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WHIRLPOOL! 
  

IMPROVING DYNAMIC CACHE MANAGEMENT 

WITH STATIC DATA CLASSIFICATION 



Processors are limited by data movement 

 Data movement often consumes >50% of time & energy 

 E.g., FP multiply-add: 20 pJ  DRAM access: 20,000 pJ 

 To scale performance, must keep data near where its used 

 But how do programs use memory? 

Cache banks 

Good: nearby cache banks 

Bad: faraway cache banks 

Terrible: DRAM access 



Static policies have limitations 
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Program Code 

Fixed policy 

Exploits program semantics 

Binary 

E.g., scratchpads, bypass hints 

Can’t adapt to application 
phases, input-dependent 

behavior, or shared systems 

Static analysis  
or profiling 



Dynamic policies have limitations, too 
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Binary 

Dynamic policy 

Responsive to actual 
application behavior 

E.g., data migration & replication 
Difficult to recover program 
semantics from loads/stores 

 Expensive mechanisms 
(eg, extra data movement & 

directories) 

Observe 
loads/stores 



Combining static and dynamic is best 
5 

Program Code 

Binary 

Static analysis  
or profiling 

Observe 
loads/stores 

Pool 
A 

Pool 
B 

Pool 
C 

Pool 
D 

Policy 
A 

Policy 
B 

Policy 
C 

Policy 
D 

Exploits program 
semantics at low overhead 

Responsive to actual 
application behavior 
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System configuration 
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Core 

L1i L1d 

Private L2 

Non-uniform cache access (NUCA): 
Cache banks have different access latencies 



 We apply Whirlpool to Jigsaw [Beckmann PACT’13], 
a state-of-the-art NUCA cache 

 Allocates virtual caches, collections of parts of cache banks 

 Significantly outperforms prior D-NUCA schemes 

Baseline dynamic NUCA scheme  
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Reduce cache misses 

Reduce on-chip 
network traversals 

Simple mechanisms 



Dynamic policies can reduce data movement 
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Jigsaw 
[Beckmann, PACT’13] 

Dynamic policy performs somewhat better:  

Static NUCA 

4% better performance 
12% lower energy 

App: Delaunay 
triangulation 



 

 

 

Static analysis can help! 
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Jigsaw with Static Classification 
11 

Jigsaw 
[Beckmann, PACT’13] 

Whirlpool! 

Vs Jigsaw: 
19% better performance 

42% lower energy 

Few data structures accessed 
more frequently than others 
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Whirlpool – Manual classification 

 Organize application data into memory pools 

int poolPoints = pool_create(); 

Point* points = pool_malloc(sizeof(Point)*n, poolPoints); 

 

int poolTris = pool_create(); 

Tri* smallTris = pool_malloc(sizeof(Tri)*m, poolTris); 

 

Tri* largeTris = pool_malloc(sizeof(Tri)*M, poolTris); 

Insight: Group semantically similar data into a pool 

Points, Triangles 

13 



Minor changes to programs 
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Application Pools LOC  

Delaunay triangulation 3 11 

Maximal matching 3 13 

Delaunay refinement 3 8 

Maximal independent set 3 13 

Minimal spanning forest 3 11 

401.bzip2 4 43 

470.lbm 2 21 

429.mcf 2 14 

436.cactusADM 2 53 

SPECCPU
2006 

PBBS 



Whirlpool on NUCA placement 
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 Use pools to improve Jigsaw’s decisions 
 Each pool is allocated to a virtual cache 

 Jigsaw transparently places pools in NUCA banks 

 

 Whirlpool requires no changes to core Jigsaw 

 Increase size of structures (few KBs) 

 Minor improvements, e.g. bypassing (see paper) 

 

 Pools useful elsewhere, eg to dynamic prefetching 

 



Significant improvements on some apps 
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38

Up to 38% better performance Up to 53% lower energy 

Performance Energy 
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Conventional runtimes can harm locality 
18 

Optimize load 

balance, not locality 



Whirlpool co-locates tasks and data 
19 

 Break input into pools 

 

 

 

 

 Application indicates task affinity 

 Schedule + steal tasks from nearby their data 

 Dynamically adapt data placement 

 

 Requires minimal changes to task-parallel runtimes 

Input 



Whirlpool improves locality 
20 



Whirlpool adapts schedule dynamically 
21 

 Data placement implicitly schedules tasks 



Significant improvements at 16 cores 
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Up to 67% better performance Up to 2.6x lower energy 

Applications 
Divide and conquer algorithms: Mergesort, FFT 
Graph analytics: PageRank, Triangle Counting, Connected Components 
Graphics: Delaunay Triangulation 

Caveat: Splitting data into 
pools can be expensive! 
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WhirlTool – Automated classification 
24 

 Modifying program code is not always practical 

 A profile-guided tool can automatically classify data into 
pools 

WhirlTool 
Profiler 

WhirlTool 
Analyzer 

Per-callpoint 
miss curves 

Callpoint-to- 
pool map 

Application 

WhirlTool 
runtime 

Whirlpool 
Allocator 

malloc() 

pool_malloc() 



WhirlTool profiles miss curves 
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Periodically records  
per-callpoint  
miss curves 

Application 

A B C …. 

A
llo

c 
A

cc
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Groups allocations 
by callpoint 

Profiles accesses 
to each pool 

T
i
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e 

Misses 

Cache size 



WhirlTool analyzes curves to find pools 
26 

 Hardware can only support a limited number of pools 

 Jigsaw uses 3 virtual caches / thread 
 0.6% area overhead over LLC 

 Whirlpool adds 4 pools (each mapped to a virtual cache) 
 1.2% total area overhead over LLC 

 

 Must cluster callpoints into semantically similar groups 

Per-callpoint 
miss curves 

Agglomerative 
clustering 

Callpoint-to-pool 
mapping 



Example of agglomerative clustering 
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WhirlTool’s distance metric 
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Cache Size 
M

is
se

s 

Small distance 

Cache Size 

M
is
se

s 
Large distance 

Pool 1 

Pool 2 

Separated 

Combined 

Pool 3  

How many misses are saved by separating pools? 



WhirlTool matches manual hints 
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WhirlTool
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WhirlTool

Manual



Multiprogram mixes 
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 4-core system with random SPECCPU2006 apps 

 Including those that do not benefit 

 

 Whirlpool improves performance by (gmean over 20 mixes) 

 35% over S-NUCA 

 30% over idealized shared-private D-NUCA [Hererro, ISCA’10] 

 26% over R-NUCA         [Hardavellas, ISCA’09] 

 18% over page placement by Awasthi et al. [Awasthi HPCA’09] 

   5% over Jigsaw           [Beckmann, PACT’13] 

 



Conclusion 
31 

 Semantic information from applications improves 
performance of dynamic policies 

 

 Coordinated data and task placement gives large 
improvements in parallel applications 

 

 Automated classification reduces programmer burden 

 

 



THANKS FOR YOUR ATTENTION! 

 

QUESTIONS ARE WELCOME! 
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WhirlTool code available at http://bit.ly/WhirlTool  


