
Data-Centric Execution of
Speculative Parallel Programs
MARK JEFFREY, SUVINAY SUBRAMANIAN,
MALEEN ABEYDEERA,
JOEL EMER, DANIEL SANCHEZ

MICRO 2016

Executive summary
 Many-cores must exploit cache locality to scale

 Current speculative systems, e.g. TLS or TM, do not exploit locality

 Spatial Hints: run tasks likely to access the same data in the same place
◦ A software-given hint denotes the data a new task is likely to access

◦ Hardware maps tasks with the same hint to the same place

◦ Hardware uses hints to perform locality-aware load balancing

 Our techniques make speculative parallelism practical at large scale
◦ It is easy to modify programs to convey locality through hints

◦ Performance improves by 3.3x at 256 cores

◦ We reduce network traffic by 6.4x and wasted work by 3.5x

DATA-CENTRIC EXECUTION OF SPECULATIVE PARALLEL PROGRAMS 2

Prior speculative systems scale poorly
TRANSACTIONAL MEMORY (TM) SCHEDULERS

 Reduce wasted work of coarse-grain txns

 Limit concurrency: When to run a task?

SPATIAL HINTS

 Make accesses local for fine-grain tasks

 Less data movement: Where to run a task?

DATA-CENTRIC EXECUTION OF SPECULATIVE PARALLEL PROGRAMS 3

Spatially map tasks for improved locality and less waste

Prior non-speculative locality techniques
do not work for speculation

STATIC TASK MAPPING

 Data dependences known a priori
◦ Linear algebra, Anton 2 [ASPLOS ͚13]

 Graph partitioning
◦ Localizes communication and scheduling

◦ Slow preprocessing step

◦ Cannot adapt to imbalance

DYNAMIC TASK MAPPING

 Work stealing
◦ Cheap, local enqueues

◦ Steals to adapt to imbalance

◦ Limited application types

◦ Stealing interferes with speculation

DATA-CENTRIC EXECUTION OF SPECULATIVE PARALLEL PROGRAMS 4

Baseline Architecture:
Swarm [MICRO ‘15]

DATA-CENTRIC EXECUTION OF SPECULATIVE PARALLEL PROGRAMS 5

General execution model supports

ordered and unordered parallelism

Baseline Swarm execution model
 Programs consist of timestamped tasks

◦ Tasks can create children tasks with >= timestamp

◦ Tasks appear to execute in timestamp order

DATA-CENTRIC EXECUTION OF SPECULATIVE PARALLEL PROGRAMS 6

swarm::enqueue(function_pointer,

 timestamp,

 arguments...);

Baseline Swarm architecture
 Speculatively executes tasks out of order

 Large hardware task queues

 Scalable ordered speculation

 Scalable ordered commits

DATA-CENTRIC EXECUTION OF SPECULATIVE PARALLEL PROGRAMS 7

64-tile, 256-core chip Tile organization

Core Core Core Core

L1I/D L1I/D L1I/D L1I/D

L2

L3 slice Router

Task unit
Mem / IO

M
e

m
 /

 I
O

Mem / IO

M
e

m
 / IO

Tile

Efficiently supports tiny speculative tasks

Spatial Hints in Action
COMBINING SPECULATION AND LOCALITY

DATA-CENTRIC EXECUTION OF SPECULATIVE PARALLEL PROGRAMS 8

Example: Discrete event simulation (DES)

DATA-CENTRIC EXECUTION OF SPECULATIVE PARALLEL PROGRAMS 9

r=1 A=1

Order = Simulated time (ns)
0 1 2 3 4 5 6

Tasks

C0=0

D0=1 E1=1 t=1

s=1 C1=1

B=1 D1=0 E1=0 t=0

E

A

B

r

s

t

0

0

1

1

0

0

0

1

1

0

0
1

1

D

C
r s t = r XOR s

0 0 0

1 0 1

1 1 0

Extracting parallelism in DES
 Execute independent tasks out of order

DATA-CENTRIC EXECUTION OF SPECULATIVE PARALLEL PROGRAMS 10

r A

Order = Simulated time (ns)
0 1 2 3 4 5 6

Tasks

C

D E t

s C

B D E t

Data dependences

r

A C

D E t

s

C

B D E t

Valid Schedule

2.4x parallelism

(more in larger circuits)

Parallelism is plentiful despite data dependences

Speculation scales poorly without locality
 Swarm sends new tasks to random tiles

◦ Good for load balance

◦ Poor locality hurts scalability beyond 100 cores

 Work stealing: a non-speculative scheduler
◦ Enqueue new tasks locally

◦ Steal from the most-loaded tile

◦ Not a good strategy for DES

DATA-CENTRIC EXECUTION OF SPECULATIVE PARALLEL PROGRAMS 11

des

Random

Stealing

Where is the locality?

DATA-CENTRIC EXECUTION OF SPECULATIVE PARALLEL PROGRAMS 12

Each task operates on a single gate

The gate is known when the task is created

With fine-grain tasks, most data accessed is known at creation time

r

A C

D E t

s

C

B D E t

DES Schedule

Data-centric speculation scales well
 Hints: map each gate to a statically-chosen tile

DATA-CENTRIC EXECUTION OF SPECULATIVE PARALLEL PROGRAMS 13

des

Stealing

Random

Hints

But we can do better!

A

B D

C

1. Less data movement

2. Conflicts are local, cheap, and less frequent

 Send new tasks for a gate
to its corresponding tile

D
186x

E
E

Load-balanced speculation scales best
 Static gate-to-tile mapping may cause hotspots

◦ E.g. some gates toggle more frequently

 Dynamically remap gates (Hints) across tiles

DATA-CENTRIC EXECUTION OF SPECULATIVE PARALLEL PROGRAMS 14

des

Stealing

Random

Hints

Load-Balanced

Hints

Programmer knows most of the data accessed

Spatial Hints convey program-level knowledge to exploit locality

236x

Spatial Hints
Implementation

DATA-CENTRIC EXECUTION OF SPECULATIVE PARALLEL PROGRAMS 15

Hint mechanisms are straightforward

SOFTWARE

 A Spatial Hint is an integer value
◦ Given at task creation time

◦ Denotes data likely to be accessed by the task

◦ E.g. the gate ID in DES

HARDWARE

 Hashes each new task s͛ Hint to a tile ID

 Serializes same-Hint tasks

DATA-CENTRIC EXECUTION OF SPECULATIVE PARALLEL PROGRAMS 16

7 4

1
1

Localize most data accesses within a tile

Serialize tasks likely to conflict

Load balance with a level of indirection
 Static hint-to-tile mapping may cause imbalance

DATA-CENTRIC EXECUTION OF SPECULATIVE PARALLEL PROGRAMS 17

Tile ID
2

H

Hint
0xF00

2
Bucket

H

Reconfigurable Tile Map

Tile ID Hint
0xF00

1

7

1

…

61

63

40

 Instead, periodically remap hints across tiles to equalize load

͞Load͟ is different for speculation

 Non-speculative systems use # queued tasks as a proxy for load

 When imbalanced, speculative systems often
◦ Don͛t run out of work

◦ Abort more work or strain speculation resources

DATA-CENTRIC EXECUTION OF SPECULATIVE PARALLEL PROGRAMS 18

Remap hints to tiles to balance # of committed cycles per tile

2
Bucket

H

Reconfigurable Tile Map

Tile ID Hint
0xF00

1

7

1

…

61

63

40

Adding hints to applications is easy
 void desTask(Timestamp ts, GateInput* input) {
 Gate* g = input->gate();
 bool toggledOutput = g.simulateToggle(input);
 if (toggledOutput) {
 // Toggle all inputs connected to this gate
 for (GateInput* i : g->connectedInputs())
 swarm::enqueue(desTask,
 /*Timestamp*/ ts + delay(g, i),
 /*Hint*/ i->gate()->id, i);
 }
}

DATA-CENTRIC EXECUTION OF SPECULATIVE PARALLEL PROGRAMS 19

One line of code to express the Gate ID as a Hint

Benchmark Hint Why?

des Gate ID Map tasks for same gate to same tile

nocsim Router ID Frequent intra-router communication

bfs, sssp,

astar, color

Cache-line

address
Several vertices reside on the same line

silo
(Table ID,

primary key)
Each task accesses one database tuple

genome,

kmeans
Multiple

Adding hints to applications is easy

DATA-CENTRIC EXECUTION OF SPECULATIVE PARALLEL PROGRAMS 20

See the paper for more details!
 Load balance reconfiguration algorithm

 Choice of application hints

 Relationship between task size and hint effectiveness

DATA-CENTRIC EXECUTION OF SPECULATIVE PARALLEL PROGRAMS 21

Evaluation

DATA-CENTRIC EXECUTION OF SPECULATIVE PARALLEL PROGRAMS 22

Methodology
 Event-driven, Pin-based simulator

 Target system: 256-core, 64-tile chip

 Scalability experiments from 1–256 cores
◦ Scaled-down systems have fewer tiles

DATA-CENTRIC EXECUTION OF SPECULATIVE PARALLEL PROGRAMS 23

Core Core Core Core

L1I/D L1I/D L1I/D L1I/D

L2

L3 slice Router

Task unit
Mem / IO

M
e

m
 /

 I
O

Mem / IO

M
e

m
 / IO

Tile

64 MB shared L3 (1MB/tile)

256 KB per-tile L2s

16 KB per-core L1s

16K task queue entries (64/core)

4K commit queue entries (16/core)

In-order, single-issue, scoreboarded

Load-Balanced Hints 3.3x faster

than Random (193x gmean vs 58x)

1

256

512

S
p

e
e

d
u

p

bfs

1

256

512
sssp

1

128

256
astar

1

64

128

S
p

e
e

d
u
p

color

1

128

256
des

1

256

512
nocsim

1

128

256

S
p
e

e
d
u

p

1c 128c 256c

silo

1

64

128

1c 128c 256c

genome

1

128

256

1c 128c 256c

kmeans

Random

1

256

512

S
p

e
e

d
u

p

bfs

1

256

512
sssp

1

128

256
astar

1

64

128

S
p

e
e

d
u
p

color

1

128

256
des

1

256

512
nocsim

1

128

256

S
p
e

e
d
u

p

1c 128c 256c

silo

1

64

128

1c 128c 256c

genome

1

128

256

1c 128c 256c

kmeans

Hints Random

1

256

512

S
p

e
e

d
u

p

bfs

1

256

512
sssp

1

128

256
astar

1

64

128

S
p

e
e

d
u
p

color

1

128

256
des

1

256

512
nocsim

1

128

256

S
p
e

e
d
u

p

1c 128c 256c

silo

1

64

128

1c 128c 256c

genome

1

128

256

1c 128c 256c

kmeans

LBHints Hints Random

Hints make speculation practical
on large-scale systems

DATA-CENTRIC EXECUTION OF SPECULATIVE PARALLEL PROGRAMS 24

Stealing is inconsistent

across benchmarks

Load-Balanced Hints

17% – 27% faster than Hints

Hints make speculation more efficient

0.0

0.2

0.4

0.6

0.8

1.0

A
b
o

rt
e

d
 C

y
c
le

s

R L R L R L R L R L R L R L R L R L

bfs
sssp

astar
color

des

nocsim silo

genome

kmeans

DATA-CENTRIC EXECUTION OF SPECULATIVE PARALLEL PROGRAMS 25

0.0

0.2

0.4

0.6

0.8

1.0

N
o
C

 d
a
ta

 t
ra

n
s
fe

rr
e
d

R L R L R L R L R L R L R L R L R L

bfs
sssp

astar
color

des

nocsim silo

genome

kmeans

Reduce wasted work by 6.4x Reduce network traffic by 3.5x

Conclusion
 Speculative architectures must exploit locality to scale to 100s of cores

◦ Important to simplify parallel programming

 Spatial Hints convey app-level knowledge to exploit cache locality

 Hardware leverages hints by:
◦ Sending tasks likely to access the same data to the same tile

◦ Serializing tasks likely to conflict

◦ Balancing work in a locality-aware and speculation-friendly way

 Our techniques make speculation practical on large-scale systems

DATA-CENTRIC EXECUTION OF SPECULATIVE PARALLEL PROGRAMS 26

Thank you! Questions?
 Speculative architectures must exploit locality to scale to 100s of cores

◦ Important to simplify parallel programming

 Spatial Hints convey app-level knowledge to exploit cache locality

 Hardware leverages hints by:
◦ Sending tasks likely to access the same data to the same tile

◦ Serializing tasks likely to conflict

◦ Balancing work in a locality-aware and speculation-friendly way

 Our techniques make speculation practical on large-scale systems

DATA-CENTRIC EXECUTION OF SPECULATIVE PARALLEL PROGRAMS 27

