Powell, “An upper bound for the chromatic
number of a graph and its application to timetabling problems,” The

Computer Journal, vol. 10, no. 1, 1967.

[72] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. F. Brown III, and A. Agarwal, “On-chip
interconnection architecture of the tile processor,” IEEE Micro, no. 5,
2007.

[73] C. Wittenbrink, E. Kilgariff, and A. Prabhu, “Fermi GF100 GPU
architecture,” IEEE Micro, vol. 31, no. 2, 2011.

[74] K. Yelick, D. Bonachea, W.-Y. Chen, P. Colella, K. Datta, J. Duell, S. L.
Graham, P. Hargrove, P. Hilfinger et al., “Productivity and performance
using partitioned global address space languages,” in PASCO, 2007.

[75] L. Yen, J. Bobba, M. Marty, K. Moore, H. Volos, M. Hill, M. Swift,
and D. Wood, “LogTM-SE: Decoupling hardware transactional memory
from caches,” in HPCA-13, 2007.

[76] R. M. Yoo, C. J. Hughes, C. Kim, Y.-K. Chen, and C. Kozyrakis,
“Locality-aware task management for unstructured parallelism: A quanti-
tative limit study,” in SPAA, 2013.

[77] R. M. Yoo and H.-H. S. Lee, “Adaptive transaction scheduling for
transactional memory systems,” in SPAA, 2008.

13

http://www.threadingbuildingblocks.org
http://snap.stanford.edu/data
http://www.openstreetmap.org

	Introduction
	Background and Motivation
	Swarm Execution Model
	Swarm Microarchitecture
	Motivation for Spatial Task Mapping

	Spatial Task Mapping with Hints
	Hint API and ISA Extensions
	Hardware Mechanisms
	Adding Hints to Benchmarks

	Evaluation of Spatial Hints
	Experimental Methodology
	Effectiveness of Hints
	Comparison of Schedulers

	Improving Locality and Parallelism with Fine-Grain Tasks
	Evaluation

	Data-Centric Load-Balancing
	Evaluation
	Putting It All Together

	Related Work
	Scheduling in Speculative Parallelism
	Scheduling in Non-Speculative Parallelism

	Conclusion
	References

