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Executive summary 
 Many-cores must exploit cache locality to scale 

 Current speculative systems, e.g. TLS or TM, do not exploit locality 

 Spatial Hints: run tasks likely to access the same data in the same place 
◦ A software-given hint denotes the data a new task is likely to access  

◦ Hardware maps tasks with the same hint to the same place 

◦ Hardware uses hints to perform locality-aware load balancing 

 Our techniques make speculative parallelism practical at large scale 
◦ It is easy to modify programs to convey locality through hints 

◦ Performance improves by 3.3x at 256 cores 

◦ We reduce network traffic by 6.4x and wasted work by 3.5x 

DATA-CENTRIC EXECUTION OF SPECULATIVE PARALLEL PROGRAMS 2 



Prior speculative systems scale poorly 
TRANSACTIONAL MEMORY (TM) SCHEDULERS 

 Reduce wasted work of coarse-grain txns 
 

 Limit concurrency: When to run a task? 

SPATIAL HINTS 

 Make accesses local for fine-grain tasks 
 

 Less data movement: Where to run a task? 
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Spatially map tasks for improved locality and less waste 



Prior non-speculative locality techniques 
do not work for speculation 

STATIC TASK MAPPING 

 Data dependences known a priori 
◦ Linear algebra, Anton 2 [ASPLOS ͚13] 

 

 Graph partitioning 
◦ Localizes communication and scheduling 

◦ Slow preprocessing step 

◦ Cannot adapt to imbalance 

  

DYNAMIC TASK MAPPING 

 Work stealing 
◦ Cheap, local enqueues 

◦ Steals to adapt to imbalance 

◦ Limited application types 

◦ Stealing interferes with speculation 
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Baseline Architecture: 
Swarm [MICRO ‘15] 

DATA-CENTRIC EXECUTION OF SPECULATIVE PARALLEL PROGRAMS 5 



General execution model supports 

ordered and unordered parallelism 

Baseline Swarm execution model 
 Programs consist of timestamped tasks 

◦ Tasks can create children tasks with >= timestamp 

◦ Tasks appear to execute in timestamp order 
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swarm::enqueue(function_pointer,  

               timestamp,  

               arguments...); 



Baseline Swarm architecture 
 Speculatively executes tasks out of order 

  

 Large hardware task queues 

 Scalable ordered speculation  

 Scalable ordered commits 
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64-tile, 256-core chip Tile organization 
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Efficiently supports tiny speculative tasks 



Spatial Hints in Action 
COMBINING SPECULATION AND LOCALITY  
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Example: Discrete event simulation (DES) 
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Extracting parallelism in DES 
 Execute independent tasks out of order 
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2.4x parallelism 

(more in larger circuits) 

Parallelism is plentiful despite data dependences 



Speculation scales poorly without locality 
 Swarm sends new tasks to random tiles  

◦ Good for load balance 

◦ Poor locality hurts scalability beyond 100 cores 

 

 Work stealing: a non-speculative scheduler 
◦ Enqueue new tasks locally 

◦ Steal from the most-loaded tile 

◦ Not a good strategy for DES 
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Where is the locality? 
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Each task operates on a single gate 

The gate is known when the task is created 

With fine-grain tasks, most data accessed is known at creation time 
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Data-centric speculation scales well 
 Hints: map each gate to a statically-chosen tile 
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Load-balanced speculation scales best 
 Static gate-to-tile mapping may cause hotspots 

◦ E.g. some gates toggle more frequently 

 

 Dynamically remap gates (Hints) across tiles 
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Programmer knows most of the data accessed 

Spatial Hints convey program-level knowledge to exploit locality 

236x 



Spatial Hints 
Implementation 
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Hint mechanisms are straightforward 

SOFTWARE 

 A Spatial Hint is an integer value 
◦ Given at task creation time 

◦ Denotes data likely to be accessed by the task 

◦ E.g. the gate ID in DES 

  

HARDWARE 

 Hashes each new task s͛ Hint to a tile ID 

 Serializes same-Hint tasks 
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Load balance with a level of indirection 
 Static hint-to-tile mapping may cause imbalance 
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 Instead, periodically remap hints across tiles to equalize load 



͞Load͟ is different for speculation 

 Non-speculative systems use # queued tasks as a proxy for load 

 When imbalanced, speculative systems often 
◦ Don͛t run out of work 

◦ Abort more work or strain speculation resources 
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Remap hints to tiles to balance # of committed cycles per tile 
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Adding hints to applications is easy 
 void desTask(Timestamp ts, GateInput* input) {   
  Gate* g = input->gate();   
  bool toggledOutput = g.simulateToggle(input);   
  if (toggledOutput) {     
    // Toggle all inputs connected to this gate 
    for (GateInput* i : g->connectedInputs())  
      swarm::enqueue(desTask, 
                     /*Timestamp*/ ts + delay(g, i), 
                     /*Hint*/ i->gate()->id, i); 
  } 
} 
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One line of code to express the Gate ID as a Hint 



Benchmark Hint Why? 

des Gate ID Map tasks for same gate to same tile 

nocsim Router ID Frequent intra-router communication 

bfs, sssp, 

astar, color 

Cache-line  

address 
Several vertices reside on the same line 

silo 
(Table ID,  

primary key) 
Each task accesses one database tuple 

genome, 

kmeans 
Multiple 

Adding hints to applications is easy 
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See the paper for more details! 
 Load balance reconfiguration algorithm 

  

 Choice of application hints 

  

 Relationship between task size and hint effectiveness 
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Evaluation 
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Methodology 
 Event-driven, Pin-based simulator 

  

 Target system: 256-core, 64-tile chip 

  

 Scalability experiments from 1–256 cores 
◦ Scaled-down systems have fewer tiles 
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256 KB per-tile L2s 
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In-order, single-issue, scoreboarded 



Load-Balanced Hints 3.3x faster  

than Random (193x gmean vs 58x) 
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Hints make speculation practical 
on large-scale systems 
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Stealing is inconsistent  

across benchmarks 

Load-Balanced Hints  

17% – 27% faster than Hints 



Hints make speculation more efficient 
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Reduce wasted work by 6.4x Reduce network traffic by 3.5x 



Conclusion 
 Speculative architectures must exploit locality to scale to 100s of cores 

◦ Important to simplify parallel programming 

 Spatial Hints convey app-level knowledge to exploit cache locality 

 Hardware leverages hints by: 
◦ Sending tasks likely to access the same data to the same tile 

◦ Serializing tasks likely to conflict 

◦ Balancing work in a locality-aware and speculation-friendly way 

 Our techniques make speculation practical on large-scale systems 
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Thank you! Questions? 
 Speculative architectures must exploit locality to scale to 100s of cores 

◦ Important to simplify parallel programming 

 Spatial Hints convey app-level knowledge to exploit cache locality 

 Hardware leverages hints by: 
◦ Sending tasks likely to access the same data to the same tile 

◦ Serializing tasks likely to conflict 

◦ Balancing work in a locality-aware and speculation-friendly way 

 Our techniques make speculation practical on large-scale systems 
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