Modeling Cache Performance Beyond LRU

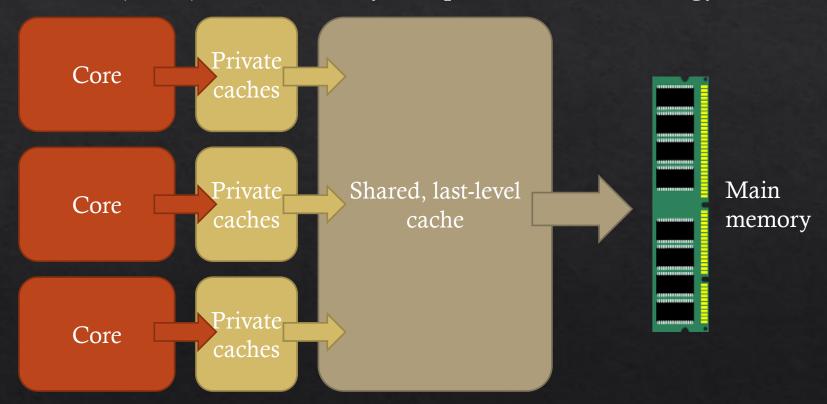
Nathan Beckmann and Daniel Sanchez

MIT CSAIL – HPCA 2016 – Barcelona, Spain

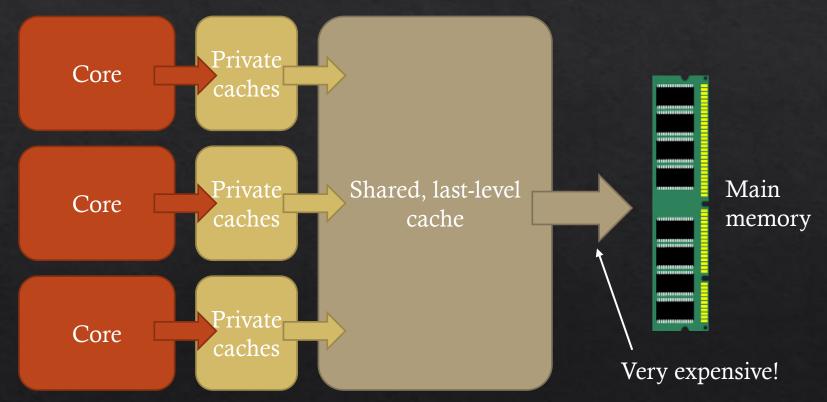
Motivation

- Predictions of cache performance have many uses:
 - ♦ Job scheduling to avoid interference
 - ♦ Cache partitioning to improve performance, enhance security, ensure fairness, etc.
- ♦ Decades of research on predicting classic replacement policies like LRU or random replacement
- ♦ ...But not for recent, high-performance replacement policies
 - ♦ DRRIP, PDP, IGRD, PRP, etc.
- ***** We need new modeling techniques that can accurately predict the performance of a broad range of policies

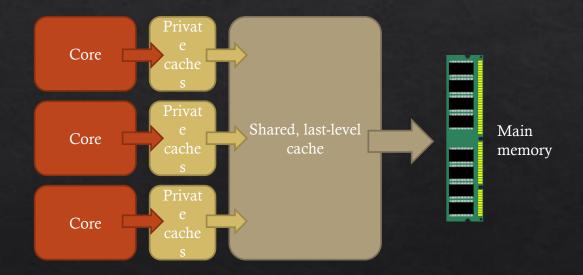
♦ Last-level caches (LLCs) are critical to system performance and energy



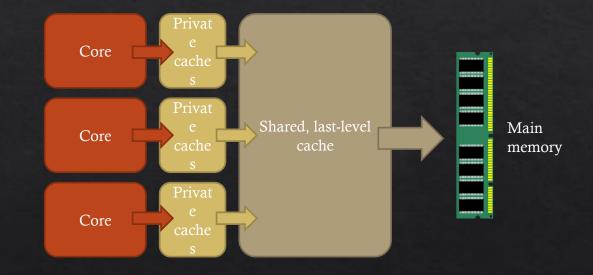
♦ Last-level caches (LLCs) are critical to system performance and energy



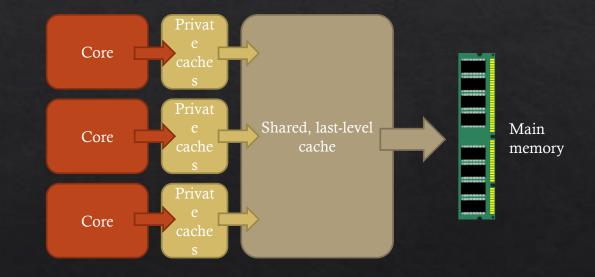
- ♦ Last-level caches (LLCs) are critical to system performance and energy
 - ♦ Large, ~50% chip area
 - ♦ Hashed indexing
 - ♦ High associativity



- ♦ Last-level caches (LLCs) are critical to system performance and energy
 - ♦ Large, ~50% chip area
 - ♦ Hashed indexing
 - ♦ High associativity
- ♦ Accesses behave differently at the LLC
 - ♦ Private caches capture short-term locality
 - → LRU pathologies are common
 - ♦ LRU is often worse than random!



- ♦ Last-level caches (LLCs) are critical to system performance and energy
 - ♦ Large, ~50% chip area
 - ♦ Hashed indexing
 - ♦ High associativity
- ♦ Accesses behave differently at the LLC
 - ♦ Private caches capture short-term locality→ LRU pathologies are common
 - ♦ LRU is often worse than random!



Abundant recent work on replacement

Background – Replacement policies

Many different techniques

- Dynamically protecting cache lines
- Predicting whether lines will hit
- ♦ Predicting how long until a hit

[DIP, Qureshi ISCA'07][PDP, Duong MICRO'12]

[SBDP, Khan MICRO'10][PRP, Das TACO'15]

[DRRIP, Jaleel ISCA'10][IRGD, Takagi ICS'04]

- Most policies assign value to cache lines which changes over time
 - ♦ Value usually increases upon a hit, i.e. promotion
 - ♦ Value eventually declines after some time without a hit, i.e. demotion

Background – Cache models

♦ Prior cache models target LRU, pseudo-LRU, random, etc.

Many applications require accurate cache predictions

♦ Job scheduling [Mars, MICRO'11][Zhang, EuroSys'13][Delimitrou, ASPLOS'13]

♦ Shared cache partitioning

♦ Performance [Qureshi, MICRO'06][Moreto, OSR'09][Beckmann, PACT'13]

♦ Fairness [Moreto, OSR'09][Pan, MICRO'13]

♦ Security, etc. [Page, Crypto'05][Beckmann, HPCA'15]

Need cache models for recent, high-performance replacement policies

Our modeling approach

- ♦ Observation 1: Private caches strip out successive accesses to same cache line
- ♦ Observation 2: Hashing + high associativity → replacement candidates are well-mixed

Strategy: Model cache replacement as a random process

Observation 3: Many replacement policies rank candidates by age (time since last reference)

Strategy: Model replacement policies as arbitrary functions of age

Contributions

- ♦ First model for several recent, high-performance replacement policies
 - ♦ Based on absolute reuse distances number of accesses between references to address
 - ♦ Three related probability equations
 - ♦ Easy to model new age-based replacement policies
- ♦ Efficient online implementation
- ♦ Accurate predictions mean error of ~3% for LRU, PDP, and IRGD on SPECCPU2006
- Limitations: Currently does not model non-age-based policies like DRRIP

Model outline

- ♦ Assumptions
- ♦ Explain model for LRU
- ♦ Generalize model to other policies

To limit math, this talk will use pictures to give intuition and then quickly show corresponding equations – see paper for detailed derivations

Model assumptions

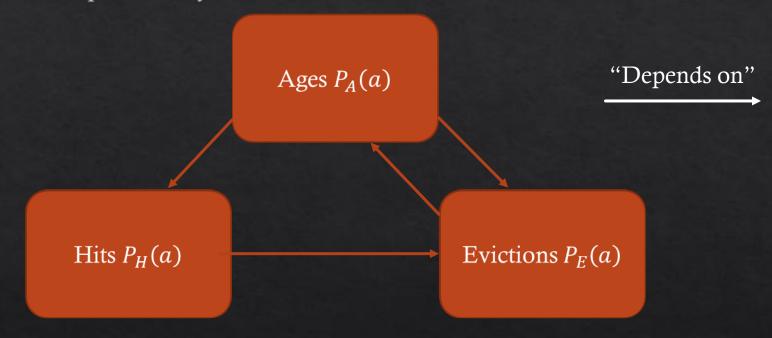
- ♦ Assume high associativity i.e., replacement candidates are selected at random
 - ♦ Direct model of skew-associative caches, also works for hashed set-associative caches
- Assume reuse distances are independent and identically distributed
 - ♦ Reuse distance is the number of accesses between references to the same address
 - ♦ Intuition: Private caches filter out successive accesses to same address, removing locality at LLC
- ♦ These assumptions are only approximately satisfied in practice, but the model is surprisingly robust to deviations from them

Requests:	A	A	В	С	В	D	В	C
	3	1	1	2	3	4	1	2
	2	3	4	1	2	1	2	1
	1	2	3	4	1	2	3	4

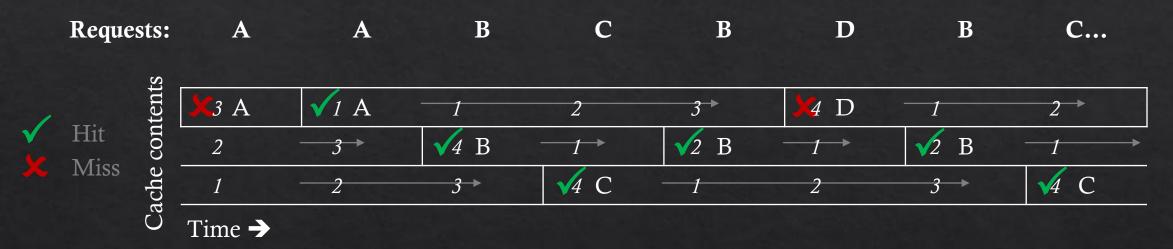
[♦] Age is the number of accesses since last reference

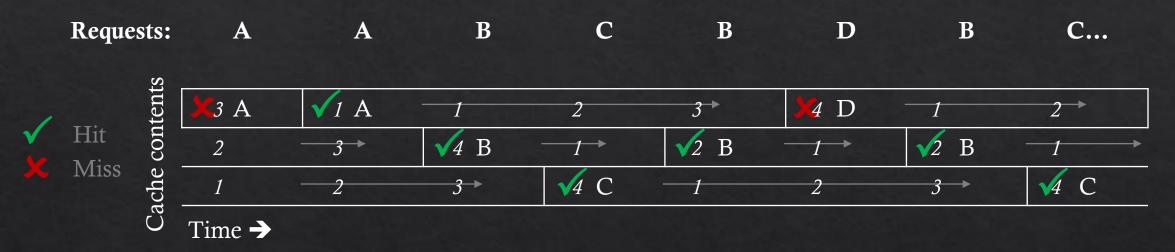
Model overview

Three interdependent probability distributions

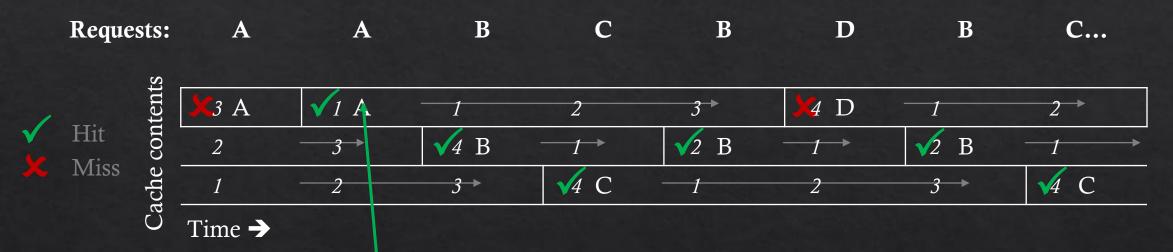


 \diamond Cache hit rate is the sum of the hit distribution, i.e. Hit rate = $\sum_{a=1}^{\infty} P_H(a)$

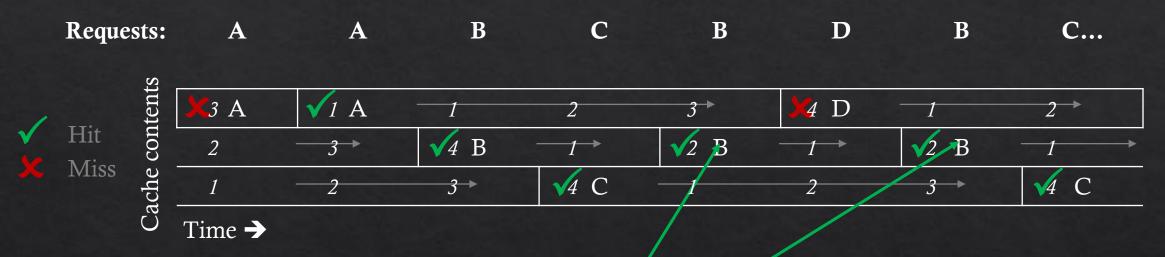




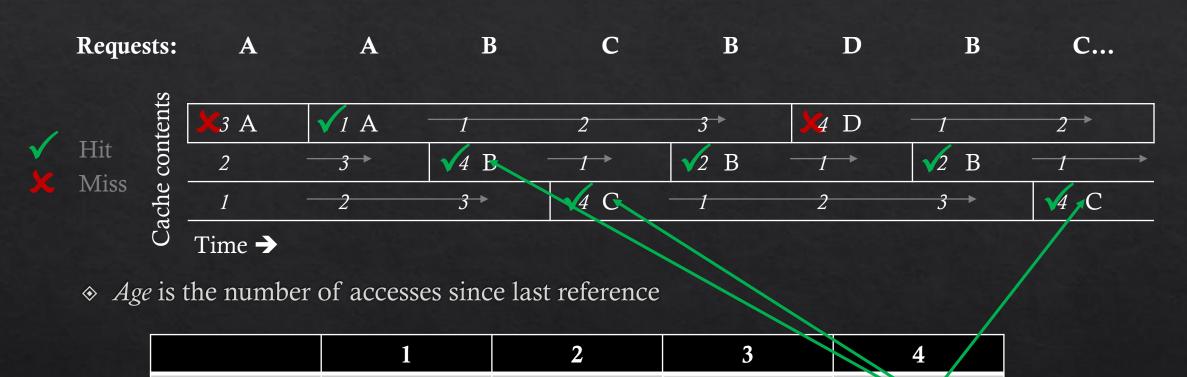
	1	2	3	4
Hits	1	2	-	3



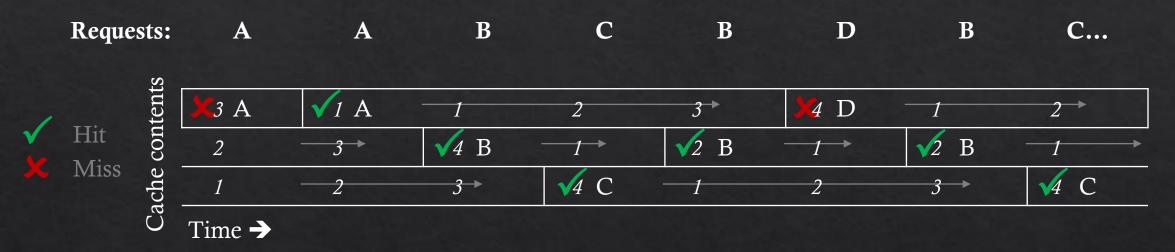
	1	2	3	4
Hits	1	2	-	3



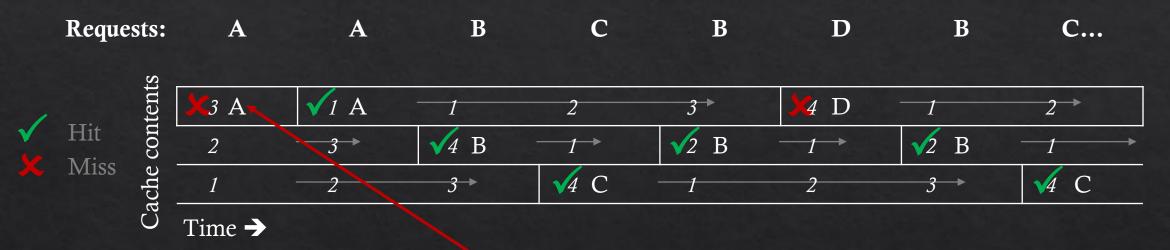
	1	2	3	4
Hits	1	2	_	3



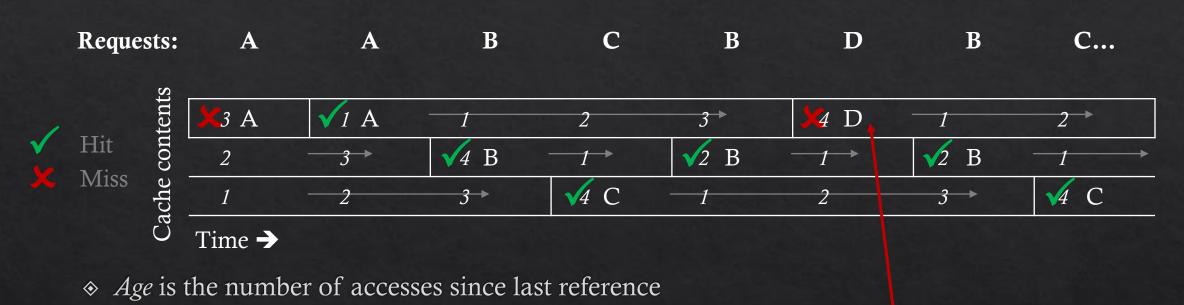
Hits



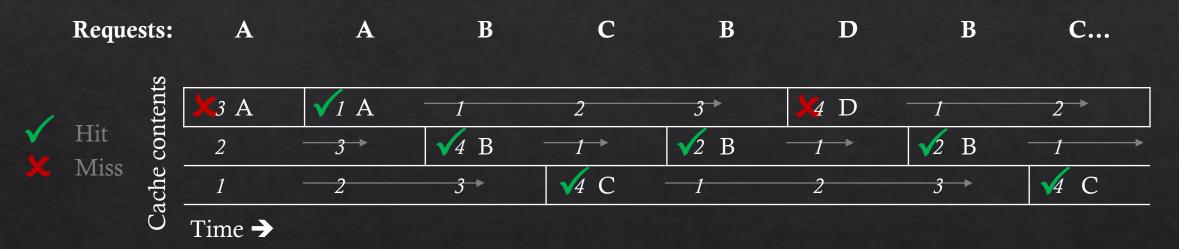
	1	2	3	4
Hits	1	2	-	3



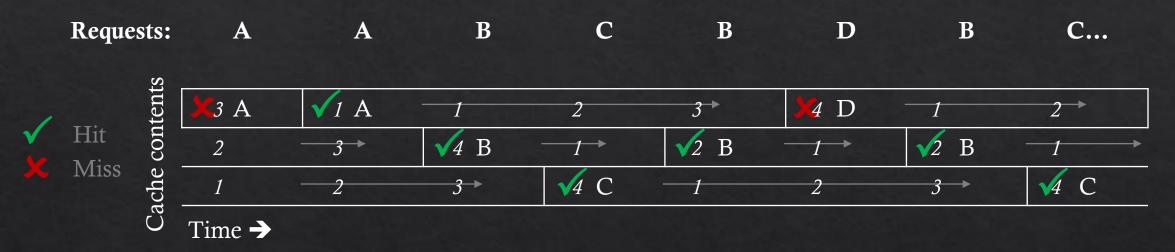
	1	2	3	4
Hits	1	2	_	3
Evictions	_	_	1	1



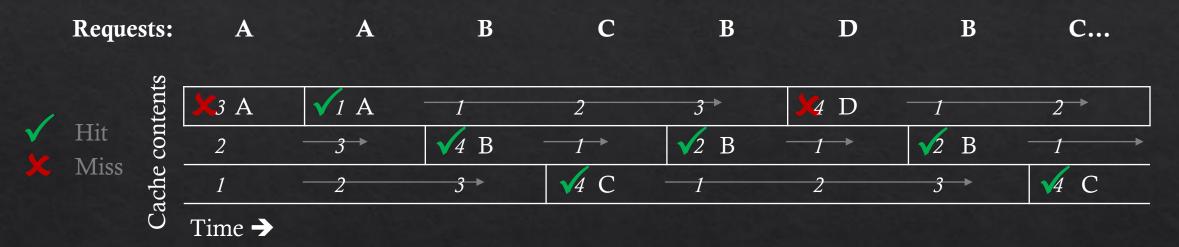
	1	2	3	4
Hits	1	2	-	3
Evictions	_	_	1	1



	1	2	3	4
Hits	1	2	-	3
Evictions	_	_	1	1



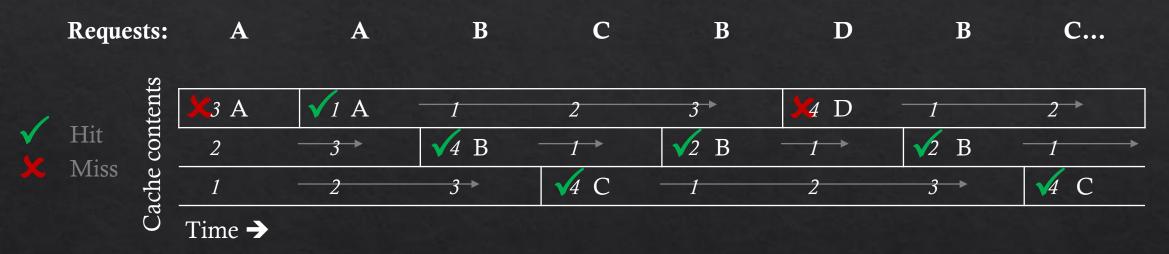
	1	2	3	4
Hits	1	2	-	3
Evictions	_	_	1	1
Ages	8	7	5	4



♦ Age is the number of accesses since last reference

	1	2	3	4	
Hits	1/8	2/8	-	3/8	Together
Evictions	_	_	1/8	1/8	Together sum to 1
Ages	8/24	7/24	5/24	4/24	10

16



Age distribution

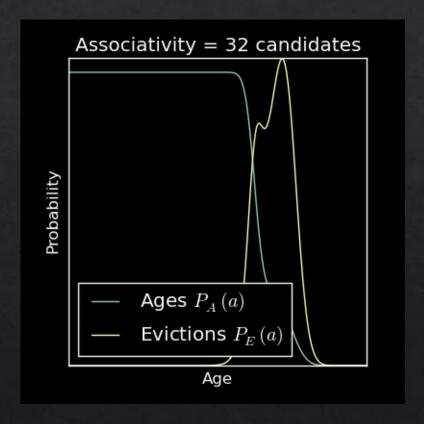
- $Arr P_A(a)$ How many lines have age a?
- \diamond Insight: Lines at age a must hit or be evicted at age $\geq a$
- $\Rightarrow P_A(a)$ is proportional to number of hits and evictions at higher ages

	1	2	3	4	5
Hits	1	2		3	-
Evictions	_	77 -	2 1	1	4 –
Ages	8	7	5	4	0

$$P_A(a) = \frac{1}{\text{Cache size}} \times (P[H \ge a] + P[E \ge a])$$

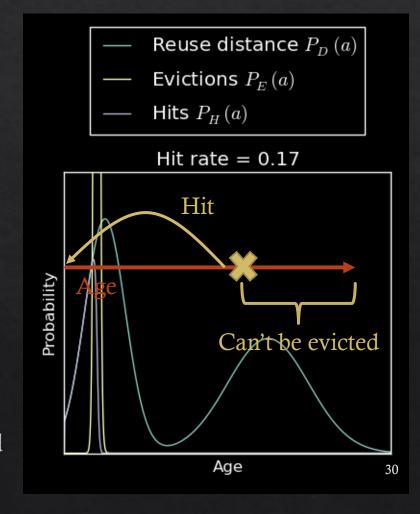
Eviction distribution for LRU

- \bullet $P_E(a)$ How many lines are evicted at age a?
- ♦ *Insight:* LRU evicts the oldest (maximum age) candidate
- \Rightarrow Given W randomly-chosen candidates, victim's age is distributed as maximum of W draws from $P_A(a)$
- $\Leftrightarrow P_E(a) = \text{Miss rate} \times \text{Max. age of } W \text{ ages}$
- $\Rightarrow \qquad = P[\text{miss}] \times (P[A < a + 1]^W P[A < a]^W)$



Hit distribution

- \Rightarrow $P_H(a)$ How many hits occur at age a?
- ♦ *Insight:* Hits at age a imply (absolute) reuse distance of a
 - \diamond Every reuse distance a will hit at age a unless first evicted
- $\Rightarrow P_H(a)$ = Reuse distances at a Evictions before a
 - ♦ Sadly, eviction age and reuse distance <u>aren't</u> independent!
- How do evictions change hit probability?
- Insight: Replacement policy doesn't know reuse distance!
- \Rightarrow Evictions at a <u>only</u> imply that reuse distance > a, and lower the probability of all later hits



Model summary for LRU

♦ Age distribution – cache size

$$\Rightarrow P_A(a) = \frac{1}{\text{Cache size}} \times (P[E \ge a] + P[H \ge a])$$

♦ Eviction distribution – replacement policy & associativity

$$\Rightarrow P_E(a) = P[\text{miss}] \times (P[A < a + 1]^W - P[A < a]^W)$$

 \diamond Hit distribution – access pattern via reuse distance distribution $P_D(a)$

$$\Rightarrow P_H(a) = P_D(a) \times \left(1 - \sum_{x=1}^{a-1} \frac{P_E(x)}{P[D>x]}\right)$$

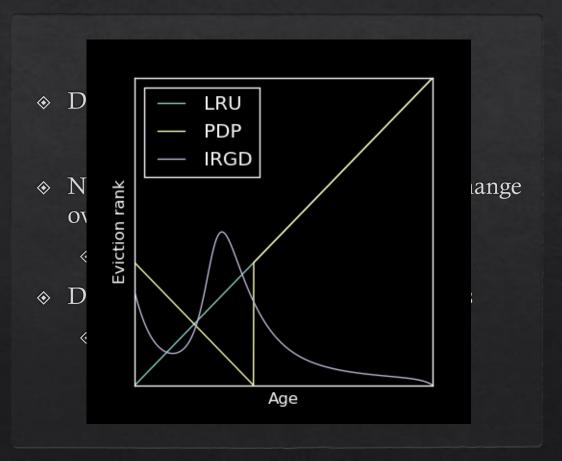
Generalizing to other policies

- How to model different replacement policies?
- \diamond We model policies as ranking functions of candidates' ages R(a)
 - ♦ By convention, higher rank → likelier to be evicted
- ♦ Replacement model:
 - \diamond 1. Given candidates' ages $a_1, a_2 \dots a_W$
 - \diamond 2. Rank candidates as $R(a_1), R(a_2) \dots R(a_W)$
 - \diamond 3. Evict candidate with highest $R(a_i)$

Ranking functions

Pros

- ♦ Simple + analytically tractable model
- Works for many replacement policies
 - \diamond LRU: R(a) = a
 - \diamond PDP: protect lines until age d_p
 - ♦ IRGD: statistical cost function
 - ♦ PRP: conditional hit probability



Generalized eviction distribution

- Age and hit distributions do not change!
- ♦ LRU evicted the oldest candidate
- ♦ Substitute: "maximum age" (for LRU) → "maximum rank" (in general)
 - \diamond 1. Compute distribution of ranks in cache using R(a) and age distribution
 - ♦ 2. Find distribution of maximum rank as W draws from this distribution
- ♦ Some corner cases to avoid double counting, etc.

Model summary for arbitrary ranking functions

♦ Age distribution – cache size

$$\Leftrightarrow P_A(a) = \frac{1}{\text{Cache size}} \times (P[E \ge a] + P[H \ge a])$$

Solve through iteration! (see paper)

- \diamond Hit distribution access pattern via reuse distance distribution $P_D(a)$

$$\Leftrightarrow P_H(a) = P_D(a) \times \left(1 - \sum_{x=1}^{a-1} \frac{P_E(x)}{P[D>x]}\right)$$

Validation – Simulation methodology

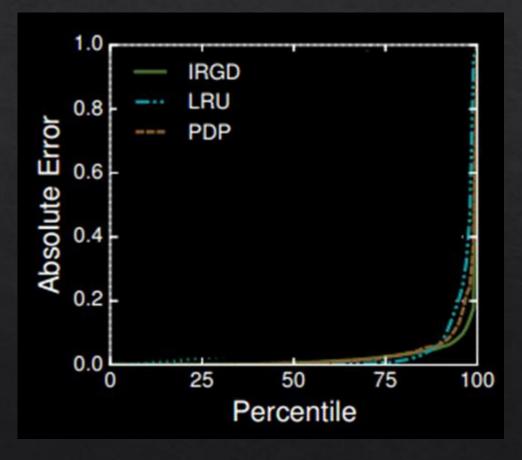
Run SPECCPU2006 for 20 B instructions using zsim

[Sanchez, ISCA'13]

- ♦ 16-way, set-associative hashed caches from 128 KB 128 MB
 - ♦ LRU, PDP, and IRGD replacement
- ♦ Model solved every 100 ms using sample reuse distance distributions
 - ♦ Small monitor gathers LLC reuse distance distribution online
 - ♦ Compare against simulated cache hit rate
- Demanding workload!
 - ♦ Sampling error
 - ♦ Reuse distance distributions not in equilibrium

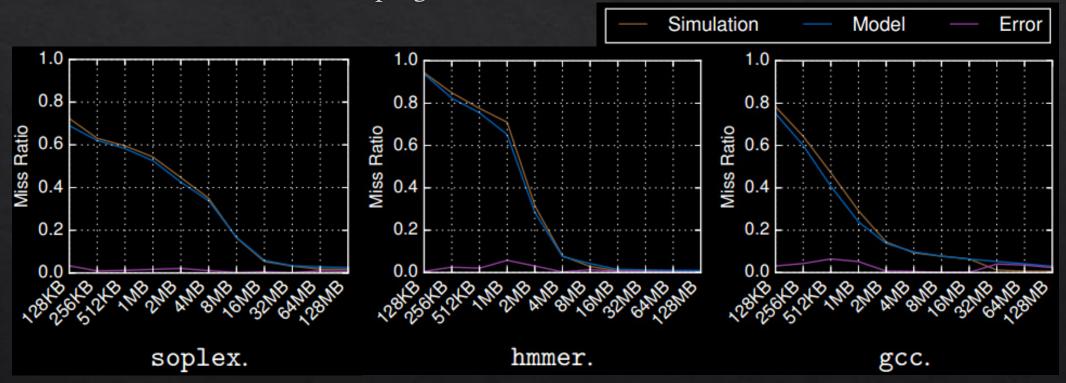
Validation – SPECCPU2006 results

- ♦ Low error across 400,000 model solutions
 - ♦ 29 applications
 - ♦ 11 cache sizes, 128 KB 128 MB
 - ♦ 100 ms interval
- ♦ E.g., for IRGD
 - ♦ Median error of 0.1%
 - ♦ Mean error of 1.9%
 - \diamond 90th pctl error of 5.5%



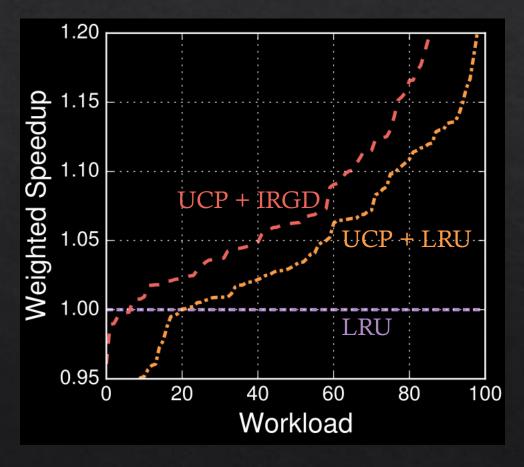
Validation – SPECCPU2006 results

♦ Even more accurate across full program execution



Case study – Cache partitioning

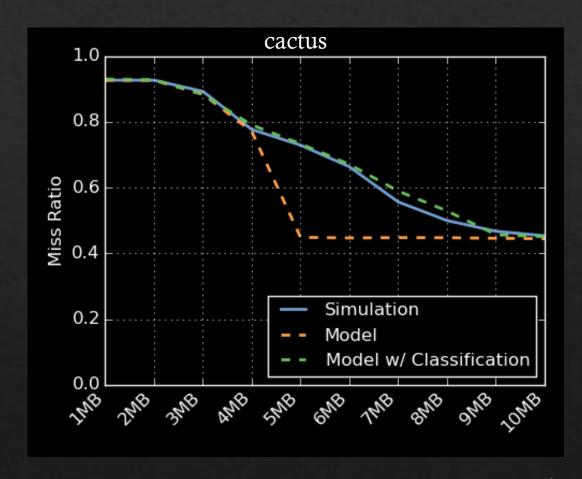
- ♦ Cache partitioning with IRGD improves performance significantly
 - ♦ No prior scheme can efficiently predict IRGD!
 - ♦ 4 core system, 4 random apps
 - Utility-based Cache Partitioning (UCP)
 - ♦ [Qureshi, MICRO'06]
 - \diamond Gmean +10% speedup, up to +44%
 - ♦ vs for LRU, gmean +4.5%



Extensions – Classification

[Tech report]

- For some apps, our assumptions are too strong
- ♦ Specifically: Reuse distances aren't iid
- This is largely addressed by breaking accesses into two classes:
 - ♦ Those likely to hit (short reuse)
 - ♦ Those unlikely to hit (long reuse)
 - ♦ Boundary chosen adaptively



Extensions – Cache calculus

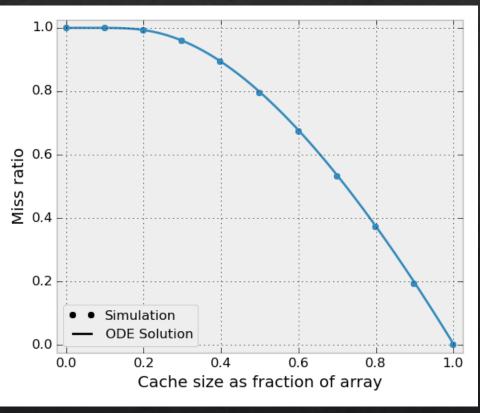
[CAL'16]

We can generalize this model into system of ordin

$$H'' = \frac{D''}{D'}H' - \frac{D'}{1-D}E'$$
 and

- Solve ODEs for closed-form solutions on particular a
- ♦ Example: Scanning an array with random replacen

miss rate = $1 - S \times \text{ProductLog}(-e^{-1/S}/S)$



Conclusion

- Accurate predictions of cache behavior are very useful
- Prior models do not support recent high-performance policies
- This work makes a first step towards modeling arbitrary replacement policies
- ♦ Efficient implementation and accurate predictions

Questions?