
Anurag Mukkara, Nathan Beckmann, Daniel Sanchez

MIT CSAIL

ASPLOS XXI - Atlanta, Georgia – 4 April 2016

WHIRLPOOL!

IMPROVING DYNAMIC CACHE MANAGEMENT

WITH STATIC DATA CLASSIFICATION

Processors are limited by data movement

 Data movement often consumes >50% of time & energy

 E.g., FP multiply-add: 20 pJ DRAM access: 20,000 pJ

 To scale performance, must keep data near where its used

 But how do programs use memory?

Cache banks

Good: nearby cache banks

Bad: faraway cache banks

Terrible: DRAM access

Static policies have limitations
3

Program Code

Fixed policy

Exploits program semantics

Binary

E.g., scratchpads, bypass hints

Can’t adapt to application
phases, input-dependent

behavior, or shared systems

Static analysis
or profiling

Dynamic policies have limitations, too
4

Binary

Dynamic policy

Responsive to actual
application behavior

E.g., data migration & replication
Difficult to recover program
semantics from loads/stores

 Expensive mechanisms
(eg, extra data movement &

directories)

Observe
loads/stores

Combining static and dynamic is best
5

Program Code

Binary

Static analysis
or profiling

Observe
loads/stores

Pool
A

Pool
B

Pool
C

Pool
D

Policy
A

Policy
B

Policy
C

Policy
D

Exploits program
semantics at low overhead

Responsive to actual
application behavior

Agenda
6

 Case study

 Manual classification

 Parallel applications

 WhirlTool

System configuration
7

Core

L1i L1d

Private L2

Non-uniform cache access (NUCA):
Cache banks have different access latencies

 We apply Whirlpool to Jigsaw [Beckmann PACT’13],
a state-of-the-art NUCA cache

 Allocates virtual caches, collections of parts of cache banks

 Significantly outperforms prior D-NUCA schemes

Baseline dynamic NUCA scheme
8

Reduce cache misses

Reduce on-chip
network traversals

Simple mechanisms

Dynamic policies can reduce data movement
9

Jigsaw
[Beckmann, PACT’13]

Dynamic policy performs somewhat better:

Static NUCA

4% better performance
12% lower energy

App: Delaunay
triangulation

Static analysis can help!
10

A
cc

e
ss

 I
n
te

n
si

ty
 Points

Vertices

Triangles

Accesses Footprint (MB)

Jigsaw with Static Classification
11

Jigsaw
[Beckmann, PACT’13]

Whirlpool!

Vs Jigsaw:
19% better performance

42% lower energy

Few data structures accessed
more frequently than others

A
cc

e
ss

 I
n
te

n
si

ty
 Points

Vertices

Triangles

Agenda
12

 Case study

 Manual classification

 Parallel applications

 WhirlTool

Whirlpool – Manual classification

 Organize application data into memory pools

int poolPoints = pool_create();

Point* points = pool_malloc(sizeof(Point)*n, poolPoints);

int poolTris = pool_create();

Tri* smallTris = pool_malloc(sizeof(Tri)*m, poolTris);

Tri* largeTris = pool_malloc(sizeof(Tri)*M, poolTris);

Insight: Group semantically similar data into a pool

Points, Triangles

13

Minor changes to programs
14

Application Pools LOC

Delaunay triangulation 3 11

Maximal matching 3 13

Delaunay refinement 3 8

Maximal independent set 3 13

Minimal spanning forest 3 11

401.bzip2 4 43

470.lbm 2 21

429.mcf 2 14

436.cactusADM 2 53

SPECCPU
2006

PBBS

Whirlpool on NUCA placement
15

 Use pools to improve Jigsaw’s decisions
 Each pool is allocated to a virtual cache

 Jigsaw transparently places pools in NUCA banks

 Whirlpool requires no changes to core Jigsaw

 Increase size of structures (few KBs)

 Minor improvements, e.g. bypassing (see paper)

 Pools useful elsewhere, eg to dynamic prefetching

Significant improvements on some apps
16

bz
ip

2

re
fin

e
M

ST
lb
m

m
cf

ca
ct
us

m
at

ch
in
g

D
T

M
IS

0

10

20

30

40

50

60

E
n

e
rg

y
 s

a
v
in

g
s
 v

s
 J

ig
s
a

w
 (

%
)

bz
ip

2

re
fin

e
M

ST
lb
m

m
cf

ca
ct
us

m
at

ch
in
g

D
T

M
IS

0

2

4

6

8

10

12

14

S
p

e
e

d
u

p
 v

s
 J

ig
s
a

w
 (

%
)

38

Up to 38% better performance Up to 53% lower energy

Performance Energy

Agenda
17

 Case study

 Manual classification

 Parallel applications

 WhirlTool

Conventional runtimes can harm locality
18

Optimize load

balance, not locality

Whirlpool co-locates tasks and data
19

 Break input into pools

 Application indicates task affinity

 Schedule + steal tasks from nearby their data

 Dynamically adapt data placement

 Requires minimal changes to task-parallel runtimes

Input

Whirlpool improves locality
20

Whirlpool adapts schedule dynamically
21

 Data placement implicitly schedules tasks

Significant improvements at 16 cores
22

MS FFT TC DT PR CC
0

10

20

30

40

50

60

70

S
p

e
e

d
u
p

 v
s
 J

ig
s
a
w

 (
%

)

MS FFT TC DT PR CC
1.0

1.5

2.0

2.5

3.0

E
n

e
rg

y
 s

a
v
in

g
s
 v

s
 J

ig
s
a

w

Up to 67% better performance Up to 2.6x lower energy

Applications
Divide and conquer algorithms: Mergesort, FFT
Graph analytics: PageRank, Triangle Counting, Connected Components
Graphics: Delaunay Triangulation

Caveat: Splitting data into
pools can be expensive!

Agenda
23

 Case study

 Manual classification

 Parallel applications

 WhirlTool

WhirlTool – Automated classification
24

 Modifying program code is not always practical

 A profile-guided tool can automatically classify data into
pools

WhirlTool
Profiler

WhirlTool
Analyzer

Per-callpoint
miss curves

Callpoint-to-
pool map

Application

WhirlTool
runtime

Whirlpool
Allocator

malloc()

pool_malloc()

WhirlTool profiles miss curves
25

Periodically records
per-callpoint
miss curves

Application

A B C ….

A
llo

c
A

cc
s

Groups allocations
by callpoint

Profiles accesses
to each pool

T
i
m
e

Misses

Cache size

WhirlTool analyzes curves to find pools
26

 Hardware can only support a limited number of pools

 Jigsaw uses 3 virtual caches / thread
 0.6% area overhead over LLC

 Whirlpool adds 4 pools (each mapped to a virtual cache)
 1.2% total area overhead over LLC

 Must cluster callpoints into semantically similar groups

Per-callpoint
miss curves

Agglomerative
clustering

Callpoint-to-pool
mapping

Example of agglomerative clustering
27

1

1

1

2

2

3

WhirlTool’s distance metric
28

Cache Size
M

is
se

s

Small distance

Cache Size

M
is
se

s
Large distance

Pool 1

Pool 2

Separated

Combined

Pool 3

How many misses are saved by separating pools?

WhirlTool matches manual hints
29

le
sl

ie
gc

c
ge

m
s

bz
ip

2
om

ne
t

ra
y

re
fin

e
sp

hi
nx

3
M

S
T

lb
m

se
tC

ov
er

so
pl

ex
xa

la
nc m
cf S
A

ca
ct

us
m

at
ch

in
g

D
T

M
IS

0

2

4

6

8

10

12

14

S
p

e
e
d

u
p

 v
s
 J

ig
s
a

w
 (

%
)

38

WhirlTool

le
sl

ie
gc

c
ge

m
s

bz
ip

2
om

ne
t

ra
y

re
fin

e
sp

hi
nx

3
M

S
T

lb
m

se
tC

ov
er

so
pl

ex
xa

la
nc m
cf S
A

ca
ct

us
m

at
ch

in
g

D
T

M
IS

0

2

4

6

8

10

12

14

S
p

e
e
d

u
p

 v
s
 J

ig
s
a

w
 (

%
)

38 38

WhirlTool

Manual

Multiprogram mixes
30

 4-core system with random SPECCPU2006 apps

 Including those that do not benefit

 Whirlpool improves performance by (gmean over 20 mixes)

 35% over S-NUCA

 30% over idealized shared-private D-NUCA [Hererro, ISCA’10]

 26% over R-NUCA [Hardavellas, ISCA’09]

 18% over page placement by Awasthi et al. [Awasthi HPCA’09]

 5% over Jigsaw [Beckmann, PACT’13]

Conclusion
31

 Semantic information from applications improves
performance of dynamic policies

 Coordinated data and task placement gives large
improvements in parallel applications

 Automated classification reduces programmer burden

THANKS FOR YOUR ATTENTION!

QUESTIONS ARE WELCOME!

32

WhirlTool code available at http://bit.ly/WhirlTool

