Modeling Cache Performance
Beyond LRU

Nathan Beckmann and Daniel Sanchez
MIT CSAIL — HPCA 2016 — Barcelona, Spain

Motivation

& Predictions of cache performance have many uses:
& Job scheduling to avoid interference

& Cache partitioning to improve performance, enhance security, ensure fairness, etc.
& Decades of research on predicting classic replacement policies like LRU or random replacement

& ...But not for recent, high-performance replacement policies
¢ DRRIP, PDP, IGRD, PRP, etc.

¢ We need new modeling techniques that can accurately predict the performance of a broad
range of policies

Background

& Last-level caches (LLCs) are critical to system performance and energy

Y

Background

& Last-level caches (LLCs) are critical to system performance and energy

Y

Very expensive!

Background

& Last-level caches (LLCs) are critical to system performance and energy
& Large, ~50% chip area
¢ Hashed indexing

¢ High associativity

Background

& Last-level caches (LLCs) are critical to system performance and energy
& Large, ~50% chip area
¢ Hashed indexing

¢ High associativity

Core

Main
e € memory

& Accesses behave differently at the LLC Core

¢ Private caches capture short-term locality
=>» LRU pathologies are common

Core

& LRU is often worse than random!

Background

& Last-level caches (LLCs) are critical to system performance and energy
& Large, ~50% chip area
¢ Hashed indexing

¢ High associativity

Core

Main
e € memory

& Accesses behave differently at the LLC Core

¢ Private caches capture short-term locality
=>» LRU pathologies are common

Core

& LRU is often worse than random!

¢ Abundant recent work on replacement 3

Background — Replacement policies

¢ Many different techniques

¢ Dynamically protecting cache lines [DIP, Qureshi ISCA’07][PDF, Duong MICRO’12]
¢ Predicting whether lines will hit [SBDP, Khan MICRO’10][PRPF, Das TACO’15]
¢ Predicting how long until a hit [DRRIP, Jaleel ISCA’10][IRGD, Takagi ICS’04]

& Most policies assign value to cache lines which changes over time
¢ Value usually increases upon a hit, 1.e. promotion

& Value eventually declines after some time without a hit, i.e. demotion

Background — Cache models

& Prior cache models target LRU, pseudo-LRU, random, etc.

& Many applications require accurate cache predictions

& Job scheduling [Mars, MICRO’11][Zhang, EuroSys’l3][Delimitrou, ASPLOS’13]
¢ Shared cache partitioning

% Performance [Qureshi, MICRO’06][Moreto, OSR’09][Beckmann, PACT’13]

& Fairness [Moreto, OSR’09][Pan, MICRO’13]

¢ Quality-of-service [Guo, MICRO’07][Kasture, ASPLOS’14][Cook, ISCA’13]

& Security, etc. [Page, Crypto’05][Beckmann, HPCA’15]

Need cache models for recent, high-performance replacement policies

Our modeling approach

& Observation 1: Private caches strip out successive accesses to same cache line

& Observation 2: Hashing + high associativity =» replacement candidates are well-mixed
Strategy: Model cache replacement as a random process
& Observation 3: Many replacement policies rank candidates by age (time since last reference)

Strategy: Model replacement policies as arbitrary functions of age

10

Contributions

& First model for several recent, high-performance replacement policies
& Based on absolute reuse distances — number of accesses between references to address
& Three related probability equations

¢ Easy to model new age-based replacement policies

% Efficient online implementation
& Accurate predictions — mean error of ~3% for LRU, PDP, and IRGD on SPECCPU2006

& Limitations: Currently does not model non-age-based policies like DRRIP

11

Model outline

& Assumptions
¢ Explain model for LRU
& Generalize model to other policies

To limit math, this talk will use pictures to give intuition and
then quickly show corresponding equations — see paper for detailed derivations

12

Model assumptions

& Assume high associativity — 1.e., replacement candidates are selected at random

& Direct model of skew-associative caches, also works for hashed set-associative caches

& Assume reuse distances are independent and identically distributed
& Reuse distance 1s the number of accesses between references to the same address

¢ Intuition: Private caches filter out successive accesses to same address, removing locality at LLC

& These assumptions are only approximately satisfied in practice, but the model is
surprisingly robust to deviations from them

13

Example and definitions

Requests: A A B C B D
5 1 1 2 3 4
2 3 4 1 A 1
1 4 3 4 1 2

& Age 1s the number of accesses since last reference

14

Model overview

® Three interdependent probability distributions

N

a

& Cache hit rate is the sum of the hit distribution, i.e. Hit rate =),

vl
a=1

“Depends on”

Py (a)

15

Example and definitions

Requests: A A B C B D

8 [X5A 1A 1 2 3 4D 2
=

TS 3 4B 1 2 B 1 1
L

e A 2 3 4 C 1 2 4
]

O Time 2

& Age 1s the number of accesses since last reference

16

Example and definitions

Requests A A B C B D B G
8| 3A i 1 2 T 4 D 1 2
" -
- 2OBE R e 2 B i >
Miss
e A 2 3> 1 C 1 2 3— 4 C
<
O Time >

& Age 1s the number of accesses since last reference

1 2

16

Example and definitions

Requests A A B C B D B G
8| 3A 1A 1 2 T 4 D 1 2
" -
Hie 8 5 —— 2OBE R e 2 B i >
Miss
e A 2 3> 1 C 1 2 3— 4 C
<
O Time >

& Age 1s the number of accesses since last reference

1 2

16

Example and definitions

Requests A A B C B D G
8| 3A i 1 2 T 4 D 2
1 -
s S e DT ki .
Miss
e A 2 3> 1 C / 2 S 4 C
]
O Time

& Age 1s the number of accesses since last referenge

1 2

16

Example and definitions

Requests A A B C B D B G
8| 3A i 1 2 T 4 D 1 2
" -
- =T e 2 B i >
Miss
e A 2 5> NG 1 2 3— 4 AC
<
O Time >

& Age 1s the number of accesses since last reference

1 2

16

Example and definitions

Requests A A B C B D B G
8| 3A i 1 2 T 4 D 1 2
" -
- 2OBE R e 2 B i >
Miss
e A 2 3> 1 C 1 2 3— 4 C
<
O Time >

& Age 1s the number of accesses since last reference

1 2

16

Example and definitions

Requests: A A B C B D

8 [X5A 1A 1 2 3 4D 2
=

TS 3 4B 1 2 B 1 1
L

e A 2 3 4 C 1 2 4
]

O Time 2

& Age 1s the number of accesses since last reference

16

Example and definitions

Requests: A A B C B D

8 [X5A 1A 1 2 3 4D 2
=

TS 3 4B 1 2 B 1 1
L

e A 2 3 4 C 1 2 4
]

O Time 2

& Age 1s the number of accesses since last reference

16

Example and definitions

Requests: A A B C B D

8 [X5A 1A 1 2 3 4D 2
=

TS 3 4B 1 2 B 1 1
L

e A 2 3 4 C 1 2 4
]

O Time 2

& Age 1s the number of accesses since last reference

16

Example and definitions

Requests A A B C B D B G
8| 3A i 1 2 T 4 D 1 2
" -
- 2OBE R e s 2 B i >
Miss
e A 2 3> 1 C 1 2 35— 4 C
<
O Time >

& Age 1s the number of accesses since last reference

Hits

Evictions

Ages

16

Example and definitions

Requests A A B C B D B G
8| 3A i 1 2 T 4 D 1 2
1 -
f;-t SRR R 1B T AR 7 B 7 :
1SS
e A 2 3> 1 C 1 2 35— 4 C
]
O Time

& Age 1s the number of accesses since last reference

Hits Together
Evictions sum to 1

Ages

16

Example and definitions

Requests: A A B C B D B G
8 [X5A 1A 1 2 3 4D 1 2
-
NSRS 3 4B 1 2 B 1 2 B 1
e A 2 3 1 C 1 2 3 4 C
]
O Time

& Age 1s the number of accesses since last reference

Hits Together
Evictions R sum to 1

Ages

16

Age distribution

® P,(a) — How many lines have age a?

@& Insight: Lines at age a must hit or be evicted at age = a

© =¥ P,(a) 1s proportional to number of hits and evictions at higher ages

Hits

Evictions

Ages

P,(a) = X (P[H = a] + P|E = a])

Cache size

28

Eviction distribution for LRU

® Pg(a) — How many lines are evicted at age a? Associativity = 32 candidates
& Insight: LRU evicts the oldest (maximum age) candidate
& =» Given W randomly-chosen candidates, victim’s age 2
1s distributed as maximum of W draws from P4 (a) E
£
& Pp(a) = Miss rate X Max. age of W ages — Ages P, (a)
— Evictions P,
& — P[miss] x (P[A < a + 1] — P[4 < a]¥) victions 7. (@

Age

Hit distribution

® Py (a) — How many hits occur at age a? — PReuse distance P, (a)
— Evictions P (a)
— Hits Py (a)

& Insight: Hits at age a imply (absolute) reuse distance of a
Hit rate = 0.17

& Every reuse distance a will hit at age a unless first evicted
Hit

IS
v

(@F) e evicted

& =» P, (a) = Reuse distances at a — Evictions before a

& Sadly, eviction age and reuse distance aren’t independent!

Probability

® How do evictions change hit probability?

& Insight: Replacement policy doesn’'t know reuse distance!

® =» Evictions at a only imply that reuse distance > a, and Al

lower the probability of all later hits Age

Model summary for LRU

@ Age distribution — cache size

¢ Py(a) =

X (P[E = a] + P[H = a))

Cache size

¢ Eviction distribution — replacement policy & associativity

P[A<a+1]" —P[A <a]")

attern via reuse distance distribution Pp (a)

LavE
o Pa(@) = Pp@) x (1 - 24} 22)

31

Generalizing to other policies

® How to model different replacement policies?

® We model policies as ranking functions of candidates’ ages R(a)

& By convention, higher rank =» likelier to be evicted

& Replacement model:
& 1. Given candidates’ ages a,,a, ...ay
¢ 2. Rank candidates as R(a,),R(a,) ... R(ay)
& 3. Evict candidate with highest R(a;)

32

@ Simple + analytically tractable model

& Works for many replacement policies

&

@
@
&

Ranking functions

Pros

ILINCE Ii(@y) = @
PDP: protect lines until age d,,
IRGD: statistical cost function

PRP: conditional hit probability

®

D

(0)

D

Eviction rank

LRU
PDP
IRGD

Age

lange

B8

Generalized eviction distribution

® Age and hit distributions do not change!
¢ LRU evicted the oldest candidate

& Substitute: “maximum age” (for LRU) = “maximum rank” (in general)
¢ 1. Compute distribution of ranks in cache using R(a) and age distribution

¢ 2. Find distribution of maximum rank as W draws from this distribution

¢ Some corner cases to avoid double counting, etc.

34

Model summary for arbitrary ranking functions

@ Age distribution — cache size) ;
Solve through iteration!

A= (see paper)

X (P[E = a] + P[H = a])

Cache size

¢ Eviction distribution — replacement policy & associativity
P,(a) yPlrank < R(g) + Ar]" — P[rank < R(a)]"
& Lll T ULJ }

2 PE(a) > P[miSS] ¢ ranl«:(R(E’:))l>k 14

& Hit distribution — access pattern via reuse distance distribution Py (a)

1 PEG)
o Pa(@) = Ppa) x (1 - 24} 22)

35

Validation — Simulation methodology

¢ Run SPECCPU2006 for 20 B instructions using zsim [Sanchez, ISCA’13]

® 16-way, set-associative hashed caches from 128 KB — 128 MB
& LRU, PDP, and IRGD replacement

¢ Model solved every 100 ms using sample reuse distance distributions

¢ Small monitor gathers LLC reuse distance distribution online

& Compare against simulated cache hit rate

¢ Demanding workload!
& Sampling error

¢ Reuse distance distributions not in equilibrium

36

Validation — SPECCPU2006 results

@ Low error across 400,000 model solutions 1.0 , i . 1
& 29 applications IRGD '

. . 08} — LRU 4

¢ 11 cache sizes, 128 KB — 128 MB S PDP '

& 100 ms interval L 0.6 - !

. |
S 04 |

o 04¢F :

® E.g., for IRGD 2 i
© Median error of 0.1% oS 0.2+ {.

©® Mean error of 1.9% f//

0.0 : e
& 90" pctl error of 5.5% 0 25 50 75 100

Percentile

37

Validation — SPECCPU2006 results

¢ Even more accurate across full program execution

1.0

0.8
=]
= 0.6
o
304
=

0.2

%8

N

e)
P

e

Simulation Model Error

1‘0]] | I 1]] I I 1‘[} 4 I] ¥ l
DB b e i 6 s s s b e S v 4 08L-.. .. _

o : o :]
ﬁ) R R R R 4 ﬁ [}5_ R TERE SRS Lt RREE Latr o

b= & | = BN 5 5
304} N SO A T I

= | = ;; ; ;
0.2F - 0.2 -

0.0 i r i | i | . | i 0.0 J . i L i
DDV DD DD DD D DD D00 QD QD @
A R IR S

hmmer.

38

Case study —

& Cache partitioning with IRGD improves

performance significantly

& No prior scheme can efficiently predict IRGD!

& 4 core system, 4 random apps

¢ Utility-based Cache Partitioning (UCP)

& [Qureshi, MICRO’06]

¢ Gmean +10% speedup, up to +44%
¢ vs for LRU, gmean +4.5%

Cache partitioning

1.20 ; | . :
: . '
' A
o IR R SRR R A
E 1.15 A
8 ’ ! ’ " d
T I [1] FECSEUNINE: EOS——— Lty LA -
2 UCP + IRGD: s
9 1_05_“..“,,..% __;"' ,..UC,P_A+.LR. B
- . 7/ . '4
_9) EJf UL : :
g e |
1,00 fmpmmm pos ™ oo e e e oo o
;i 1 IRU
0.95 L ' '
0 20 40 60 80 100

Workload

39

Extensions — Classification /Zech repore]

¢ For some apps, our assumptions are too 10 cactus
strong

& Specifically: Reuse distances aren’t 11d

Miss Ratio

& This 1s largely addressed by breaking
accesses into two classes:

02L T Simulation

¢ Those likely to hit (short reuse) T mxn w/ Classification

¢ Those unlikely to hit (long reuse) 0.0 . S .
SRR

L 0 WD
: S & &
¢ Boundary chosen adaptively v

40

Extensions — Cache calculus [CAL’16]

® We can generalize this model into system of ordi

D” Df
H' =—H' -
D 1-D

E’ and

o
(=]
|

& Solve ODEs for closed-form solutions on particular

o]
S
[1v]
—
wn
n
=

=]
N
I

® Example: Scanning an array with random replace iy S S W

.0 [] Simulétion ;
— ODE Solution
0.0 -, e

miss rate = 1 — S X ProductLog (—e~1/5/S) 0.0 02 oa os os 10
Cache size as fraction of array

41

Conclusion

& Accurate predictions of cache behavior are very useful
¢ Prior models do not support recent high-performance policies
& This work makes a first step towards modeling arbitrary replacement policies

& Efficient implementation and accurate predictions

42

Questions?

