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Graph processing is memory-bound
¨ Irregular structure causes seemingly random memory references
¨ On-chip caches are too small to fit most real-world graphs
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Main Memory Compute + Caches

50% of system energy is 
due to main-memory
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Main Memory Compute + Caches

General-purpose system Specialized accelerator

Memory bottleneck becomes 
more critical
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PageRank



Exploiting graph structure through caches 3

¨ Real-world graphs have strong community structure
¤ Significant potential locality
¤ Difficult to predict ahead of time

¨ Idea: Let the cache guide scheduling!
¤ Cache has information about the right vertices to 

process next – those which cause fewest misses

¨ This work: A limit study on the benefits of
cache-guided scheduling (CGS)
¤ CGS reduces misses by up to 6x



Impact of Scheduling on Locality



Many graph algorithms allow flexibility in schedule 5

¨ Schedule: Order in which vertices of the graph are processed

¨ Many important algorithms are unordered – schedule does not affect 
correctness
¤ Ex. PageRank, Collaborative Filtering, Label Propagation, Triangle Counting

¨ Schedule impacts locality significantly



Vertex-ordered schedule follows layout order 6

¨ Vertices are processed in the order of 
their id

¨ All edges of a vertex are processed 
consecutively

¨ Used by state-of-the-art graph 
processing frameworks
¤ Ligra, GraphMat, etc.

¨ Simplifies scheduling and parallelism
¨ Poor locality

Offsets 

Destinations

EdgeList



Layout order might not match community structure 7

Consecutive vertices in layout are spread out across the graph

In-memory 
vertex layout



Access pattern of vertex-ordered schedule 8

Streaming Random

Edge list
. . . . . . . . .

Vertex data
. . . . 

Low HighCache 
misses



Preprocessing changes layout for better order 9

Preprocessing

Vertices in each cluster map to 
consecutive vertex ids



Access pattern with preprocessed graph 10

Streaming Good locality

Edge list
. . . . . . . . .

Vertex data
. . . . 

Low LowCache 
misses



Preprocessing is often impractical 11
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PageRank Preprocessing

Wei et al. Speedup Graph Processing by Graph Ordering, SIGMOD’16 

• Preprocessing is more 
expensive than algorithm itself

• Impractical for many 
important use cases



Cache-guided scheduling finds good order at runtime
12

Slightly Irregular Good Locality

Edge list
. . . . . . . . .

Vertex data
. . . . 

Moderate LowCache 
misses



Cache-Guided Scheduling Design



High-level design 14

Shared
Last Level Cache

Cache Engine

Loads

Event
Notifications

Tasks

Probes
Query cache 

contents

Core 4

Core 1

Main 
Memory

Stores

Core 2

Core 3

Maintains a list of tasks ranked 
based on a locality metric



Costs, benefits, and idealizations 15

¨ Extra memory accesses to edge list
¤ Filling worklist with tasks
¤ Keeping task scores up to date

¨ Space overheads of worklist and auxiliary metadata
¤ Takes away some of the available cache capacity

¨ Large reduction in memory accesses
¤ Better energy efficiency and performance

For this limit study 
we ignore these costs



Cache-Guided Scheduling of Vertices (CGS-V) 16

¨ Ranks and schedules each vertex of the graph
¨ Vertices ranked by fraction of neighbors that are cached

Uncached
Vertices

Cached
Vertices



Cache-Guided Scheduling of Vertices (CGS-V) 17

¨ Large locality benefits
¨ Track vertices only (not edges)

¨ Pitfall: Real-world graphs have skewed degree distributions
¤ Many high-degree vertices that are connected to most of the graph

¨ Processing high-degree vertices
¤ Flushes the cache and kills locality
¤ Misses opportunities to process other beneficial regions



Cache-Guided Scheduling of Edges (CGS-E) 18

¨ Ranks and schedules edges instead of vertices

¨ Better locality due to finer-grained scheduling
¨ Each edge causes exactly two cache accesses

¤ Simpler ranking algorithm - Number of endpoints that are cached

¨ #Edges >> #Vertices  → Higher tracking overheads



Limit Study on Benefits of CGS



Methodology 20

¨ Large real-world graphs with up to 100 million vertices, 1 billion edges

¨ Graph algorithms 
¤ PageRank – 16-byte vertex objects
¤ Collaborative Filtering – 256-byte vertex objects

¨ Custom cache simulator to compute main-memory accesses
¤ Single core system
¤ 2-level cache hierarchy with 32KB L1,  8MB L2

¨ See paper for details

Graph hol wik liv ind uk web nfl yms

Vertices (Millions) 1.1 3.5 4.8 7.4 19 118 0.5 0.5

Edges (Millions) 113 45 69 194 298 1020 100 61



Large reduction in memory accesses for PageRank 21
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Much larger benefits with Collaborative Filtering 22

Vertex-Ordered CGS-V CGS-E

nfl yms gmean
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Larger vertex data – 256 bytes per vertex

• Edge list accesses are negligible (3% only)
• Finer-granularity scheduling of CGS-E 

becomes more important
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Preproc.

CGS benefits from better graph layout 23
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Ongoing Work
CGS Hardware Implementation



Reducing storage overheads 25

¨ Maintaining all vertices in the worklist is prohibitively expensive

¨ Can a small worklist capture most of the benefits?
¤ Order in which the worklist is filled is crucial

¨ Adding vertices in order of their id is bad
¤ Explores multiple disjoint regions of the graph simultaneously

¨ Insight: Explore the graph in depth-first fashion to fill the worklist
¤ 100 element worklist gives 50% of the benefits of CGS-E



Reducing processing overheads 26

¨ Processing each edge takes only a few instructions
¤ Ex. PageRank: One floating point addition per edge
¤ Task scheduling logic must be cheap

¨ CGS-E gives much better locality than CGS-V, but has higher overheads

¨ Practical middle ground: Each task processes a cache line of edges
¤ Minimizes loss of spatial locality in edge list accesses
¤ Sidesteps the issue of high-degree nodes



Conclusion 27

¨ Real-world graphs have abundant locality, but hard to predict

¨ Cache has rich information about which regions are best to process

¨ Cache-Guided Scheduling gives large reduction in memory accesses 
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