
TicToc: Time Traveling Optimistic Concurrency Control

Xiangyao Yu Andrew Pavlo Daniel Sanchez Srinivas Devadas
CSAIL MIT Carnegie Mellon University CSAIL MIT CSAIL MIT

yxy@csail.mit.edu pavlo@cs.cmu.edu sanchez@csail.mit.edu devadas@csail.mit.edu

ABSTRACT

Concurrency control for on-line transaction processing (OLTP) data-
base management systems (DBMSs) is a nasty game. Achieving
higher performance on emerging many-core systems is difficult.
Previous research has shown that timestamp management is the key
scalability bottleneck in concurrency control algorithms. This pre-
vents the system from scaling to large numbers of cores.

In this paper we present TicToc, a new optimistic concurrency
control algorithm that avoids the scalability and concurrency bot-
tlenecks of prior T/O schemes. TicToc relies on a novel and prov-
ably correct data-driven timestamp management protocol. Instead
of assigning timestamps to transactions, this protocol assigns read
and write timestamps to data items and uses them to lazily com-
pute a valid commit timestamp for each transaction. TicToc re-
moves the need for centralized timestamp allocation, and commits
transactions that would be aborted by conventional T/O schemes.
We implemented TicToc along with four other concurrency con-
trol algorithms in an in-memory, shared-everything OLTP DBMS
and compared their performance on different workloads. Our re-
sults show that TicToc achieves up to 92% better throughput while
reducing the abort rate by 3.3× over these previous algorithms.

1. INTRODUCTION
Multi-core systems are now pervasive, as parallelism has become

the main approach to increase system performance. Systems with
tens to hundreds of CPU cores are already on the market [2, 12],
and thousand-core chips will be available in the near future [10].
Conventional DBMSs, however, still scale poorly beyond a few
cores. The key bottleneck of on-line transaction processing (OLTP)
DBMSs is their concurrency control algorithm. Prior work has
shown that common concurrency control algorithms suffer from
both fundamental and artificial scalability bottlenecks [34, 37, 29].
Although recent work ameliorates some artificial bottlenecks [20,
21, 24, 28, 32, 35], fundamental bottlenecks remain.

Ideally, concurrency control schemes should restrict the inherent
parallelism in transactional workloads as little as possible, while in-
curring small management overhead that scales well with the num-
ber of cores. Most of the recently-proposed concurrency control
schemes are based on timestamp ordering (T/O) [5]. T/O schemes

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA

© 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2882935

assign a unique, monotonically-increasing timestamp to each trans-
action. The DBMS then uses these timestamps to process conflict-
ing operations in the proper order. The two most common variants
of T/O are multi-version concurrency control (MVCC) [30] and
optimistic concurrency control (OCC) [22].

T/O algorithms are popular because they allow significant con-
currency, but suffer from a fundamental scalability bottleneck: times-
tamp allocation. Using a shared-memory counter to produce times-
tamps limits T/O schemes to a few million transactions per second,
orders of magnitude lower than modern OLTP workload require-
ments [35, 37]. Prior work has proposed hardware and software
techniques to increase timestamp allocation throughput, but both
approaches have serious limitations. On the hardware side, cen-
tralized asynchronous counters [37], remote atomic memory op-
erations [2, 18], and fully-synchronized clocks [19] alleviate the
timestamp allocation bottleneck, but they are challenging to imple-
ment and are not available in current systems. On the software side,
coarse-grained timestamp epochs with group commit [35] reduces
the frequency of timestamp allocations, but still limits concurrency
in common scenarios as we show later.

In this paper we present TicToc, a new concurrency control al-
gorithm that achieves higher concurrency than state-of-the-art T/O
schemes and completely eliminates the timestamp allocation bot-
tleneck. The key contribution of TicToc is a technique that we call
data-driven timestamp management: instead of assigning times-
tamps to each transaction independently of the data it accesses, Tic-
Toc embeds the necessary timestamp information in each tuple to
enable each transaction to compute a valid commit timestamp after
it has run, right before it commits. This approach has two benefits.
First, each transaction infers its timestamp from metadata associ-
ated to each tuple it reads or writes. No centralized timestamp allo-
cator exists, and concurrent transactions accessing disjoint data do
not communicate, eliminating the timestamp allocation bottleneck.
Second, by determining timestamps lazily at commit time, TicToc
finds a logical-time order that enforces serializability even among
transactions that overlap in physical time and would cause aborts
in other T/O-based protocols. In essence, TicToc allows commit
timestamps to move forward in time to uncover more concurrency
than existing schemes without violating serializability.

We present a high-performance, OCC-based implementation of
TicToc, and prove that it enforces serializability. We also design
several optimizations that further improve TicToc’s scalability. Fi-
nally, we compare TicToc with four other modern concurrency con-
trol schemes in the DBx1000 main-memory DBMS [1], using two
different OLTP workloads on a multi-socket, 40-core system. Our
results show that TicToc achieves up to 92% higher throughput than
prior algorithms under a variety of workload conditions.

1

mailto:yxy@csail.mit.edu
mailto:pavlo@cs.cmu.edu
mailto:sanchez@csail.mit.edu
mailto:devadas@csail.mit.edu
http://dx.doi.org/10.1145/2882903.2882935

2. BACKGROUND
OLTP DBMSs support the part of an application that interacts

with end users. End users send requests to the application to per-
form some function (e.g., post a comment, purchase an item). The
application processes these requests and then executes transactions
in the DBMS to read or write to the database. A transaction in the
context of one of these systems is the execution of a sequence of
one or more operations (e.g., SQL queries) on a shared database to
perform some higher-level function [15].

A concurrency control scheme is the protocol that a DBMS uses
to interleave the operations of simultaneous transactions in such
a way to provide the illusion that each transaction is running ex-
clusively on the database. There are two classes of concurrency
control algorithms [5]: two-phase locking and timestamp ordering.

Two-phase locking (2PL) was the first method proven to ensure
correct execution of concurrent DBMS transactions [6, 13]. Under
this scheme, transactions have to acquire locks for a particular el-
ement in the database before they are allowed to execute a read or
write operation on that element. 2PL is considered a pessimistic
approach because it assumes that transactions will conflict and thus
they need to acquire locks to avoid this problem. If a transaction is
unable to acquire a lock for an element, then it is forced to wait un-
til the lock becomes available. If this waiting is uncontrolled, then
the DBMS can incur deadlocks. Thus, a major difference among
2PL variants is their deadlock-avoidance strategy.

Timestamp ordering (T/O) concurrency control schemes gener-
ate a serialization order of transactions a priori based on monoton-
ically increasing timestamps. The DBMS uses these timestamps
to process conflicting operations in the proper order (e.g., read and
write operations on the same element, or two separate write opera-
tions on the same element) [5].

Although 2PL has been widely adopted in traditional DBMSs
(e.g., IBM DB2, Microsoft SQL Server, MySQL), the contention
introduced by locks severely hurts performance in today’s many-
core systems [37]. Almost every OLTP DBMS released in the last
decade that we are aware of, including all but a few of the NewSQL
DBMSs [3], uses a T/O-based concurrency control scheme.

We next discuss T/O algorithms in further detail to understand
their key bottlenecks. We then discuss state-of-the-art algorithms
in Section 2.2. This will provide the necessary background for our
presentation of the TicToc algorithm in Section 3.

2.1 Timestamp Allocation
The execution of transactions must obey certain ordering con-

straints. In the strictest isolation level (i.e., serializable), the ex-
ecution schedule must be equivalent to a schedule where all the
transactions are executed sequentially. In a T/O-based concurrency
control algorithm, this serial order is expressed using timestamps.
Each transaction is assigned a unique and monotonically increas-
ing timestamp as the serial order that is used for conflict detection.
Multi-versioning (MVCC) and optimistic (OCC) concurrency con-
trol algorithms are both timestamp based.

In traditional T/O-based algorithms, a centralized timestamp al-
locator assigns a unique timestamp to each transaction. A common
way to implement the allocator is through an atomic add instruc-
tion that increments a global counter for each new transaction. This
approach, however, is only able to generate less than 5 million in-
structions per second on a modern multi-core system due to the
long latency incurred by the CPU’s cache coherence protocol [11,
35]. As such, most state-of-the-art T/O-based algorithms suffer
from the timestamp allocation bottleneck [37].

Hardware support can alleviate the timestamp allocation bottle-
neck. For example, Tilera processors support remote atomic opera-

tions [14] that can increment the timestamp counter without incur-
ring extra cache coherence traffic [2, 18]. In practice, this achieves
100 million timestamps per second [11]. A second option is to
add a special hardware timestamp counter on the multi-core chip
(which does not exist in any CPUs today). This approach is able
to allocate one billion timestamps per second according to simula-
tions [37]. The third option is to produce timestamps using a clock
that is synchronized across all cores. In fact, small-scale Intel sys-
tems have a synchronized clock [19]. However, fully-synchronized
clocks are challenging to maintain in large-scale, multi-socket sys-
tems, which use different clock sources that drift over time. Keep-
ing these clocks completely synchronized would require either an
unreasonable amount of communication for adjustments, or a global
clock source with an impractically low frequency.

All the hardware solutions described here require some hardware
support that either does not exist in any CPUs or only exists in a
subset of the CPUs today. Even for those CPU architectures that do
have this support, it is not guaranteed that the support will still exist
in the future considering that its cost increases with the number of
cores. Moreover, even if this hardware support exists in all proces-
sors, a T/O-based concurrency control algorithm may still achieve
suboptimal performance. In these algorithms, timestamps are stat-
ically assigned to transactions and the assignment does not depend
on the data access pattern. At runtime, the actual dependency be-
tween two transactions may not agree with the assigned timestamp
order and thus transactions may be unnecessarily aborted, which
hurts performance (see example in Section 3.1).

2.2 Optimistic Concurrency Control
The original OCC algorithm was proposed in 1981 [22], but it

has only recently been adopted in high-performance OLTP DBMSs.
By contrast, MVCC, the other T/O-based algorithm, has been used
in DBMSs for several decades (e.g., Oracle, Postgres).

Under OCC, the DBMS executes a transaction in three phases:
read, validation, and write. In the read phase, the transaction per-
forms read and write operations to tuples without blocking. The
DBMS maintains a separate private workspace for each transac-
tion that contains its read set and write set. All of a transaction’s
modifications are written to this workspace and are only visible to
itself. When the transaction finishes execution, it enters the valida-

tion phase, where the OCC scheme checks whether the transaction
conflicts with any other active transaction. If there are no conflicts,
the transaction enters the write phase where the DBMS propagates
the changes in the transaction’s write set to the database and makes
them visible to other transactions.

Many algorithms have been proposed to refine and improve the
original OCC algorithm [8, 17, 26, 31]. The first OCC deriva-
tives from the 1980s dealt with improving transaction validation
for single-threaded systems with limited memory [17, 31].

One OCC-based protocol that bears some similarity to our pro-
posed TicToc algorithm is the dynamic timestamp allocation (DTA)
approach [4, 7]. Instead of assigning a specific timestamp to a
transaction, DTA allows the transaction to take a range of times-
tamps and adjusts the commit timestamp during the validation phase.
This approach was revisited in the 1990s for “real-time” DBMSs
to give higher priority in the validation phase to certain transac-
tions [23, 25]. Similar to TicToc, DTA-based OCC can reduce
the number of aborts compared to a traditional OCC. The key dif-
ference is that DTA only assigns timestamps to transactions and
not to tuples. As a result, DTA-based OCC requires the DBMS to
use a global critical section for coordination among concurrently-
validating transactions. This is a major scalability bottleneck on
multi-core and multi-socket systems [37].

2

Silo is a state-of-the-art OCC algorithm that achieves high through-
put by avoiding bottlenecks caused by global locks or timestamp
allocation [35]. In Silo, a global timestamp (called an epoch) is
allocated at coarse time granularity (every 40 ms) and is used to in-
dicate the serial order among transactions. Within an epoch, trans-
action IDs are used to identify data versions as well as to detect
conflicts. These IDs, however, do not reflect the relative order
among transactions. This is because they only capture read-after-
write dependencies, but not write-after-read dependencies (anti-
dependencies). Silo is still able to enforce serializable execution,
but only able to exploit a limited amount of parallelism.

To tackle the above issues, we now present a new OCC variant
that uses decentralized data-driven timestamp management.

3. THE TICTOC ALGORITHM
Like other T/O-based algorithms, TicToc uses timestamps to in-

dicate the serial order of the transactions. But unlike these previous
approaches, it does not assign timestamps to transactions using a
centralized allocator. Instead, a transaction’s timestamp is calcu-
lated lazily at its commit time in a distributed manner based on the
tuples it accesses. There are two key advantages of this timestamp
management policy. First, its distributed nature avoids all of the
bottlenecks inherent in timestamp allocation [37], making the al-
gorithm highly scalable. Second, laziness makes it possible for the
DBMS to exploit more parallelism in the workload, thereby reduc-
ing aborts and improving performance.

3.1 Lazy Timestamp Management
To see why lazy timestamp management can reduce conflicts and

improve performance, we consider the following example involv-
ing two concurrent transactions, A and B, and two tuples, x and y.
The transactions invoke the following sequence of operations:

1. A read(x)
2. B write(x)
3. B commits
4. A write(y)

This interleaving of operations does not violate serializability be-
cause transaction A can be ordered before B in the serial order. But
A cannot commit after B in the serial order because the version of
x read by A has already been modified by B.

Traditional OCC algorithms assign timestamps to transactions
statically, essentially agreeing on a fixed sequential schedule for
concurrent transactions. This eases conflict detection, but limits
concurrency. In this example, if transaction A is assigned a lower
timestamp than transaction B, then A can commit since the inter-
leaving of operations is consistent with timestamp order. However,
if transaction A is assigned a higher timestamp than transaction
B, A must eventually abort since committing it would violate the
schedule imposed by timestamp order.

By contrast, TicToc does not allocate timestamps statically, so it
does not restrict the set of potential orderings. It instead calculates
the timestamp of each transaction lazily at the transaction’s com-
mit time by inspecting the tuples it accessed. In our example, when
transaction A reaches its commit point, TicToc calculates the com-
mit timestamp using the versions of the tuple x and y it actually
read/wrote rather than the latest version in the database right now.
And since the version of tuple x read by A is older than the one
written by B, A will be ordered before B and can commit.

To encode the serialization information in the tuples, each data
version in TicToc has a valid range [4] of timestamps bounded by
the write timestamp (wts) and the read timestamp (rts). Specifi-
cally, a particular version is created at timestamp wts and is valid

Algorithm 1: Read Phase

Data: read set RS, tuple t

1 r = RS.get_new_entry()
2 r.tuple = t

Atomically load wts, rts, and value

3 < r.value = t.value, r.wts = t.wts, r.rts = t.rts >

until timestamp rts. A version read by a transaction is valid if and
only if that transaction’s commit timestamp is in between the ver-
sion’s wts and rts. And a write by a transaction is valid if and only
if the transaction’s commit timestamp is greater than the rts of the
previous version. Formally, the following invariant must hold for
transaction T to commit:

∃ commit_ts,

(∀v ∈ {versions read by T}, v.wts ≤ commit_ts ≤ v.rts)

∧ (∀v ∈ {versions written by T}, v.rts < commit_ts) (1)

This policy leads to serializable execution because all the reads
and writes within a transaction occur at the same timestamp. A
read always returns the version valid at that timestamp and a write
is ordered after all the reads to older versions of the same tuple.

3.2 Protocol Specification
Like standard OCC algorithms, each transaction in TicToc ac-

cesses the database without acquiring locks during normal opera-
tion. This is known as the read phase. When the transaction in-
vokes the commit operation, the protocol then takes the transaction
through the validation phase to check whether it should be allowed
to commit. If it does, then it enters the write phase where the trans-
action’s changes are applied to the shared database.

We now discuss these phases in further detail.

3.2.1 Read Phase

The DBMS maintains a separate read set and write set of tu-
ples for each transaction. During this phase, accessed tuples are
copied to the read set and modified tuples are written to the write
set, which is only visible to the current transaction. Each entry in
the read or write set is encoded as {tuple, data, wts, rts}, where
tuple is a pointer to the tuple in the database, data is the data value
of the tuple, and wts and rts are the timestamps copied from the tu-
ple when it was accessed by the transaction. For a read set entry,
TicToc maintains the invariant that the version is valid from wts to
rts in timestamp order.

Algorithm 1 shows the procedure for a tuple access request in the
read phase. The pointer to the tuple is stored in the read or write set
depending on the request type. The data value and read and write
timestamps are also recorded. Note that the value and timestamps
must be loaded atomically to guarantee that the value matches the
timestamps. We explain in Section 3.6 how to efficiently perform
this operation in a lock-free manner.

3.2.2 Validation Phase

In the validation phase, TicToc uses the timestamps stored in the
transaction’s read and write sets to compute its commit timestamp.
Then, the algorithm checks whether the tuples in the transaction’s
read set are valid based on this commit timestamp.

The first step for this validation, shown in Algorithm 2, is to lock
all the tuples in the transaction’s write set in their primary key order
to prevent other transactions from updating the rows concurrently.
Using this fixed locking order guarantees that there are no dead-
locks with other transactions committing at the same time. This
technique is also used in other OCC algorithms (e.g., Silo [35]).

3

Algorithm 2: Validation Phase

Data: read set RS, write set WS

Step 1 – Lock Write Set

1 for w in sorted(WS) do

2 lock(w.tuple)

3 end

Step 2 – Compute the Commit Timestamp

4 commit_ts = 0
5 for e in WS ∪ RS do

6 if e in WS then

7 commit_ts = max(commit_ts, e.tuple.rts +1)

8 else

9 commit_ts = max(commit_ts, e.wts)

10 end

11 end

Step 3 – Validate the Read Set

12 for r in RS do

13 if r.rts < commit_ts then
Begin atomic section

14 if r.wts 6= r.tuple.wts or (r.tuple.rts ≤ commit_ts and

isLocked(r.tuple) and r.tuple not in W) then

15 abort()

16 else

17 r.tuple.rts = max(commit_ts, r.tuple.rts)

18 end

End atomic section
19 end

20 end

The second step in the validation phase is to compute the trans-
action’s commit timestamp from the timestamps stored within each
tuple entry in its read/write sets. As discussed in Section 3.1, for a
tuple in the read set but not in the write set, the commit timestamp
should be no less than its wts since the tuple would have a differ-
ent version before this timestamp. For a tuple in the transaction’s
write set, however, the commit timestamp needs to be no less than
its current rts + 1 since the previous version was valid till rts.

In the last step, the algorithm validates the tuples in the transac-
tion’s read set. If the transaction’s commit_ts is less than or equal
to the rts of the read set entry, then the invariant wts ≤ commit_ts

≤ rts holds. This means that the tuple version read by the trans-
action is valid at commit_ts, and thus no further action is required.
If the entry’s rts is less than commit_ts, however, it is not clear
whether the local value is still valid or not at commit_ts. It is possi-
ble that another transaction has modified the tuple at a logical time
between the local rts and commit_ts, which means the transaction
has to abort. Otherwise, if no other transaction has modified the
tuple, rts can be extended to be greater than or equal to commit_ts,
making the version valid at commit_ts.

Specifically, the local wts is first compared to the latest wts. If
they are different, the tuple has already been modified by another
transaction and thus it is not possible to extend the rts of the lo-
cal version. If wts matches, but the tuple is already locked by a
different transaction (i.e., the tuple is locked but it is not in the
transaction’s write set), it is not possible to extend the rts either. If
the rts is extensible or if the version is already valid at commit_ts,
the rts of the tuple can be extended to at least commit_ts. Note that
the whole process must be done atomically to prevent interference
from other transactions. The DBMS also does not need to validate
tuples that are only in the write set since they are already protected
by the locks acquired at the beginning of the validation phase.

In TicToc, there is no centralized contention point during trans-

Algorithm 3: Write Phase

Data: write set WS, commit timestamp commit_ts

1 for w in WS do

2 write(w.tuple.value, w.value)

3 w.tuple.wts = w.tuple.rts = commit_ts

4 unlock(w.tuple)

5 end

T
im

es
ta

m
p 1

2

3

4

Physical

Time

Step 1

x y

A.read(x)

Step 2

x y

B.write(x)

B commits @ 4

Step 3

x y

A.write(y)

Step 4

x y

A commits @ 3

wts

rts

Figure 1: An example of two transactions executing using TicToc.

action execution. The locks and atomic sections protect only the
tuples that a transaction touches. In Section 5, we present optimiza-
tions to further reduce the contention caused by these operations.

3.2.3 Write Phase

Finally, if all of the tuples that the transaction accessed pass vali-
dation, then the transaction enters the write phase. As shown in Al-
gorithm 3, in this phase the transaction’s write set is written to the
database. For each tuple in the transaction’s write set, the DBMS
sets their wts and rts to commit_ts, indicating that it is a new ver-
sion. All locks that were acquired during the validation phase are
then released, making the changes visible to all other transactions.

3.3 Example
We now revisit the example in Section 3.1 and explain how Tic-

Toc is able to commit both transactions A and B even though pre-
vious OCC algorithms could not. Fig. 1 shows a step-by-step dia-
gram. In this example, one operation occurs in each physical step.
The wts and rts for tuples x and y are encoded as the start and end
point of the vertical bands.

Step 1: Transaction A reads tuple x. The current version of x
and its timestamps (wts = 2 and rts = 3) are stored in A’s read set.

Step 2: Transaction B writes to tuple x and commits at times-
tamp 4. The version of x will be overwritten and both the wts and
rts of the new version will become 4.

Step 3: Transaction A writes to tuple y. Since the previous ver-
sion of y has rts = 2, the new version can be written at timestamp
3. At this point, the new version of y is only stored in the write set
of transaction A and is not visible to other transactions yet.

Step 4: Transaction A enters the validation phase. According
to Algorithm 2, the commit timestamp should be the maximum of
the read tuple’s wts and write tuple’s rts +1, which is timestamp
3 in this example. Then, transaction A validates the read set by
checking whether the version of tuple x it read is valid at timestamp
3. Since transaction A’s version of tuple x is valid at timestamp 2
and 3, it passes the validation phase and commits.

Note that when the DBMS validates transaction A, it is not even
aware that tuple x has been modified by another transaction. This
is different from existing OCC algorithms (including Hekaton [24]
and Silo [35]) which always recheck the tuples in the read set.
These algorithms would abort transaction A in this example be-
cause tuple x has already been modified since transaction A last
read it.

4

3.4 Spurious Aborts
A transaction may not always be able to validate its read set dur-

ing the validation phase, which leads to aborts that may seem spu-
rious. For example, if tuple y in Fig. 1 was originally valid from
timestamps 1 to 4, then transaction A’s commit_ts has to be 5. And
since x’s rts cannot be extended to 5, A has to abort. In this case,
A aborts not because of the timestamps and not data values.

In general, the reason that these aborts occur is because other
transactions violate serializability. For the example above, imagine
that there exists a transaction C reading tuple x and y after B com-
mits but before A commits. C is able to commit at timestamp 4 as
it observes B’s write to x and the original value of y. C will extend
the rts of y to 4. This means that A cannot commit now without vi-
olating serializability because there is a dependency cycle between
A, B and C1. Note that when A enters the validation phase, it does
not know that C exists or that A would form a dependency cycle
with other committed transactions.

Note that in TicToc a transaction aborts only if a tuple it reads
or writes is overwritten by another transaction that enters the vali-
dation phase first. So only concurrent transactions (i.e., one starts
before the other commits) can cause aborts. If a transaction com-
mits, then all transactions that start after it will observe its changes.

3.5 Discussion
Beyond scalability and increased concurrency, TicToc’s protocol

has two other distinguishing features. Foremost is that the trans-
action’s logical commit timestamp order may not agree with the
physical commit time order. In the example from shown in Fig. 1,
transaction A commits physically after transaction B, but its com-
mit timestamp is less than transaction B’s commit timestamp. This
means that A precedes B in the serial schedule. This also indicates
that TicToc is not order-preserving serializable, since the serial or-
der may not be the commit order.

Another feature of TicToc is that logical timestamps grow more
slowly than the number of committed transactions. Moreover, the
rate at which the logical timestamp advances is an indicator of the
contention level in the workload. This is because different trans-
actions may commit with the same logical timestamp. Such a sce-
nario is possible if two transactions have no conflicts with each
other, or if one transaction reads a version modified by the other
transaction. At one extreme, if all transactions are read-only and
thus there is no contention, all transactions will have the same com-
mit timestamp. At the other extreme, if all the transactions write
to the same tuple, each commit would increase the tuple’s wts by
one, and the logical timestamp would increase at the same rate as
the number of committed transactions. Since most OLTP work-
loads have some contention, the DBMS’s logical timestamps will
increase more slowly than the number of committed transactions;
the higher the contention, the faster logical timestamps advance.
We will show this in Section 6.5.

3.6 Implementation
As shown in Algorithms 1 and 2, both the read and validation

phases require the DBMS to atomically read or write tuples’ times-
tamps. But implementing these atomic sections using locks would
degrade performance. To avoid this problem, TicToc adopts an op-
timization from Silo [35] to encode a lock bit and a tuple’s wts and
rts into a single 64-bit word (TS_word) of the following form:

1
A<B due to write-after-read on x, B<C due to read-after-write on x, and C<A

due to write-after-read on y.

Algorithm 4: Atomically Load Tuple Data and Timestamps

Data: read set entry r, tuple t

1 do

2 v1 = t.read_ts_word()

3 read(r.data, t.data)

4 v2 = t.read_ts_word()

5 while v1 6= v2 or v1.lock_bit == 1;
6 r.wts = v1.wts

7 r.rts = v1.wts + v1.delta

TS_word [63]: Lock bit (1 bit).
TS_word [62:48]: delta = rts − wts (15 bits).
TS_word [47:0]: wts (48 bits).

The highest-order bit is used as the lock bit. wts is stored as a 48-
bit counter. To handle wts overflows, which happens at most once
every several weeks for the most active workloads, the tuples in the
database are periodically loaded in the background to reset their
wts. This process is infrequent and can be performed concurrently
with normal transactions, so its overhead is negligible.

Algorithm 4 shows the lock-free implementation of atomically
loading the data and timestamps for the tuple read operation from
Algorithm 1. TS_word is loaded twice, before and after loading the
data. If these two TS_word instances are the same and both have the
lock bit unset, then the data value must not have changed and is still
consistent with the timestamps. Otherwise, the process is repeated
until both timestamps are consistent. There are no writes to shared
memory during this process. To avoid starvation, one could revert
to more heavy-weight latching if this check repeatedly fails.

Similarly, Algorithm 5 shows the steps to atomically extend a
tuple’s rts in TicToc’s validation phase (Algorithm 2). Recall that
this operation is called if commit_ts is greater than the local rts;
the DBMS makes the local version valid at commit_ts by extending
the rts of the tuple. The first part of the algorithm is the same as
explained in Section 3.2.2; validation fails if the tuple’s rts cannot
possibly be extended to commit_ts.

Since we only encode delta in 15 bits in TS_word, it may over-
flow if rts and wts grow far apart. If an overflow occurs, we also
increase wts to keep delta within 15 bits without affecting the cor-
rectness of TicToc. Intuitively, this can be considered a dummy
write to the tuple at the new wts with the same data. Inserting such
a dummy write does not affect serializability. Increasing wts, how-
ever, may increase the number of aborts since another transaction
may consider the version as being changed while it has not actually
changed. This effect is more problematic the fewer bits delta uses.
Although not shown in the paper, our experiments indicate that 15
bits is enough for the overflow effect to be negligible.

Finally, the new wts and delta are written to a new TS_word

and atomically applied to the tuple. The DBMS uses an atomic
compare-and-swap instruction to make sure that the TS_word has
not been modified by other transactions simultaneously.

Scanning tuples in a database may miss tuples being inserted
because they are not observed by the scanning transaction. Stan-
dard techniques for solving this problem include using locks in in-
dexes [31] or rescanning the tuples during the validation phase [24].
Both techniques incur significant performance overhead. This can
be avoided by running the transactions at lower isolation levels
(e.g., snapshot isolation) if the application allows it. We believe
that it is possible to apply the data-driven timestamp management
concept used in TicToc to order-preserving indexes to avoid this
phantom anomaly for serializable transactions. This exploration is
outside of the scope of this paper and is left for future work.

5

Algorithm 5: Read-Set Validation

Data: read set entry r, write set W , commit timestamp
commit_ts

1 do

2 success = true

3 v2 = v1 = r.tuple.read_ts_word()

4 if r.wts 6= v1.wts or (v1.rts ≤ commit_ts and

isLocked(r.tuple)) and r.tuple not in W then

5 Abort()
6 end

Extend the rts of the tuple

7 if v1.rts ≤ commit_ts then
Handle delta overflow

8 delta = commit_ts − v1.wts

9 shift = delta − delta ∧ 0x7fff

10 v2.wts = v2.wts + shift

11 v2.delta = delta − shift

Set the new TS word

12 success = compare_and_swap(r.tuple.ts_word, v1, v2)

13 end

14 while not success;

3.7 Logging and Durability
The TicToc algorithm can support logging and crash recovery

in a similar way as traditional concurrency control algorithms. The
DBMS can use the canonical ARIES approach if there is only a sin-
gle log file [27]. But ARIES cannot provide the bandwidth required
in today’s multi-core systems [39]. Implementing arbitrarily scal-
able logging is out of the scope of this paper and is left for future
work. In this section, we briefly discuss one idea of implementing
parallel logging with multiple log files on TicToc.

Parallel logging has been studied in other DBMSs [36, 39]. The
basic idea is to perform logging in batches. All transactions in a
previous batch must be ordered before any transaction in a later
batch, but the relative ordering among transactions within the same
batch can be arbitrary. For each batch, logs are written to multiple
files in parallel. A batch is considered durable only after all the logs
within that batch have been written to files.

In TicToc, the batching scheme requires that transactions in a
later batch must have commit timestamps greater than transactions
in a previous batch. This can be achieved by setting a minimum
commit timestamp for transactions belonging to the new batch. To
start a new batch, each worker thread should coordinate to compute
the minimum commit timestamp that is greater than the commit
timestamps of all transactions in previous batches. Each transac-
tion in the new batch has a commit timestamp greater than this
minimum timestamp. Setting a minimum timestamp does not af-
fect the correctness of TicToc since timestamps only increase in this
process, and transactions are properly ordered based on their times-
tamps. The performance of this parallel logging scheme should be
the same as with other concurrency control algorithms [36, 39].

4. PROOF OF CORRECTNESS
In this section, we prove that the TicToc algorithm is able to

correctly enforce serializability.

4.1 Proof Idea
To prove that a schedule is serializable in TicToc, we need to

show that the schedule is equivalent to another schedule where all
the transactions are executed serially. Previous T/O concurrency
control algorithms use the transaction’s unique timestamps to de-

termine the serial order. In TicToc, however, the commit times-
tamp is derived from the accessed tuples and no global coordination
takes place, and thus two transactions may commit with the same
timestamp. Therefore, transactions cannot be fully ordered based
on their commit timestamps alone.

Our proof instead uses a combination of the timestamp and phys-
ical time orders [38]. A transaction’s logical commit time is its
commit timestamp; its physical commit time is the physical time
between a transaction’s validation phase and write phase. We de-
fine the following specific serial order.

DEFINITION 1 (SERIAL ORDER). Using <s, <ts and <ps to

indicate serial order, commit timestamp order, and physical commit

time order, respectively, the serial order between transaction A and

B is defined as follows:

A <s B , A <ts B ∨ (A =ts B ∧A ≤pt B)

The serial order defined in Definition 1 is a total order among all
the transactions. Transaction A is ordered before transaction B if
A has a smaller commit timestamp or if they have the same commit
timestamp but A commits before B in physical time. If A and B

both have the same logical and physical commit time, then they can
have arbitrary serial order.

The goal of the correctness proof is summarized as follows:

THEOREM 1. Any schedule in TicToc is equivalent to the serial

schedule defined in Definition 1.

To prove this, we show that the dependencies in the actual sched-
ule are maintained as the dependencies in the equivalent serial sched-
ule. Specifically, a read in the actual schedule always returns the
value of the last store in the serial schedule. We also prove that
transactions having the same commit timestamp and physical com-
mit time do not have conflicts.

4.2 Formal Proofs
We first prove a useful lemma that will be used to prove subse-

quent Lemmas 2 and 3.

LEMMA 1. Transactions writing to the same tuple must have

different commit timestamps.

PROOF. According to Algorithms 2 and 3, a tuple is locked
while being written, therefore only one transaction can write to that
tuple at any time. According to line 3 in Algorithm 3, both wts and
rts of the modified tuple become its commit timestamp.

According to line 7 in Algorithm 2, if another transaction writes
to the same tuple at a later time, its commit timestamp must be
strictly greater than the tuple’s current rts. Since rts never decreases
in the TicToc algorithm, the commit timestamp of the later trans-
action must be greater than the commit timestamp of the earlier
transaction. Therefore, transactions writing to the same tuple must
have different commit timestamps.

As discussed in the previous section, two requirements are needed
to prove Theorem 1. First, transactions that have the same commit
timestamp and physical time must not conflict. Second, a read al-
ways returns the latest write in the serial order. We now prove these
two requirements for TicToc:

LEMMA 2. Transactions that commit at the same timestamp

and physical time do not conflict with each other.

PROOF. According to Lemma 1, write-write conflicting transac-
tions must have different commit timestamps. Therefore, we only

6

need to show that all read-write or write-read conflicting transac-
tions commit at different logical or physical time.

Consider a pair of transactions committing at the same physical
time. One reads a tuple and the other writes to the same tuple.
Then, the commit timestamp of the reading transaction must be less
than or equal to the tuple’s current rts. And the commit timestamp
of the writing transaction must be greater than the tuple’s current
rts. Therefore, they have different commit timestamps.

LEMMA 3. A read operation from a committed transaction re-

turns the value of the latest write to the tuple in the serial schedule.

PROOF. We first prove that if a committed transaction’s read
observes another transaction’s write, then the reading transaction
must be ordered after the writing transaction in the serial schedule.

A tuple’s wts is always updated together with its value, and the
wts is always the commit timestamp of the transaction that writes
the value. Line 9 in Algorithm 2 states that if another transaction
reads the value, then its commit timestamp must be greater than or
equal to wts. If the commit timestamp equals wts, then the reading
transaction still commits after the writing transaction in physical
time because the writing transaction only makes its writes globally
visible after its physical commit time. By Definition 1, the reading
transaction is always ordered after the writing transaction in the
serial schedule.

We next show that the write observed by the following read is
the latest write in the serial schedule. In other words, if the writing
transaction has timestamp t1 and the reading transaction has times-
tamp t2, no other write to the same tuple happens at timestamp t,
such that t1 ≤ t ≤ t2.

According to Algorithm 2, when the reading transaction com-
mits, it can observe a consistent view of the tuple’s TS_word with
wts and rts, where t1 = wts and t2 ≤ rts. This implies that so far in
physical time, no write to the same tuple has happened between t1
and t2 in logical time because otherwise the wts of the tuple would
be greater than t1. No such write can happen in the future either
because all future writes will have timestamps greater the tuple’s
rts and thus greater than t2.

PROOF OF THEOREM 1. According to Lemma 2, transactions
with the same commit timestamp and physical commit time do not
conflict. Thus, all serial orders among them are equivalent.

According to Lemma 3, for transactions with different commit
timestamps or physical commit times, a read in a transaction al-
ways returns the latest write in the serial schedule. According to
Lemma 1, only one such latest write can exist so there is no ambi-
guity. Then, for each transaction executed in the actual schedule,
all the values it observes are identical to the values it would observe
in the serial schedule. Hence, the two schedules are equivalent.

5. OPTIMIZATIONS
The TicToc algorithm as presented so far achieves good perfor-

mance when tested on a multi-socket system (Section 6). There
are, however, still places in the validation phase that may create
unnecessary contention and thus hurt performance. For example,
locking the transaction’s write set during the validation phase may
cause thrashing for write-intensive benchmarks.

In this section, we discuss several optimizations that we devel-
oped for TicToc to minimize contention. We also discuss how Tic-
Toc works for weaker isolation levels for those applications that do
not need strong serializability.

5.1 No-Wait Locking in Validation Phase
In TicToc’s validation phase (Algorithm 2), tuples in a transac-

tion’s write set are locked following the primary key order. This is

vuzyxtuples

transactions A B C D

Locking Waiting

Figure 2: An example of lock thrashing in a 2PL protocol.

essentially the same process as a 2PL protocol where a transaction
may wait if the next lock that it needs to acquire is not immediately
available. Waiting for locks, however, may create thrashing prob-
lems at high core counts, even if locks are acquired in primary key
order [37]. Thrashing happens when a transaction already holds
locks and waits for the next lock. The locks it already holds, how-
ever, may block other transactions.

Consider a pathological case shown in Fig. 2 where each trans-
action tries to lock two tuples. Transaction D has already acquired
both of the locks that it needs, while transactions A, B, and C are
waiting for locks held by other transactions. When transaction D

commits, C is able to acquire the lock and make forward progress.
Transactions A and B, however, still need to wait. The end result
is that the four transactions are validated sequentially.

Note that, in this particular example, it is actually possible to
abort transactions A and C so that B and D can acquire the locks
and run in parallel. After they finish, A and C can also run in
parallel. This schedule only takes half the execution time compared
to the pathological schedule, but it requires an additional deadlock
detection thread to quickly identify these scenarios.

A better approach to avoid the thrashing problem is to use a 2PL
variant based on non-waiting deadlock prevention in TicToc’s vali-
dation phase [5]. This protocol optimization, which we refer to as
no-wait, is like running a mini concurrency control algorithm in-
side of the TicToc algorithm. With no-wait, if a transaction fails to
acquire a lock for a tuple in its write set during the validation phase,
the validation is immediately aborted (releasing any locks) and then
TicToc restarts the validation phase. The transaction sleeps for a
short period (1 µs) before retrying to reduce restarts. Our experi-
ments show that the algorithm’s performance is not overly sensitive
to the length of this sleep time as long as it is not too large.

The no-wait optimization minimizes the blocking and allows more
transactions to validate simultaneously. In the example in Fig. 2, if
no-wait is used, then A or B may run in parallel with D.

5.2 Preemptive Aborts
The first step of the validation phase (Algorithm 2) locks the tu-

ples in the transaction’s write set before it examines the read set.
If a transaction ends up aborting because read set validation fails,
then this locking potentially blocked other transactions unnecessar-
ily. We observe that for some transactions the decision to abort can
actually be made before locking the write set tuples. We call this
optimization preemptive abort. Since all the serialization infor-
mation is already stored in the tuples’ timestamps, it can be used to
make early abort decisions, thereby reducing contention.

To better understand this, consider a transaction with one tuple
in its read set. This transaction will fail the validation phase if this
tuple’s local rts is less than the transaction’s commit timestamp and
its local wts does not match the tuple’s latest wts. A tuple’s latest
wts can be atomically read from the TS_word of the tuple. The
transaction’s commit timestamp, however, cannot be accurately de-
termined before the write set is locked because a tuple’s rts in the
write set might be changed by a different transaction. The key ob-
servation here is that we just need to find an approximate commit

7

T
im

es
ta

m
p 1

2

3

4

Physical

Time

Step 1

x

A.read(x)

Step 2

x

B extends

x’s rts

Step 3

x

C.write(x)

Step 4

x

A validates x

with commit_ts = 3

Figure 3: Using a tuple’s timestamp history to avoid aborting.

timestamp. Thus, this optimization achieves some early aborts, but
does not catch all the transactions that will fail read set validation.

We compute the approximate commit timestamp using the local
wts and rts in the read and write sets. For each tuple in the read set,
the approximate commit timestamp is no less than the tuple’s local
wts; for each tuple in the write set, the approximate commit times-
tamp is no less than the tuple’s local rts +1. Note that the actual
commit timestamp is no less than our approximation, because the
latest timestamps in the tuples cannot be less than the local times-
tamps. Once an approximate commit timestamp is determined, it is
used to determine if the transaction should be preemptively aborted.

5.3 Timestamp History
TicToc always aborts a transaction if its local rts of a tuple is

less than commit_ts and the local wts does not match the latest wts.
There are some cases, however, where the latest wts is greater than
commit_ts and the local version is still valid at commit_ts. Such
transactions can actually commit without violating serializability.

Fig. 3 shows such an example. Transaction A first reads tuple
x with wts = 2 and rts = 2. Later, tuple x’s rts is extended to
timestamp 3 due to the validation of transaction B. Then, tuple x

is modified by transaction C and thus the latest wts and rts both
become 4. Finally, transaction A enters the validation phase and
validates tuple x at commit_ts = 3 (not 2 because transaction A

accessed other tuples not shown in the figure). At this point, trans-
action A only has the local timestamps of x (wts = 2 and rts = 2)
and knows that the local version is valid at timestamp 2, but does
not know if it is still valid at timestamp 3. From transaction A’s
perspective, it is possible that the local version has been extended
to timestamp 3 by some other transaction; it is also possible, how-
ever, that some other transaction did a write that is only valid at
timestamp 3. Based on all the information transaction A has, these
two situations are indistinguishable.

To prevent these unnecessary aborts, we can extend TicToc to
maintain a history of each tuple’s wts rather than just one scalar
value. When a new version is created for a tuple, the wts of the
old version is stored in a history buffer. The value of the old ver-
sion does not need to be stored since transactions in TicToc always
read the latest data version. Therefore, the storage overhead of this
optimization in TicToc is smaller than that of MVCC. In our imple-
mentation, the history buffer is a per-tuple array that keeps a fixed
number of the most recent wts’s, and thus the DBMS does not have
to perform garbage collection.

During a transaction’s validation phase, if a read tuple’s local rts

is less than commit_ts and the wts does not match the latest wts,
then the DBMS checks if the wts matches any version in the tuple’s
history buffer. If so, the valid range of that version is from the local
wts to the next wts in the history buffer. If commit_ts falls within
that range, the tuple can still be validated.

5.4 Lower Isolation Levels
The TicToc algorithm described in Section 3 provides serializ-

able isolation, which is the strictest isolation level in ANSI SQL.
With minimal changes, TicToc can also support lower isolation lev-

els for those applications that are willing to sacrifice isolation guar-
antees in favor of better performance and lower abort rate.

Snapshot Isolation: This level mandates that all of a transac-
tion’s reads see a consistent snapshot of the database, and that the
transaction will commit only if it does not conflict with any con-
current updates made since that snapshot. In other words, all the
read operations should happen at the same timestamp (commit_rts)
and all the write operations should happen at a potentially later
timestamp (commit_wts), and the written tuples are not modified
between commit_rts and commit_wts.

To support snapshots, instead of using a single commit_ts and
verifying that all reads and writes are valid at this timestamp, two
commit timestamps are used, one for reads (commit_rts) and one
for writes (commit_wts). The algorithm verifies that all reads are
valid at commit_rts and all writes are valid at commit_wts. It also
guarantees that, before the transaction writes to a tuple, its previous
wts is less than or equal to commit_rts. All of these can be imple-
mented with minor changes to Algorithm 2.

Repeatable Reads: With this weaker isolation level, a trans-
action’s reads do not need to happen at the same timestamp even
though writes should still have the same commit timestamp. This
means there is no need to verify the read set in the validation phase.
For a tuple read and updated by the same transaction, however, the
DBMS still needs to guarantee that no other updates happened to
that tuple since the transaction last read the value.

6. EXPERIMENTAL EVALUATION
We now present our evaluation of the TicToc algorithm. For

these experiments, we use the DBx1000 OLTP DBMS [1]. This
is a multi-threaded, shared-everything system that stores all data in
DRAM in a row-oriented manner with hash table indexes.

DBx1000 uses worker threads (one per core) that invoke transac-
tions from a fixed-length queue. Each transaction contains program
logic intermixed with query invocations. Queries are executed se-
rially by the transaction’s worker thread as they are encountered in
the program logic. Transaction statistics, such as throughput and
abort rates, are collected after the system achieves a steady state
during the warm-up period. The abort rate is calculated as the to-
tal number of aborts divided by the total number of transaction at-
tempts (both committed and aborted transactions).

DBx1000 includes a pluggable lock manager that supports dif-
ferent concurrency control schemes. This allows us to compare five
approaches all within the same system:

TICTOC: Time traveling OCC with all optimizations
SILO: Silo OCC [35]

HEKATON: Hekaton MVCC [24]
DL_DETECT: 2PL with deadlock detection

NO_WAIT: 2PL with non-waiting deadlock prevention

We deployed DBx1000 on a 40-core machine with four Intel
Xeon E7-4850 CPUs and 128 GB of DRAM. Each core supports
two hardware threads, for a total of 80 threads. The experiments
with more than 40 threads (shaded areas in the throughput graphs)
use multiple threads per core, and thus may scale sub-linearly due
to contention. To minimize memory latency, we use numactl to
ensure each thread allocates memory from its own socket.

6.1 Workloads
We next describe the two benchmarks that we implemented in

the DBx1000 DBMS for this analysis.

TPC-C: This workload is the current industry standard to eval-

8

DL_DETECT HEKATON NO_WAIT SILO TICTOC

0 20 40 60 80

Thread Count

0.0

0.5

1.0

1.5

2.0
T

h
ro

u
g

h
p

u
t

(M
ill

io
n

 t
x
n

/s
)

(a) Throughput

0 20 40 60 80

Thread Count

0.0

0.2

0.4

0.6

0.8

A
b

o
rt

 R
a

te

(b) Abort Rate

Figure 4: TPC-C (4 Warehouses) – Scalability of different concurrency control algorithms on TPC-C workload with 4 warehouses.

0 20 40 60 80

Number of Warehouses

0.0

1.0

2.0

3.0

4.0

5.0

T
h

ro
u

g
h

p
u

t
(M

ill
io

n
 t

x
n

/s
)

(a) Throughput

0 20 40 60 80

Number of Warehouses

0.0

0.2

0.4

0.6

0.8

A
b

o
rt

 R
a

te

(b) Abort Rate

Figure 5: TPC-C (Variable Warehouses) – Scalability of different concurrency control algorithms on TPC-C when sweeping the number
of warehouses. The number of worker threads in DBx1000 is fixed at 80.

0 20 40 60 80

Thread Count

0.0

5.0

10.0

15.0

20.0

25.0

30.0

T
h

ro
u

g
h

p
u

t
(M

ill
io

n
 t

x
n

/s
)

DL_DETECT

HEKATON

NO_WAIT

SILO

TICTOC

Figure 6: YCSB (Read-Only) – Results for a read-only YCSB
workload for the different concurrency control schemes and the
atomic add timestamp allocator.

uate OLTP systems [33]. It consists of nine tables that simulate a
warehouse-centric order processing application. Only two (Payment
and NewOrder) out of the five transactions in TPC-C are modeled in
our simulation, with the workload comprised of 50% of each type.
These two make up 88% of the default TPC-C mix and are the most
interesting in terms of complexity for our evaluation.

YCSB: The Yahoo! Cloud Serving Benchmark is representa-
tive of large-scale on-line services [9]. Each query accesses a sin-
gle random tuple based on a Zipfian distribution with a parameter
(theta) that controls the contention level in the benchmark [16].
We evaluate three different variations of this workload:

1. Read-Only: Two read queries per transaction and a uniform
access distribution (theta=0).

2. Medium Contention: 16 queries per transaction (90% reads
and 10% writes) with a hotspot of 10% tuples that are ac-
cessed by ∼60% of all queries (theta=0.8).

3. High Contention: 16 queries per transaction (50% reads and
50% writes) with a hotspot of 10% tuples that are accessed
by ∼75% of all queries (theta=0.9).

For all of the YCSB experiments in this paper, we used a ∼10 GB
database containing a single table with 10 million records. Each tu-
ple has a single primary key column and then 10 additional columns
each with 100 bytes of randomly generated string data.

6.2 TPC-C Results
We first analyze the performance of all the concurrency control

algorithms on the TPC-C benchmark.
The number of warehouses in TPC-C determines both the size

of the database and the amount of concurrency. Each warehouse
adds ∼100 MB to the database. The warehouse is the root entity
for almost all of the tables in the database. We follow the TPC-C
specification where ∼10% of the NewOrder transactions and ∼15%
of the Payment transactions access a “remote” warehouse.

We first run TPC-C with four warehouses, as this is an example
of a database that has a lot of contention. We then run an experi-
ment where we fix the number of threads and scale the number of
warehouses in the database. This measures how well the algorithms
scale when the workload has more parallelism opportunities.

6.2.1 4 Warehouses

The results in Fig. 4 show that the performance improvements
of additional threads are limited by contention on the WAREHOUSE

table. Each Payment transaction updates a per-warehouse tuple in
this table and each NewOrder transaction reads that tuple. Since
there are only four such tuples in the entire database, they become
the bottleneck of the whole system.

The Payment transaction is simpler faster than NewOrder trans-
actions. In SILO, when the NewOrder transaction enters the valida-
tion phase, it is likely that a Payment transaction has already mod-
ified the tuple in the WAREHOUSE table. Therefore, SILO (like other

9

DL_DETECT HEKATON NO_WAIT SILO TICTOC

0 20 40 60 80

Thread Count

0.0

1.0

2.0

3.0

4.0
T

h
ro

u
g

h
p

u
t

(M
ill

io
n

 t
x
n

/s
)

(a) Throughput

0 20 40 60 80

Thread Count

0.0

0.1

0.1

0.2

0.2

A
b

o
rt

 R
a

te

(b) Abort Rate

Figure 7: YCSB (Medium Contention) – Results for a read-write YCSB workload with medium contention. Note that DL_DETECT is only
measured up to 40 threads.

0 20 40 60 80

Thread Count

0.0

0.2

0.4

0.6

0.8

1.0

T
h

ro
u

g
h

p
u

t
(M

ill
io

n
 t

x
n

/s
)

(a) Throughput

0 20 40 60 80

Thread Count

0.0

0.2

0.4

0.6

0.8

1.0

A
b

o
rt

 R
a

te

(b) Abort Rate

Figure 8: YCSB (High Contention) – Results for a read-write YCSB workload with high contention. Note that DL_DETECT is only
measured up to 40 threads.

traditional OCCs) frequently aborts these NewOrder transactions.
In TICTOC, the NewOrder transaction would also see that the

WAREHOUSE tuple has been modified. But most of the time the trans-
action can find a common timestamp that satisfies all the tuples it
accesses and thus is able to commit. As shown in Fig. 4, TICTOC

achieves 1.8× better throughput than SILO while reducing its abort
rate by 27%. We attribute this to TICTOC’s ability to achieve better
parallelism by dynamically selecting the commit timestamp.

The figure also shows that DL_DETECT has the worst scalabil-
ity of all the algorithms. This is because DL_DETECT suffers from
the thrashing problem discussed in Section 5.1. Thrashing occurs
because a transaction waits to acquire new locks while holding
other locks, which cause other transactions to block and form a
convoy. NO_WAIT performs better than DL_DETECT as it avoids
this thrashing problem by not waiting for locks. HEKATON also
supports non-blocking reads since a transaction can always access
a previous version and transactions that perform conflicting writes
are immediately aborted. Since rolling back an aborted transac-
tion in an in-memory DBMS is a relatively fast operation, these in-
creased aborts do not significantly hurt performance. But NO_WAIT

still performs worse than TICTOC and SILO due to the usage of
locks. Similarly, HEKATON is slower because of the overhead of
maintaining multiple versions.

6.2.2 Variable Warehouses

As we increase the number of warehouses while fixing the num-
ber of worker threads, the contention in the system will decrease.
In Fig. 5 the number of warehouses is swept from 4 to 80 but the
number of worker threads is fixed to 80.

When the number of warehouses is small and contention is high,
TICTOC performs consistently better than SILO for the same rea-
son as in Section 6.2.1. As the number of warehouses grows, par-
allelism in TPC-C becomes plentiful, so the advantage of TICTOC

over SILO decreases and eventually disappears at 80 warehouses.
With respect to the scheme’s measured abort rate, shown in Fig. 5b,
TICTOC has consistently fewer aborts than SILO for fewer than 80
warehouses because it is able to adjust timestamps to commit trans-
actions that SILO aborts.

6.3 YCSB Results
We now compare TicToc to other concurrency control schemes

under different YCSB scenarios.

6.3.1 Read-Only

We executed a YCSB workload comprising read-only transac-
tions with a uniform access distribution. This provides a baseline
for each concurrency control scheme before we explore more com-
plex workload arrangements.

The results in Fig. 6 show that all of the algorithms except for
HEKATON scale almost linearly up to 40 threads. Beyond that
point, scaling is sub-linear as the threads executing on the same
physical core contend for pipeline resources. TICTOC and SILO

achieve better absolute performance than the other algorithms be-
cause they do not have locking overheads. HEKATON is limited
by its centralized timestamp allocation component. It uses a single
atomic add instruction on a global counter, which causes threads
accessing the counter from different cores to incur cache coherence
traffic on the chip. In our 4-socket system, this limits HEKATON to
∼5 million timestamps per second.

6.3.2 Medium Contention

In a read-only workload, transactions do not conflict with each
other and thus any algorithm without artificial bottlenecks should
scale. For workloads with some contention, however, the ways that
the algorithms handle conflicts affect the DBMS’s performance.

Fig. 7 shows the throughput and abort rate of the medium con-
tention YCSB workload. The results in Fig. 7a show that SILO and

10

SILO No Opts NoWait NoWait + PreAbort All Opts

0 20 40 60 80

Thread Count

0.0

0.5

1.0

1.5

2.0

T
h
ro

u
g
h
p
u
t

(M
ill

io
n
 t

x
n
/s

)

(a) Throughput

0 20 40 60 80

Thread Count

0.0

0.2

0.4

0.6

0.8

A
b
o
rt

 R
a
te

(b) Abort Rate

SILO
No Opts

+ NoWait

+ PreAbort
+ History

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

.
R

u
n
ti
m

e

Useful Work Abort Manager

(c) Execution Time Breakdown (80 threads)

Figure 9: TicToc Optimizations (TPC-C) – Throughput measurements of TicToc using the different optimizations from Section 5 for
TPCC with 4 warehouses.

0 20 40 60 80

Thread Count

0.0

0.2

0.4

0.6

0.8

1.0

T
h
ro

u
g
h
p
u
t

(M
ill

io
n
 t

x
n
/s

)

(a) Throughput

0 20 40 60 80

Thread Count

0.0

0.2

0.4

0.6

A
b
o
rt

 R
a
te

(b) Abort Rate

SILO
No Opts

+ NoWait

+ PreAbort
+ History

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

.
R

u
n
ti
m

e

Useful Work Abort Manager

(c) Execution Time Breakdown (80 threads)

Figure 10: TicToc Optimizations (YCSB) – Throughput measurements of TicToc using the different optimizations from Section 5 for a
high contention read-write YCSB workload.

TICTOC both scale well and achieve similar throughput. But the
graph in Fig. 7b shows that TICTOC has a ∼3.3× lower abort rate
than SILO. This is due to TICTOC’s data-driven timestamp man-
agement, as transactions can commit at the proper timestamp that
is not necessarily the largest timestamp so far.

The throughput measurements show that DL_DETECT again has
the worst scalability of all the algorithms due to lock trashing.
Since NO_WAIT does better since transactions can get immediately
restarted when there is a deadlock. HEKATON performs better than
the 2PL schemes since multiple versions allows more read opera-
tions to succeed (since they can access older versions) which leads
to fewer transaction aborts. But this adds overhead that causes
HEKATON to perform worse than TICTOC and SILO.

6.3.3 High Contention

We now compare the algorithms on a YCSB workload with high
contention. Here, conflicts are more frequent and the workload has
lower inherent parallelism, which stresses the DBMS and allows us
to more easily identify the main bottlenecks in each algorithm.

As expected, the results in Fig. 8 show that all algorithms are less
scalable than in the medium contention workload. We note, how-
ever, that the performance difference between TICTOC and SILO is
more prominent. As we discuss next, this performance gain comes
from the optimizations we presented in Section 5.

Both TICTOC and SILO have similar abort rates in Fig. 8b under
high contention. The timestamp management policy in TICTOC

does not reduce the abort rate because the workload is too write-
intensive and the contention level is so high that both algorithms
have similar behaviors in terms of aborting transactions.

6.4 TicToc Optimizations
We now evaluate the optimizations we presented in Section 5 to

determine their individual effect on TicToc’s overall performance.
To do this, we run DBx1000 multiple times using TicToc but en-
able the optimizations one-at-a-time. We use four different config-
urations in this experiment:

1. No Opts: TicToc without any optimizations.

2. NoWait: TicToc with no-wait locking described in Section 5.1.
3. NoWait + PreAbort: TicToc with no-wait locking and pre-

emptive aborts from Section 5.2.
4. All Opts: TicToc with no-wait locking, preemptive aborts,

and timestamp history from Section 5.3.

Recall that this last configuration is the default setting for TicToc
in all of the other experiments in this paper. We also include the
performance measurements for SILO from Fig. 8a for comparison.

The results in Fig. 9 show the performance, abort rate, and time
breakdown (at 80 cores) for the TPC-C workload with four ware-
houses. At 80 threads, TICTOC without optimizations achieves
35.6% higher throughput than SILO, and has a 32% lower abort
rate. This gain comes from the greater parallelism exploited by the
TICTOC’s timestamp management policy. Using the no-wait opti-
mization for locking transactions’ write sets provides another 38%
performance gain at 80 threads while not affecting the abort rate.
In Fig. 9c, we see that the gains of basic TICTOC over SILO mainly
come from reducing the abort rate. Optimizations do not reduce
TICTOC’s abort rate further, but they do reduce the amount of time
wasted in aborting transactions. These optimizations effectively
make each abort take a shorter amount of time.

Fig. 10 shows the same experiments on high contention YCSB
workload. Here we see similar performance improvement as in
TPC-C but it comes from different aspects of TICTOC. TICTOC

without any optimizations only performs 10% better than SILO, and
most of the performance improvement comes from the no-wait and
preemptive abort optimizations. In contrast to Fig. 9, using pre-
emptive aborts provides a larger performance gain in YCSB. This
is partly because in YCSB each transaction locks more tuples dur-
ing the validation phase. Preemptive aborts alleviate the contention
caused by these locks.

A key finding is that the timestamp history optimization does not
provide any measurable performance gain in either workload. This
was initially surprising to us, but upon further investigation we are
convinced that this is indeed correct. In a way, TICTOC without
this optimization already stores multiple versions of a tuple in each
transaction’s private workspace. This means that each transaction

11

0 2000 4000 6000 8000 10000

Number of Committed Txns

0

2000

4000

6000

8000

10000

C
o
m

m
it
 T

im
e
s
ta

m
p TS_ALLOC

High

Medium

Figure 11: Logical Time Analysis – Comparison of the growth
rate of the timestamps in TICTOC versus TS_ALLOC.

DL_DETECT HEKATON NO_WAIT SILO TICTOC
SR 0.43 1.55 0.63 2.32 2.57
SI – 1.78 – – 2.69
RR 0.72 1.88 1.89 2.45 2.69

(a) Throughput (Million txn/s)

DL_DETECT HEKATON NO_WAIT SILO TICTOC
SR 0.35% 11.6% 63.2% 6.47% 1.76%
SI – 1.96% – – 1.54%
RR 0.10% 1.94% 9.9% 0.71% 0.72%

(b) Abort Rate

Table 1: Isolation Levels (Medium Contention) – Performance
measurements for the concurrency control schemes running YCSB
under different isolation levels with 40 threads.

can commit in parallel using its own version. Although in theory
timestamp history can enable more concurrency, in practice there
is no clear performance benefit for the workloads we evaluated.

6.5 Logical Time Analysis
We analyze how TicToc’s commit timestamps grow over time

under different levels of contention. Ideally, we would like times-
tamps to grow slowly over time relative to the total number of com-
mitted transactions, indicating that synchronization among transac-
tions is relatively infrequent. For this experiment, we execute the
medium and high contention YCSB workloads from Section 6.3
and track the values of the transactions’ commit timestamps over
time. We also include TS_ALLOC as a baseline where each trans-
action is assigned a unique timestamp using an atomic add instruc-
tion. This is representative of the timestamp growth rate in other
T/O-based algorithms, such as HEKATON.

Fig. 11 shows the relationship between logical timestamps and
the number of committed transactions for the three configurations.
With the TS_ALLOC protocol, the number of committed transac-
tions and logical timestamps increase at the same rate. In TicToc,
however, logical timestamps increase at a slower rate: 64× and
10× slower for low and high contention levels in YCSB, respec-
tively. What is interesting about these measurements is that the rate
of growth of logical timestamps indicates the inherent level of par-
allelism in a workload that can be exploited by TicToc. In the high
contention workload, for example, this ratio is 10×. This corrob-
orates our results in Fig. 8a that show the DBMS was only able to
achieve 7.7× better throughput from running multiple threads in
the high contention YCSB workload.

6.6 Isolation Levels
All of the experiments so far have used serializable isolation. Se-

rializable is the strictest isolation level and thus usually has less
concurrency opportunities than lower isolation levels. We now

DL_DETECT HEKATON NO_WAIT SILO TICTOC
SR 0.005 0.18 0.30 0.52 0.82
SI – 0.23 – – 0.90
RR 0.010 0.23 0.35 0.80 1.04

(a) Throughput (Million txn/s)

DL_DETECT HEKATON NO_WAIT SILO TICTOC
SR 74.0% 34.4% 69.9% 46.8% 44.3%
SI – 30.9% – – 40.1%
RR 74.3% 30.4% 71.3% 42.3% 39.7%

(b) Abort Rate

Table 2: Isolation Levels (High Contention) – Performance mea-
surements for the concurrency control schemes running YCSB un-
der different isolation levels with 40 threads.

compare the DBMS’s performance when transactions execute un-
der snapshot isolation (SI) and repeatable read isolation (RR) lev-
els versus the default serializable isolation (SR). All five algorithms
support the RR level. For SI, we are only able to test the TICTOC

and HEKATON algorithms. This is because supporting SI requires
the DBMS to maintain multiple versions for each tuple, and thus
this requires significant changes to the other algorithms. We use the
medium- and high-contention YCSB workloads from Section 6.3.

The medium-contention YCSB results are shown in Table 1. For
this setting, the workload has enough parallelism and thus all the
optimistic T/O-based algorithms only see small improvements when
running at a lower isolation level (4.7% for TICTOC and 5.6% for
SILO), whereas for the pessimistic 2PL algorithms the improve-
ment is more pronounced (67.4% for DL_DETECT and 200.0% for
NO_WAIT). HEKATON only has a 21.3% improvement from SR to
RR. The abort rate measurements in Table 1b show that the lower
isolation levels achieve lower abort rates because there are fewer
conflicts between transactions. As expected, all the algorithms have
the fewest number of aborted transactions under RR since it is the
most relaxed isolation level.

The high-contention YCSB results are shown in Table 2. Lower
isolation levels have better performance than serializable isolation.
Again, the throughput of the RR isolation level is slightly better
than SI’s. In general, for this workload setting we found that differ-
ent isolation levels do not cause large reductions in abort rates due
to the significant amount of contention on hotspot tuples.

7. CONCLUSION
In this paper we have presented TicToc, a new OCC-based con-

currency control algorithm that eliminates the need for centralized
timestamp allocation. TicToc instead uses a novel data-driven times-

tamp management approach that decouples logical timestamps and
physical time by deriving transaction commit timestamps from data
items. This enables an OLTP DBMS to exploit more parallelism
than other OCC-based algorithms. We have also presented several
optimizations that leverage this timestamp management policy to
further improve TicToc’s performance. Our evaluation results show
that, compared to another state-of-the-art OCC algorithm, TicToc
achieves up to 92% higher throughput while reducing transaction
abort rates by up to 3.3× under different workload conditions.

ACKNOWLEDGMENTS

This research was funded (in part) by the Intel Science and Tech-
nology Center for Big Data and the U.S. National Science Founda-
tion (CCF-1438955, CCF-1438967).

For questions or comments about this paper, please call the

CMU Database Hotline at +1-844-88-CMUDB.

12

http://www.nsf.gov/awardsearch/showAward?AWD_ID=1438955
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1438967

8. REFERENCES
[1] DBx1000. https://github.com/yxymit/DBx1000.

[2] Tile-gx family of multicore processors.
http://www.tilera.com.

[3] M. Aslett. How will the database incumbents respond to
NoSQL and NewSQL? The 451 Group, April 2011.

[4] R. Bayer, K. Elhardt, J. Heigert, and A. Reiser. Dynamic
timestamp allocation for transactions in database systems. In
2nd Int. Symp. on Distributed Databases, pages 9–20, 1982.

[5] P. A. Bernstein and N. Goodman. Concurrency control in
distributed database systems. ACM Comput. Surv.,
13(2):185–221, 1981.

[6] P. A. Bernstein, D. Shipman, and W. Wong. Formal aspects
of serializability in database concurrency control. IEEE

Transactions on Software Engineering, 5(3):203–216, 1979.

[7] C. Boksenbaum, M. Cart, J. Ferrié, and J.-F. Pons.
Concurrent certifications by intervals of timestamps in
distributed database systems. Software Engineering, IEEE

Transactions on, (4):409–419, 1987.

[8] M. J. Carey. Improving the performance of an optimistic
concurrency control algorithm through timestamps and
versions. Software Engineering, IEEE Transactions on,
SE-13(6):746–751, June 1987.

[9] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking cloud serving systems with YCSB.
In SoCC’10, pages 143–154.

[10] W. J. Dally. GPU Computing: To Exascale and Beyond. In
Supercomputing ’10, Plenary Talk, 2010.

[11] T. David, R. Guerraoui, and V. Trigonakis. Everything you
always wanted to know about synchronization but were
afraid to ask. In Symposium on Operating Systems

Principles, pages 33–48, 2013.

[12] B. D. de Dinechin, R. Ayrignac, P.-E. Beaucamps,
P. Couvert, B. Ganne, P. G. de Massas, F. Jacquet, S. Jones,
N. M. Chaisemartin, F. Riss, and T. Strudel. A clustered
manycore processor architecture for embedded and
accelerated applications. In Proc. of the High Performance

Extreme Computing Conference, 2013.

[13] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The
notions of consistency and predicate locks in a database
system. CACM, 19(11):624–633, 1976.

[14] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe,
L. Rudolph, and M. Snir. The NYU Ultracomputer:
Designing an MIMD Shared Memory Parallel Computer.
IEEE Trans. Comput., 100(2), 1983.

[15] J. Gray. The transaction concept: Virtues and limitations. In
VLDB, pages 144–154, 1981.

[16] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J.
Weinberger. Quickly generating billion-record synthetic
databases. SIGMOD, pages 243–252, 1994.

[17] T. Härder. Observations on optimistic concurrency control
schemes. Inf. Syst., 9(2):111–120, Nov. 1984.

[18] H. Hoffmann, D. Wentzlaff, and A. Agarwal. Remote store
programming. In High Performance Embedded Architectures

and Compilers, pages 3–17. Springer, 2010.

[19] Intel. Intel 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3B, 17.14.1 Invariant TSC, 2015.

[20] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and
B. Falsafi. Shore-MT: a scalable storage manager for the
multicore era. EDBT, pages 24–35, 2009.

[21] H. Kimura. Foedus: Oltp engine for a thousand cores and
nvram. SIGMOD ’15, pages 691–706, 2015.

[22] H. T. Kung and J. T. Robinson. On optimistic methods for
concurrency control. ACM Trans. Database Syst.,
6(2):213–226, June 1981.

[23] K.-W. Lam, K.-Y. Lam, and S.-L. Hung. Real-time
optimistic concurrency control protocol with dynamic
adjustment of serialization order. In Real-Time Technology

and Applications Symposium, pages 174–179. IEEE, 1995.

[24] P.-A. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M.
Patel, and M. Zwilling. High-performance concurrency
control mechanisms for main-memory databases. VLDB,
5(4):298–309, Dec. 2011.

[25] J. Lee and S. H. Son. Using dynamic adjustment of
serialization order for real-time database systems. In
Real-Time Systems Symposium, pages 66–75. IEEE, 1993.

[26] D. A. Menascé and T. Nakanishi. Optimistic versus
pessimistic concurrency control mechanisms in database
management systems. Information Systems, 7(1):13–27,
1982.

[27] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. Aries: a transaction recovery method supporting
fine-granularity locking and partial rollbacks using
write-ahead logging. TODS, 17(1):94–162, 1992.

[28] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki.
Data-oriented transaction execution. Proc. VLDB Endow.,
3:928–939, September 2010.

[29] D. Porobic, I. Pandis, M. Branco, P. Tözün, and A. Ailamaki.
OLTP on Hardware Islands. Proc. VLDB Endow.,
5:1447–1458, July 2012.

[30] D. P. Reed. Naming and synchronization in a decentralized

computer system. PhD thesis, Massachusetts Institute of
Technology, 1978.

[31] M. Reimer. Solving the phantom problem by predicative
optimistic concurrency control. VLDB ’83, pages 81–88,
1983.

[32] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos,
N. Hachem, and P. Helland. The end of an architectural era:
(it’s time for a complete rewrite). In VLDB, pages
1150–1160, 2007.

[33] The Transaction Processing Council. TPC-C Benchmark
(Revision 5.9.0), June 2007.

[34] A. Thomasian. Concurrency control: Methods, performance,
and analysis. ACM Comput. Surv., 30(1):70–119, Mar. 1998.

[35] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden.
Speedy transactions in multicore in-memory databases. In
SOSP, 2013.

[36] T. Wang and R. Johnson. Scalable logging through emerging
non-volatile memory. Proceedings of the VLDB Endowment,
7(10):865–876, 2014.

[37] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and
M. Stonebraker. Staring into the abyss: An evaluation of
concurrency control with one thousand cores. volume 8,
pages 209–220. VLDB Endowment, 2014.

[38] X. Yu and S. Devadas. TARDIS: timestamp based coherence
algorithm for distributed shared memory. In International

Conference on Parallel Architectures and Compilation

Techniques, 2015.

[39] W. Zheng, S. Tu, E. Kohler, and B. Liskov. Fast databases
with fast durability and recovery through multicore
parallelism. In Proceedings of the 11th USENIX Conference

on Operating Systems Design and Implementation, OSDI’14,
pages 465–477. USENIX Association, 2014.

13

https://github.com/yxymit/DBx1000
http://www.tilera.com

APPENDIX: DYNAMIC TIMESTAMP ALLO-

CATION

As discussed in Section 2.2, the original DTA technique [4] was
designed to resolve and detect deadlocks using dependency graph
analysis. It was first used in deadlock detection and prevention
for 2PL algorithms. In DTA, timestamps are associated with each
transaction and are compared when two transactions conflict with
each other. Timestamps are not associated with tuples in DTA like
they are in TicToc.

DTA was then adapted to OCC algorithms [7] and was later stud-
ied in the context of real-time DBMSs [23, 25]. In these designs,
DTA was used to detect conflicts and determine the relative order-
ing among transactions. Similar to TicToc, DTA OCC also reorders
transactions in logical time, which may not agree with physical
time. However, since timestamps are only associated with transac-
tions but not tuples, the DBMS has to maintain a dependency graph
of all active transactions. This dependency graph is updated when-
ever there is a conflicting access. All the DTA OCC algorithms
proposed in the literature have this critical section that becomes a
serious performance bottleneck as thread count increases.

We modeled DTA OCC in our DBx1000 system and compared
it against TicToc. Our implementation of DTA OCC is idealized
since we modeled an empty critical section where a full-blown DTA

OCC requires considerable logic in the critical section. As a result,
our implementation provides an upper bound on the performance
of DTA OCC. For this experiment, we used the same medium-
contention YCSB workload that we use in Section 6.3.2. The re-
sults in Fig. 12 show that, as expected, DTA OCC fails to scale be-
yond 20 cores due to this critical section bottleneck. This matches
previous studies that have shown that algorithms with shared global
resources are unable to scale beyond 16–32 active threads [37].

0 20 40 60 80

Thread Count

0.0

1.0

2.0

3.0

4.0

T
h

ro
u

g
h

p
u

t
(M

ill
io

n
 t

x
n

/s
)

TICTOC

DTA

Figure 12: Dynamic Timestamp Allocation – Performance com-
parison of the DTA OCC and TicToc algorithms for the YCSB
workload with medium contention.

14

	Introduction
	Background
	Timestamp Allocation
	Optimistic Concurrency Control

	The TICTOC Algorithm
	Lazy Timestamp Management
	Protocol Specification
	Read Phase
	Validation Phase
	Write Phase

	Example
	Spurious Aborts
	Discussion
	Implementation
	Logging and Durability

	Proof of Correctness
	Proof Idea
	Formal Proofs

	Optimizations
	No-Wait Locking in Validation Phase
	Preemptive Aborts
	Timestamp History
	Lower Isolation Levels

	Experimental Evaluation
	Workloads
	TPC-C Results
	4 Warehouses
	Variable Warehouses

	YCSB Results
	Read-Only
	Medium Contention
	High Contention

	TicToc Optimizations
	Logical Time Analysis
	Isolation Levels

	Conclusion
	References

