
Jenga: Sotware-Defined Cache Hierarchies

Po-An Tsai∗

MIT CSAIL

poantsai@csail.mit.edu

Nathan Beckmann∗

CMU SCS

beckmann@cs.cmu.edu

Daniel Sanchez
MIT CSAIL

sanchez@csail.mit.edu

ABSTRACT
Caches are traditionally organized as a rigid hierarchy, with multi-

ple levels of progressively larger and slower memories. Hierarchy

allows a simple, fixed design to benefit a wide range of applica-

tions, since working sets settle at the smallest (i.e., fastest and most

energy-efficient) level they fit in. However, rigid hierarchies also add

overheads, because each level adds latency and energy even when

it does not fit the working set. These overheads are expensive on

emerging systems with heterogeneous memories, where the differ-

ences in latency and energy across levels are small. Significant gains

are possible by specializing the hierarchy to applications.

We propose Jenga, a reconfigurable cache hierarchy that dynami-

cally and transparently specializes itself to applications. Jenga builds

virtual cache hierarchies out of heterogeneous, distributed cache

banks using simple hardware mechanisms and an OS runtime. In

contrast to prior techniques that trade energy and bandwidth for per-

formance (e.g., dynamic bypassing or prefetching), Jenga eliminates

accesses to unwanted cache levels. Jenga thus improves both perfor-

mance and energy efficiency. On a 36-core chip with a 1 GB DRAM

cache, Jenga improves energy-delay product over a combination of

state-of-the-art techniques by 23% on average and by up to 85%.

CCS CONCEPTS
• Computer systems organization → Multicore architectures;

KEYWORDS
Cache, Hierarchy, Heterogeneous memories, NUCA, Partitioning

1 INTRODUCTION
With the coming end of Moore’s Law, designers are increasingly

turning towards architectural specialization to scale performance and

energy efficiency. Memory accesses often limit the performance and

efficiency of current systems, and the trend towards lean and special-

ized cores is placing mounting pressure on the energy and latency

of memory accesses [15, 39]. Consequently, cache hierarchies are

becoming more sophisticated in two key dimensions. First, caches

are becoming increasingly distributed and non-uniform (NUCA [41]):

each core enjoys cheap accesses to physically-close cache banks,

but accesses to faraway banks are expensive. Second, cache hierar-

chies are starting to combine multiple technologies with disparate

∗Po-An Tsai and Nathan Beckmann contributed equally to this work. This work was
done while Nathan Beckmann was at MIT.

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Association
for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in Proceedings of ISCA

’17, June 24-28, 2017, https://doi.org/10.1145/3079856.3080214.

T
ile

 A
rch

ite
ctu

re

Core

Private L1 & L2

S
ta

cke
d

 D
R

A
M

SRAM Cache Bank

Logic layer

Figure 1: A modern multicore with distributed, on-chip SRAM

banks and a 3D-stacked DRAM cache.

tradeoffs, such as SRAM and DRAM cache banks [24, 44, 62, 63].

The problem: Ideally, these heterogeneous, distributed cache banks

should be managed to approach the performance of application-

specific cache hierarchies that hold working sets at minimum latency

and energy. However, conventional systems are far from this ideal:

they instead implement a rigid hierarchy of increasingly larger and

slower caches, fixed at design time and managed by hardware. Rigid

hierarchies are attractive because they are transparent to software,

and they worked well in the past because systems had few cache

levels with widely different sizes and latencies. However, the differ-

ences in size and latency are smaller in modern systems, so rigid

hierarchies are accordingly less attractive.

For example, consider the tiled multicore in Fig. 1, with 16 MB

of distributed on-chip SRAM cache banks and 1 GB of distributed

stacked DRAM cache banks. Several problems arise when these

banks are organized as a rigid two-level hierarchy, i.e., with on-chip

SRAM as an L3 and stacked DRAM as an L4. The root problem is that

many applications make poor use of one or more cache levels, and

often do not want hierarchy. For example, an application that scans

over a 32 MB array should ideally use a single cache level, sized to

fit its 32 MB working set and placed as close as possible. The 16 MB

SRAM L3 in Fig. 1 hurts its performance and energy efficiency, since

it adds accesses without yielding many hits.

Prior work has explored a variety of techniques to hide the cost

of unwanted hierarchy. These techniques try to hide the added la-

tency by issuing speculative accesses up the hierarchy. For exam-

ple, dynamic cache bypassing [34, 40] in Fig. 1 would check the

SRAM L3 and stacked DRAM L4 in parallel, and must check both

for correctness. While such techniques can improve performance

by hiding latency, they do not eliminate the unnecessary accesses,

which still consume energy and bandwidth. As systems are increas-

ingly power-limited, techniques that trade energy for performance

are correspondingly less attractive.

The opportunity: We begin by characterizing the benefits of ap-

plication-specific hierarchies over rigid ones (Sec. 2). We find that

the optimal hierarchy varies widely across applications, both in the

number of levels and their sizes. Rigid hierarchies must cater to

https://doi.org/10.1145/3079856.3080214

the conflicting needs of different applications, and even the best

rigid hierarchy hurts applications that desire a markedly different

configuration, hurting performance by up to 51% and energy-delay

product (EDP) by up to 81%. Moreover, applications often have a

strong preference for a hierarchical or flat design. Using the right

number of levels yields significant improvements (up to 18% in EDP).

These results hold even with techniques that mitigate the impact of

unwanted hierarchy, such as prefetching and hit/miss prediction [53].

Architects can thus significantly improve performance and en-

ergy efficiency by specializing the cache hierarchy to individual

applications. However, specialization traditionally sacrifices the con-

venience of general-purpose designs, while also hurting the perfor-

mance of applications outside the target domain. Ideally, we would

like the benefits of specialization without paying these costs.

Our solution: The key idea of this paper is that architects should

treat all heterogeneous cache memories as a single pool, not as a

rigid hierarchy, and build specialized hierarchies from this pool

using the memory best suited to each application. To achieve this

goal, we present Jenga, a reconfigurable cache architecture that

builds single- or multi-level virtual cache hierarchies tailored to

each active application (Sec. 3). Jenga does so while remaining

transparent to applications, achieving the benefits of specialization

without sacrificing the ease of use of general-purpose systems.

Jenga consists of hardware and software components. Jenga hard-

ware requires small changes over prior work [7, 8, 42], since Jenga

software does most of the heavy lifting to build virtual cache hierar-

chies. Specifically, Jenga builds on Jigsaw [7, 8], which constructs

single-level virtual caches out of homogeneous SRAM banks (Sec. 4).

Contributions: We make two main contributions. First, we propose

that new memory technologies should not be added as a rigid hierar-

chy. Instead, heterogeneous memories are better organized as a pool

of resources, out of which appropriate hierarchies are then built. We

are the first to study this opportunity in detail. In particular, Jigsaw

does not consider hierarchy in any respect.

Second, we design new algorithms that build application-spe-

cific virtual cache hierarchies from heterogeneous and spatially

distributed physical cache banks. Specifically, Jenga’s OS runtime

configures virtual hierarchies using:

• Adaptive hierarchy allocation (Sec. 6.2), which efficiently finds

the right number of virtual cache levels and the size of each level

given the demand on the memory system.

• Bandwidth-aware data placement (Sec. 6.3), which accounts for

the limited bandwidth of emerging heterogeneous memories. Our

approach avoids hotspots that hamper prior techniques, which

consider only limited capacity.

These algorithms are Jenga’s main technical contribution. Finding ef-

ficient and effective algorithms required tackling several challenges,

e.g., how to reduce the dimensionality of the optimization problem

in hierarchy allocation, and how to consider alternatives without

backtracking or multiple passes in data placement.

Results: We evaluate Jenga on a 36-core chip with 18 MB of SRAM

and 1.1 GB of 3D-stacked DRAM. Compared to a combination of

state-of-the-art NUCA and DRAM cache techniques, Jigsaw and

Alloy [53], Jenga improves full-system EDP by 23% on average and

by up to 85%; and improves performance by 9% on average and by

up to 35%. These benefits come at modest complexity over Jigsaw.

Jenga’s benefits over simpler techniques are even higher.

By contrast, adding a DRAM cache to a rigid hierarchy improves

performance, but often degrades energy efficiency. We conclude that

the rigid, multi-level hierarchies in current systems are ill-suited

to many applications. Future memory systems should instead be

reconfigurable and expose their heterogeneity to software.

2 MOTIVATION
Jenga’s reconfigurable cache hierarchy offers two main benefits.

First, Jenga frees the hierarchy from having to cater to the conflict-

ing needs of different applications. Second, Jenga uses hierarchy

only when beneficial, and adopts a appropriately-sized flat organi-

zation otherwise. But do programs really desire widely different

hierarchies, and do they suffer by using a rigid one? And how fre-

quently do programs prefer a flat design to a hierarchy? To answer

these questions and quantify Jenga’s potential, we first study the

best application-specific hierarchies on a range of benchmarks, and

compare them to the best overall rigid hierarchy.

Methodology: We consider a simple single-core system running

SPEC CPU2006 apps. (We evaluate multi-program and multi-threaded

workloads later.) The core has fixed 32 KB L1s and a 128 KB L2. To

find the best hierarchy for each app, we consider NUCA SRAM and

stacked-DRAM caches of different sizes: from 512 KB to 32 MB for

SRAM, and from 128 MB to 2 GB for stacked DRAM. We evaluate all

possible single- and two-level combinations of these memories (i.e.,

using an SRAM or DRAM L3, optionally followed by an SRAM or

DRAM L4). Latency, energy, and area are derived using CACTI [52]

and CACTI-3DD [10]. Each SRAM cache bank is 512 KB, and each

stacked DRAM vault is 128 MB, takes the area of 4 tiles, and uses

the latency-optimized Alloy design [53]. Larger caches have more

banks, placed as close to the core as possible and connected through

a mesh NoC. Sec. 7 details our methodology further.

Larger caches are more expensive [26, 27]: Area and static power

increase roughly linearly with size, while access latency and energy

scale roughly with its square root [65]. SRAM caches from 512 KB to

32 MB have access latencies from 9 to 45 cycles and access energies

from 0.2 to 1.7 nJ, and stacked DRAM caches from 128 MB to 2 GB

have access latencies from 42 to 74 cycles and energies from 4.4 nJ

to 6 nJ. Monolithic caches of the same size yield similar figures.

We make the following key observations:

1. The optimal application-specific hierarchy varies widely in

size and number of levels. We sweep all single- and two-level cache

hierarchies, and rank them by system-wide EDP, which includes

core, cache, and main memory static and dynamic power. Fig. 2

reports the best hierarchy for each application. Applications want

markedly different hierarchies: eight out of the 18 memory-intensive

applications we consider prefer a single-level organization, and their

preferred sizes vary widely, especially at the L3.

512KB L3
(SRAM)

1MB L3
(SRAM)

2MB L3
(SRAM)

4MB L3
(SRAM)

8MB L3
(SRAM)

128MB L3
(DRAM)

256MB L3
(DRAM)

No L4

128MB L4

256MB L4

512MB L4

1GB L4

2GB L4

(A
ll

D
R

A
M

)

astar
calculix

gcc

omnet
gems
cactus

mcf

h264bzip2

milc

hmmer
lbm

leslie

libqntm

zeus

sphinx
gobmk

xalanc

Figure 2: The best cache hierarchy (by EDP) for SPEC CPU2006.

2

2. Rigid hierarchies sacrifice performance and energy efficiency.

The rigid hierarchy that maximizes gmean EDP on these applications

consists of a 512 KB SRAM L3 and a 256 MB DRAM L4. This is

logical, since six (out of 18) applications want a 512 KB SRAM L3

and seven want a 256 MB DRAM L3 or L4. But Fig. 3 shows that

applications that desire a different hierarchy can do significantly bet-

ter: up to 81% better EDP and 51% higher performance. Comparing

Fig. 2 and Fig. 3 shows that these gains are highly correlated to how

different the application-specific hierarchy is from the rigid one.

0

10

20

30

40

E
D

P
 v

s
 B

e
s
t
R

ig
id

 (
%

)

sp
hi
nx

go
bm

k

as
ta

r

lib
qn

tm

ca
lc
ul
ix

ge
m

s
gc

c
ze

us

h2
64

bz
ip
2

hm
m

er

ca
ct
us m

cf
lb
m

xa
la
nc

le
sl
ie

m
ilc

om
ne

t

gm
ea

n

81%

Figure 3: EDP improvements of application-specific hierarchies

vs. the best rigid hierarchy.

With application-specific hierarchies, performance and EDP are

highly correlated. This occurs because better hierarchies save energy

by reducing expensive off-chip misses, and improving performance

also reduces the contribution of static power to total energy. Data

movement reductions are thus reflected in lower latency and energy;

Jenga exploits this by optimizing for access latency. However, unlike

prior work, Jenga reduces latency by eliminating wasteful accesses,

not by hiding their latency.

3. Applications have strong preferences about hierarchy. Fig. 2

showed that many applications prefer a single- or a two-level hierar-

chy. But is this a strong preference? In other words, what would we

lose by fixing the number of levels? To answer this question, Fig. 4

reports, for each application, the EDP of its best application-specific,

two-level hierarchy relative to the EDP of its best single-level, L3-

only hierarchy.

-20

-10

0

10

20

E
D

P
 i
m

p
ro

v
e

m
e

n
t

o
f

2
-l
e

v
e

l
v
s
 1

-l
e

v
e

l
(%

)

le
sl
ie

lb
m

om
ne

t
m

cf

ca
ct
us

xa
la
nc

ge
m

s

hm
m

er

ze
us

h2
64

bz
ip
2

go
bm

k
gc

c

ca
lc
ul
ix

as
ta

r

sp
hi
nx

lib
qn

tm m
ilc

Hierarchy-averse

Hierarchy-friendly

Figure 4: EDP of the best two-level, application-specific hierar-

chy vs. the best single-level one.

Fig. 4 shows that applications often have strong preferences about

hierarchy: 7 out of the 18 applications are hierarchy-averse, and

two-level organizations degrade their EDP by up to 20%. Others are

hierarchy-friendly and see significant EDP gains, of up to 18%. This

shows that fixing the hierarchy leaves significant performance on the

table, and motivates adaptively choosing the right number of levels.

Putting it all together: Fig. 5 compares the gmean EDP and per-

formance gains of the best rigid single-level hierarchy (a 128 MB

0

5

10

15

20

G
m

e
a

n
 E

D
P

 v
s

R
ig

id
 1

-l
e

v
e

l
(%

)

R
ig
id

1-
le
ve

l
R
ig
id

2-
le
ve

l

Bes
t-s

iz
ed

1-
le
ve

l

Bes
t-s

iz
ed

hi
er

ar
ch

y

0

5

10

15

20

G
m

e
a

n
 P

e
rf

 v
s

R
ig

id
 1

-l
e

v
e

l
(%

)

R
ig
id

1-
le
ve

l
R
ig
id

2-
le
ve

l

Bes
t-s

iz
ed

1-
le
ve

l

Bes
t-s

iz
ed

hi
er

ar
ch

y

Figure 5: Gmean EDP/perf. of the best rigid hierarchies of 1 or 2

levels vs. application-specific hierarchies of 1 or (up to) 2 levels.

DRAM L3), the best rigid two-level hierarchy (a 512 KB SRAM L3

plus a 256 MB DRAM L4), the best application-specific single-level

cache size (i.e., L3 size with no L4), and the best application-specific

hierarchy (L3 size and L4 size, if present, from Fig. 2).

Overall, hierarchy offers only modest benefits in rigid designs

since it is hampered by hierarchy-averse applications: just 7% higher

gmean EDP and 5% performance. In contrast, application-specific

hierarchies substantially improve performance and efficiency. Even a

single-level cache of the appropriate size solidly outperforms a rigid

hierarchy, by 14% gmean EDP and 11% performance. Building multi-

level hierarchies (when appropriate) yields further improvements,

by 19% gmean EDP and 13% gmean performance. This motivates

the need for specialized virtual cache hierarchies.

3 JENGA OVERVIEW
Fig. 6 shows a 36-tile Jenga system running four applications. Each

tile has a core, a private cache hierarchy (L1s and L2) and a 512 KB

SRAM cache bank. There are four 256 MB DRAM cache banks, e.g.,

stacked DRAM vaults connected by an interposer. Jenga builds a

custom virtual cache hierarchy out of the shared cache banks—

i.e., the 512 KB SRAM and 256 MB DRAM banks, excluding private

caches—for each application according to how it accesses memory.

Letters show where each application is running (one per quadrant),

colors show where its data is placed, and hatching indicates the

second virtual hierarchy level, when present.

Jenga builds a single-level virtual cache for two apps. omnet

(lower-left) uniformly accesses a small working set, so it is allocated

a single-level virtual cache in nearby SRAM banks. This keeps its

working set at minimum latency and energy. Misses from omnet

go directly to main memory, and do not access DRAM cache banks.

SRAM bank

(512 KB)

DRAM bank

(256 MB) Virtual L2 cache

Virtual L1 cache

Figure 6: A 36-tile Jenga system running four applications.

Jenga gives each a custom virtual cache hierarchy.

3

Similarly, mcf (upper-left) uniformly accesses its working set, so

it is also allocated a single-level virtual cache—except its working

set is much larger, so its data is placed in both SRAM banks and the

nearest DRAM bank. Crucially, although mcf’s virtual cache uses

both SRAM and DRAM, it is still accessed as a single cache level

(with accesses spread uniformly across its capacity), and misses go

directly to main memory.

Jenga builds two-level virtual hierarchies for the other apps.

astar (upper-right) accesses a small working set intensely and

a larger working set less so, so Jenga allocates its local SRAM bank

as the first level of its hierarchy (VL1), and its closest DRAM bank as

the second level (VL2). astar thus prefers a hierarchy similar to the

best rigid hierarchy in Sec. 2, although this is uncommon (Fig. 2).

Finally, bzip2 has similar behavior, but with a much smaller work-

ing set. Jenga also allocates it a two-level hierarchy—except placed

entirely in SRAM banks, saving energy and latency over the rigid

hierarchy that uses DRAM banks.

Later sections explain Jenga’s hardware mechanisms that control

data placement and its OS runtime that chooses where data should

be placed. We first review relevant prior work in multicore caching

and heterogeneous memory technologies.

4 BACKGROUND AND RELATED WORK
Non-uniform cache access (NUCA) architectures: NUCA [41] tech-

niques reduce the latency and energy of large caches. Static NUCA

(S-NUCA) [41] spreads data across all banks with a fixed line-bank

mapping, and exposes a variable bank access latency. S-NUCA is sim-

ple, but suffers from large average network distance. Dynamic NUCA

(D-NUCA) schemes improve on S-NUCA by adaptively placing data

close to the requesting core [3, 5, 6, 9, 11, 12, 25, 32, 49, 54, 66]

using a mix of placement, migration, and replication techniques.

D-NUCAs and hierarchy: D-NUCAs often resemble a hierarchical

organization, using multiple lookups to find data, and suffer from

similar problems as rigid hierarchies. Early D-NUCAs organized

banks as a fine-grain hierarchy [6, 41], with each level consisting of

banks at a given distance. However, these schemes caused excessive

data movement and thrashing [6]. Later techniques adopted coarser-

grain hierarchies, e.g., using the core’s local bank as a private level

and all banks as a globally shared level [19, 49, 66], or spilling lines

to other banks and relying on a global directory to access them [54].

Finally, Cho and Jin [12], Awasthi et al. [3], R-NUCA [25] and

Jigsaw [7] do away with hierarchy entirely, adopting a single-lookup

design: at a given time, each line is mapped to a fixed cache bank,

and misses access main memory directly.

In systems with non-uniform SRAM banks, single-lookup NUCAs

generally outperform directory-based NUCAs [7, 8, 25, 51]. This

effect is analogous to results in Sec. 2: directory-based D-NUCAs

suffer many of the same problems as rigid hierarchies, and single-

lookup D-NUCAs eliminate hierarchy.

The key challenge in single-lookup designs is balancing off-chip

and on-chip data movement, i.e., giving just enough capacity to fit

the working set at minimum latency and energy. In particular, Jig-

saw [7, 8] achieves this by letting software define single-level virtual

caches. Jenga builds on Jigsaw, so we explain it in greater depth

in later sections. However, systems with heterogeneous memories

(e.g., DRAM cache banks) introduce a wider tradeoff in latency and

capacity. Hierarchy is thus sometimes desirable, so long as it is used

only when beneficial.

Stacked-DRAM caches: Recent advances in 3D stacking [44] and

silicon interposers [36] have made stacked-DRAM caches practical.

Prior work has proposed using stacked DRAM as either OS-managed

memory [1, 17, 35, 64] or an extra layer of cache [20, 34, 45, 53].

When used as OS-managed memory, it must be allocated at page

boundaries and hence suffers internal fragmentation. When used as

a cache, the main challenge is its high access latency.

To address its latency, much recent work has focused on the struc-

ture of cache arrays. Several schemes [20, 34, 45, 47] place tags in

SRAM, reducing latency at the cost of SRAM capacity. Alloy [53]

uses a direct-mapped organization with tags adjacent to data, reduc-

ing latency at the cost of additional conflict misses. Jenga abstracts

away details of array organization and is orthogonal to these tech-

niques. While our evaluation uses Alloy caches, Jenga should also

apply to other DRAM cache architectures and memory technologies.

Mitigating the cost of hierarchy: Some prior work hides the la-

tency cost of hierarchy, but does not eliminate the unnecessary

accesses to unwanted cache levels that are the root cause.

Dynamic cache bypassing [34, 40] will not install lines at specific

levels when they are predicted to not be reused. Similarly, some

cache replacement policies [18, 33, 55] bypass lines or insert them

at low priority. However, these schemes still must check each level

for correctness, so they do not eliminate unnecessary accesses.

Other techniques hide the latency of unwanted levels by overlap-

ping it with speculative accesses up the hierarchy. Prefetchers and

hit/miss prediction [53] fall in this category. Since mispredictions

consume energy and bandwidth, these techniques essentially trade

energy for lower latency. Like bypassing, they also must check all

levels for correctness. So not only do they not eliminate unnecessary

accesses—they add unnecessary accesses on mispredictions.

Jenga’s advantage: Jenga complements these techniques while im-

proving upon them (e.g., we use hit/miss prediction in our evaluation

and study the effect of prefetchers). However, unlike prior work,

Jenga eliminates wasteful accesses. For example, omnet in Sec. 3

avoids DRAM cache accesses entirely. By eliminating wasteful ac-

cesses, Jenga sidesteps this latency-energy tradeoff and improves

both performance and energy efficiency. Compared to previously

proposed reconfigurable caches [2, 4], Jenga handles heterogeneous

and spatially distributed cache banks, and works with multiple appli-

cations. These factors greatly complicate reconfigurations.

5 JENGA HARDWARE
Jenga’s key idea is to treat cache banks as a single resource pool

from which software can build application-specific cache hierar-

chies. To realize this goal, Jenga’s hardware needs to be flexible

and reconfigurable at low cost. We thus base Jenga’s hardware on

Jigsaw [7, 8], which supports application-specific single-level SRAM

caches. Jenga extends Jigsaw in straightforward ways to support

heterogeneous (e.g., SRAM and DRAM) cache banks and multi-level

virtual hierarchies. We now present these hardware components,

emphasizing differences from Jigsaw at the end of the section. See

prior work [7, 8] for details of Jigsaw’s hardware.

Fig. 7 shows the tiled multicore we use to present Jenga. Each tile

has a core, a directory bank, and an SRAM cache bank. The system

also has distributed DRAM cache banks (connected through TSVs or

an interposer). We first present steady-state operation in Jenga, then

discuss support for coherence and reconfigurations.

4

DRAM

bank

DRAM

bank

DRAM

bank

DRAM

bank
SRAM Bank

Directory

Bank

Private

Caches

NoC

Router Miss Curve

Monitor

Core VHT

Figure 7: 16-tile Jenga system with distributed on-chip SRAM

banks and four DRAM banks (e.g., stacked DRAM vaults).

Virtual cache hierarchies: Jenga builds virtual cache hierarchies

(VHs) by combining parts of physical SRAM banks and stacked

DRAM banks, as shown in Fig. 6. Our implementation partitions

SRAM banks but not DRAM banks. This is because (i) SRAM ca-

pacity is scarce and highly contended but DRAM capacity is not, so

partitioning is less beneficial in DRAM banks, and (ii) high associa-

tivity is expensive in DRAM caches [53], making partitioning more

costly.

Data are mapped to a specific VH using the virtual memory system.

Jenga maps each page to a particular VH, and adds a VH id to each

page table entry and TLB entry to keep track of this mapping. In our

Jenga implementation, there are three kinds of VHs: each thread has

a thread-private VH, all threads in the same process share a process

VH, and all threads in the system share a global VH. This simple

scheme captures common access patterns (e.g., letting Jenga place

private data near its thread) with few VHs per thread. Each VH can

have one or two levels in the shared cache banks, which we call VL1

and VL2 (these are different from cores’ private L1s and L2).

Tile 1

Tile 0

DRAM

cache

1

2

3

4

SRAM (bank 0)

Private

Caches
Core 1 VHT

Directory (bank 0)

DRAM (bank 17)

Core miss Dir bank

No sharers VL1 bank

VL1 miss VL2 bank

VL2 hit, serve line

DRAM

cache

bank

1

2 3

4

Tile

Figure 8: Example access to a virtual hierarchy (VH) that misses

in the VL1 and hits in the VL2. An access first checks the direc-

tory bank, then its VL1 and (upon a miss) VL2 locations.

Accessing VHs: Fig. 8 shows an example memory access that misses

in the VL1 and hits in the VL2. The access begins with a private

cache miss in tile 1. First, tile 1’s core consults its virtual hierarchy

table (VHT) to find the path the access should follow (see below).

Each address belongs to a single VH and has unique VL1 and VL2

locations—in Jenga, data does not migrate upon an access. In this

example, the address maps to tile 0 for directory and VL1, so tile

1 next forwards the request to tile 0. At tile 0, we first check the

directory bank to maintain coherence and, in parallel, access the VL1

by querying the SRAM bank. The request misses in both directory

and SRAM banks, indicating that no copy of the data is present in any

private cache, so tile 0 forwards the request to the VL2 bank, DRAM

bank 17, located nearby. The request hits, and the data is returned to

tile 1 via the SRAM and directory banks at tile 0.

The VHT stores the configuration of the virtual hierarchies that the

running thread can access. Fig. 9 shows its organization. The VHT

implements a configurable hash function that maps an address to its

unique location, similar to Jigsaw’s VTB [8]. In our implementation,

it is a fully associative, three-entry lookup table indexed by VH id

 Access path:

VL1 @ bank 0 VL2 @ bank 17

VHT entry

Address (from private cache miss) VH id (from TLB)

17 17 17 17

1 0 3 2

H 1337

3 entries,

associative

VHT descriptor

(VL1, VL2)

0x5CA1AB1E

…

Shadow descriptor

(for reconfigurations)

Figure 9: The virtual hierarchy table (VHT) maps addresses

to their unique VL1 and (if present) VL2 locations, storing the

bank ids and partition ids (not shown).

(letting each thread access its private, process, and global VHs). Each

entry contains the VH’s descriptor, itself two arrays of N bank ids

for the VL1 and VL2 locations (N = 128 buckets in our evaluation).

The address is hashed to a bucket to find its access path (as in Fig. 8).

The VHT is accessed in parallel with the private L2 to hide its latency.

Maintaining coherence: In Jenga all accesses to a single address

follow the same path beyond the private caches, automatically main-

taining coherence in the shared levels. Therefore, directories are

needed only to maintain coherence in the private caches. Unlike Jig-

saw, which uses in-cache directories, Jenga uses separate directory

banks to track the contents of private caches. Separate directories

are much more efficient when the system’s shared cache capacity

greatly exceeds its private capacity.

To reduce directory latency, Jenga uses a directory bank near

the VL1 bank, similar to prior dynamic directory schemes [16, 48].

Specifically, when the VL1 access is to an SRAM bank, Jenga uses

the directory bank in the same tile, as in Fig. 8. When the VL1 access

is to a DRAM bank, Jenga uses a directory bank in nearby tiles. For

example, VL1 accesses to the top-left DRAM bank in Fig. 7 would

use the four directory banks in the top-left quadrant. Directory bank

ids are always derived from the VL1 bank id.

Dynamic directory placement is critical to Jenga’s scalability

and performance. If directories used a naïve static placement, then

directory latency would increase with system size and eliminate

much of Jenga’s benefit. Instead, this dynamic directory mapping

means that access latency is determined only by working set size

and does not increase with system size.

Directory bank lookups are only required when an access to a

shared VH misses in the private caches: VL1 and VL2 cache lines are

not under a coherence directory, so no directory lookups are needed

on VL1 or VL2 misses. And accesses to a thread-private VH do not

need coherence [14] and skip the directory.

Monitoring VHs: Like Jigsaw, Jenga uses distributed utility moni-

tors [56] to gather the miss curve of each VH. Miss curves let Jenga’s

software runtime find the right virtual hierarchies without trial and er-

ror. A small fraction (∼1%) of VHT accesses are sampled into these

monitors. Specifically, we use geometric monitors (GMONs) [8],

which let us accurately monitor large caches at low overhead.

Supporting fast reconfigurations: Periodically (every 100 ms), Jen-

ga software updates the configuration of some or all VHs by updating

the VHT descriptors at all cores. Jenga uses the same techniques as

Jigsaw to make reconfigurations incremental and efficient [8, Sec.

IV.H]. Following a reconfiguration, the system enters a transient

5

period where VHTs retain the old VH descriptors (in the shadow

descriptors in Fig. 9), and VL1/VL2 accesses check both the new and

old locations of the line. If the line is found at the old location during

a reconfiguration, it is migrated to its new location.

Concurrently, directory and cache banks walk their tag arrays,

invalidating lines that have moved to a new bank, and forward these

invalidations to directories, which in turn invalidate private caches

as needed. Once these tag array walks finish (which takes just a few

milliseconds), the system resumes steady-state operation, with cores

checking a single location at each level.

Supporting page reclassifications: Like Jigsaw and R-NUCA, Jenga

uses a simple technique to map pages to VHs [7, 14, 25]. All pages

start in the private VH of the thread that allocates them and are

upgraded lazily: the first access from another thread in the same

process upgrades the page to the process VH, and the first access

from another process’s thread upgrades the page to the global VH.

To maintain coherence on an upgrade, the OS issues a bulk inval-

idation of the page (which invalidates its lines in both shared and

private levels) and performs a TLB shootdown to invalidate the page’s

translations. These reclassifications are expensive but very rare in

steady-state operation (<1% runtime overhead).

Jenga extensions over Jigsaw hardware: In summary, Jenga makes

simple changes to Jigsaw’s hardware. The main differences are:

• Jenga supports two-level virtual cache hierarchies.

• Jenga does not partition DRAM cache banks.

• Jenga uses non-inclusive caches and separate, dynamically-mapped

directory banks, which are more efficient than in-cache directories

given large DRAM cache banks.

Hardware overheads: In our implementation, each VH descriptor

has N = 128 buckets and takes 384 bytes, 192 per virtual level (128

2×6-bit buckets, for bank and partition ids). A VHT has three entries,

each with two descriptors (normal and shadow, as explained above).

The VHT thus requires ∼2.4 KB. We use 8 KB GMONs, and have

two monitors per tile. In total, Jenga adds ∼20 KB per tile, less than

720 KB for a 36-tile chip, and just 4% overhead over the SRAM cache

banks.

6 JENGA SOFTWARE
Jenga hardware provides a flexible reconfigurable substrate, and

leaves the challenging job of specializing hierarchies to software.

Periodically, Jenga’s OS-level software runtime reconfigures vir-

tual hierarchies to minimize data movement, considering limited

resources and applications’ behavior. Jenga software runs concur-

rently with other useful work in the system. Each reconfiguration

consists of four steps, shown in Fig. 10:

Final

allocation

Set VHTs

Utility

Monitors

~1% of

accesses
Application

miss curves

Reconfigure

Virtual

Hierarchies

Hardware Software

Bandwidth-

Aware

Placement

VH sizes

& levels

Virtual Hierarchy

Allocation

VL1
VL2

Figure 10: Overview of Jenga reconfigurations. Hardware pro-

files applications; software periodically reconfigures virtual hi-

erarchies to minimize total access latency.

(1) Read miss curves from hardware monitors.

(2) Divide cache capacity into one- or two-level virtual cache hi-

erarchies (Sec. 6.2). This algorithm finds the number of levels

for each VH and the size of each level, but does not place them.

(3) Place each virtual cache hierarchy in cache banks, accounting

for the limited bandwidth of DRAM banks (Sec. 6.3).

(4) Initiate a reconfiguration by updating the VHTs.

Jenga makes major extensions to Jigsaw’s runtime to support

hierarchies and cope with limited DRAM bank bandwidth. We first

explain how Jenga integrates heterogeneity into Jigsaw’s latency

model and then explain Jenga’s new algorithms.

6.1 Jenga’s latency model

Cache size

La
te

nc
y
!

Total

Miss

Access

Figure 11: Access latency.

Jenga allocates capacity among

VHs to minimize end-to-end ac-

cess latency. Jenga models la-

tency through two components

(Fig. 11): time spent on cache

misses, which decreases with

cache size; and time spent ac-

cessing the cache, which in-

creases with cache size (larger

virtual caches must use further-

away banks). Summing these

yields the total access latency curve of a virtual cache. Both Jenga

and Jigsaw use these curves to allocate capacity among applications,

trying to minimize total system latency. Since the same trends hold

for energy, Jenga also reduces energy and improves EDP.

We construct these curves as follows: The miss latency curve is

computed from the hardware miss curve monitors, since the miss

latency at a given cache size is just the expected number of misses

(read from monitors) times the memory latency. Jenga constructs

the cache access latency curve for individual levels using the system

configuration. Fig. 12 shows how. Starting from each tile (e.g., top-

left in Fig. 12), Jenga sorts banks in order of access latency, including

both network and bank latency. This yields the marginal latency

curve; i.e., how far away the next closest capacity is at every possible

size. The marginal latency curve is useful since its average value

from 0 to s gives the average latency to a cache of size s.

 C
a

ch
e

 A
cc

e
ss

 L
a

te
n

cy

Total Capacity

DRAM

bank

Color latency Start point

Six banks

within 2 hops

Figure 12: Jenga models access latency by sorting capacity ac-

cording to latency, producing the marginal latency curve that

yields the latency to the next available bank. Averaging this

curve gives the average access latency.

Jigsaw uses the total access latency curves to allocate SRAM

capacity among virtual caches. Jigsaw then places virtual caches

across SRAM banks in two passes. First, virtual caches take turns

greedily grabbing capacity in their most favorable banks. Second,

6

VL1 siz
e !

Total size !

La
te

nc
y
!

One level

Two levels

Total size !

La
te

nc
y
!

One-level

Best two-level

Total size !

La
te

nc
y
!

Use one level

Use two levels

VL1 size

VL
1

si
ze

 !

(a) Full hierarchy model (b) Choosing the best VL1 (c) Choosing the best hierarchy

Figure 13: Jenga models the latency of each virtual hierarchy with one or two levels. (a) Two-

level hierarchies form a surface, one-level hierarchies a curve. (b) Jenga then projects the

minimum latency across VL1 sizes, yielding two curves. (c) Finally, Jenga uses these curves to

select the best hierarchy (i.e., VL1 size) for every size.

w/o BW-aware
placement

w/ BW-aware
placement

0.0

0.2

0.4

0.6

0.8

1.0

S
ta

c
k
e

d
 D

R
A

M
B

a
n

d
w

id
th

 U
ti
liz

a
ti
o

n

Figure 14: Distribution of band-

width across DRAM vaults on lbm.

Jenga removes hotspots by model-

ing queuing latency at each vault.

virtual caches trade capacity to move more-intensely accessed data

closer to where it is used, reducing access latency [8].

Jenga makes a few modifications to this framework to support het-

erogeneity. First, Jenga models banks with different access latencies

and capacities. Second, Jenga models the latency over TSVs or an

interposer to access DRAM banks. These changes are already illus-

trated in Fig. 12. They essentially let the latency model treat DRAM

banks as different “flavor” of cache bank. These modifications can

be integrated with Jigsaw’s runtime to produce virtual caches using

heterogeneous memories, but without hierarchy. Sec. 7.4 evaluates

these simple changes, and, as shown in Sec. 2, an appropriately sized,

single-level cache performs well on many apps. However, since apps

are often hierarchy-friendly and since DRAM banks also have limited

bandwidth, there is room for significant improvement.

6.2 Virtual hierarchy allocation

Jenga decides whether to build a single- or two-level hierarchy by

modeling the latency of each and choosing the lowest. For two-

level hierarchies, Jenga must decide the size of both the first (VL1)

and second (VL2) levels. The tradeoffs in the two-level model are

complex [65]: A larger VL1 reduces misses, but increases the latency

of both the VL1 and VL2 since it pushes the VL2 to further-away

banks. The best VL1 size depends on the VL1 miss penalty (i.e., the

VL2 access latency), which depends on the VL2 size. And the best

VL2 size depends on the VL1 size, since VL1 size determines the

access pattern seen by the VL2. The best hierarchy is the one that

gets the right balance. This is not trivial to find.

Jenga models the latency of a two-level hierarchy using the stan-

dard formulation:

Latency = Accesses×VL1 access latency

+VL1 Misses×VL2 access latency

+VL2 Misses×Memory latency

We model VL2 misses as the miss curve at the VL2 size. This

is a conservative, inclusive hierarchy model. In fact, Jenga uses

non-inclusive caches, but non-inclusion is hard to model.1

The VL2 access latency is modeled similarly to the access latency

of a single-level virtual cache (Fig. 12). The difference is that, rather

than averaging the marginal latency starting from zero, we average

the curve starting from the VL1 size (VL2s are placed after VL1s).

1Alternatively, Jenga could use exclusive caches, in which the VL2 misses would be
reduced to the miss curve at the combined VL1 and VL2 size. However, exclusion adds
traffic between levels [60], a poor tradeoff with DRAM banks.

Fig. 13 shows how Jenga builds hierarchies. Jenga starts by eval-

uating the latency of two-level hierarchies, building the latency

surface that describes the latency for every VL1 size and total size

(Fig. 13(a)). Next, Jenga projects the best (i.e., lowest latency) two-

level hierarchy along the VL1 size axis, producing a curve that gives

the latency of the best two-level hierarchy for a given total cache

size (Fig. 13(b)). Finally, Jenga compares the latency of single- and

two-level hierarchies to determine at which sizes this application is

hierarchy-friendly or -averse (Fig. 13(c)). This choice in turn implies

the hierarchy configuration (i.e., VL1 size for each total size), shown

on the second y-axis in Fig. 13(c).

With these changes, Jenga models the latency of a two-level

hierarchy in a single curve, and thus can use the same partitioning

algorithms as in prior work [7, 56] to allocate capacity among virtual

hierarchies. The allocated sizes imply the desired configuration (the

VL1 size in Fig. 13(c)), which Jenga places as described in Sec. 6.3.

Efficient implementation: Evaluating every point on the surface

in Fig. 13(a) is too expensive. Instead, Jenga evaluates a few well-

chosen points. Our insight is that there is little reason to model small

changes in large cache sizes. For example, the difference between a

100 MB and 101 MB cache is often inconsequential. Sparse, geomet-

rically spaced points can achieve nearly identical results with much

less computation.

Rather than evaluating every configuration, Jenga first computes

a list of candidate sizes to evaluate. It then only evaluates configura-

tions with total size or VL1 size from this list. The list is populated

by geometrically increasing the spacing between points, while being

sure to include points where the marginal latency changes (Fig. 12).

Ultimately, our implementation at 36 tiles allocates >1 GB of

cache capacity by evaluating just ∼60 candidate sizes per VH. This

yields a mesh of ∼1600 points in the two-level model. Our sparse

model performs within 1% of an impractical, idealized model that

evaluates the entire latency surface.

6.3 Bandwidth-aware data placement

The final improvement Jenga makes is to account for bandwidth

usage. In particular, DRAM banks have limited bandwidth compared

to SRAM banks. Since Jigsaw ignores differences between banks, it

often spreads bandwidth unevenly across DRAM banks, producing

hotspots that sharply degrade performance.

The simplest approach to account for limited bandwidth is to dy-

namically monitor bank access latency, and then use these monitored

latencies in the marginal latency curve. However, monitoring does

not solve the problem, it merely causes hotspots to shift between

7

(a) Current placement

Start Decide Place Allocations

Figure 15: Jenga reduces total access latency by considering two factors when placing a chunk of capacity: (i) how far away the

capacity will have to move if not placed, and (ii) how many accesses are affected (called the intensity).

DRAM banks at each reconfiguration. Keeping a moving average

can reduce this thrashing, but since reconfigurations are infrequent,

averaging makes the system unresponsive to changes in load.

We conclude that a proactive approach is required. Jenga achieves

this by placing data incrementally, accounting for queueing effects

at DRAM banks on every step with a simple M/D/1 queue latency

model. This technique eliminates hotspots on individual DRAM

banks, reducing queuing delay and improving performance.

Incremental placement: Optimal data placement is an NP-hard

problem. Virtual caches vary greatly in how sensitive they are to

placement, depending on their access rate, the size of their allocation,

which tiles access them, etc. Accounting for all possible interactions

during placement is challenging. We observe, however, that the

main tradeoffs are the size of the virtual cache, how frequently it is

accessed, and the access latency at different cache sizes. We design

a heuristic that accounts for these tradeoffs.

Jenga places data incrementally. At each step, one virtual cache

gets to place some of its data in its most favorable bank. Jenga selects

the virtual cache that has the highest opportunity cost, i.e., the one

that suffers the largest latency penalty if it cannot place its data in

its most favorable bank. This opportunity cost captures the cost (in

latency) of the space being given to another virtual cache.

Fig. 15 illustrates a single step of this algorithm. The opportunity

cost is approximated by observing that if a virtual cache does not

get its favored allocation, then its entire allocation is shifted further

down the marginal latency curve. This shift is equivalent to moving

a chunk of capacity from its closest available bank to the bank just

past where its allocation would fit. This heuristic accounts for the

size of the allocation and distance to its nearest cache banks.

For example, the step starts with the allocation in Fig. 15(a). In

Fig. 15(b) and Fig. 15(c), each virtual cache (A and B) sees where its

allocation would fit. Note that it does not actually place this capacity,

it just reads its marginal latency curve (Fig. 12). It then compares the

distance from its closest available bank to the next available bank

(∆d, arrows), which gives how much additional latency is incurred

if it does not get to place its capacity in its favored bank.

However, this is only half of the information needed to approxi-

mate the opportunity cost. We also need to know how many accesses

pay this latency penalty. This is given by the intensity I of accesses

to the virtual cache, computed as its access rate divided by its size.

All told, we approximate the opportunity cost as: ∆L ≈ I ×∆d.

Finally, in Fig. 15(d), Jenga chooses to place a chunk of B’s

allocation since B’s opportunity cost is larger than A’s. Fig. 15

places a full bank per step; our Jenga implementation places at most

1/16th of a bank per step.

Bandwidth-aware placement: To account for limited bandwidth,

we update the latency to each bank at each step. This may change

which banks are closest (in latency) from different tiles, changing

where data is placed in subsequent iterations. Jenga thus spreads ac-

cesses across multiple DRAM banks, equalizing their access latency.

We update the latency using a simple M/D/1 queueing model.

Jenga models SRAM banks having unlimited bandwidth, and DRAM

banks having 50% of peak bandwidth (to account for cache over-

heads [13], bank conflicts, suboptimal scheduling, etc.). Though

more sophisticated models could be used, this model is simple and

avoids hotspots.

Jenga updates the bank’s latency on each step after data is placed.

Specifically, placing capacity s at intensity I consumes s× I band-

width. The bank’s load ρ is the total bandwidth divided by its ser-

vice bandwidth µ . Under M/D/1, queuing latency is ρ/(2µ × (1−

ρ)) [23]. After updating latencies, Jenga sorts banks for later steps.

Resorting is cheap because each bank moves at most a few places.

Fig. 14 shows a representative example of how Jenga balances

accesses across DRAM vaults on lbm. Each bar plots the access

intensity to different DRAM vaults with (right) and without (left)

bandwidth-aware placement. Jigsaw’s placement algorithm leads

to hotspots, overloading some vaults while others are idle, whereas

Jenga evenly spreads accesses across vaults. Jenga improves perfor-

mance by 10%, energy by 6%, and EDP by 17% in this case. Similar

results hold for other apps (e.g., omnet and xalanc, Sec. 7.4).

6.4 Implementation discussion

OS integration: Jenga’s software runs in the OS, and should be

tightly integrated with OS thread scheduling to ensure data stays near

the threads that use it [8]. Jenga does not complicate thread migration

or context switches: threads access distinct VHs, and caches do not

need to be flushed when a new thread is swapped in. Instead, only

their VHT entries must be loaded (3 entries total).

We focus our evaluation on long-running batch workloads, but

Jenga should work in other scenarios with minor changes. First, in

oversubscribed systems, background threads and processes (e.g., ker-

nel threads, short-lived threads, or short jobs) should use the global

VH to limit monitoring and reconfiguration overheads. Second, for

interactive workloads with real-time requirements, Jenga’s recon-

figuration algorithm can incorporate policies that partition cache

capacity to maintain SLOs instead of maximizing throughput, like

8

Cores

36 cores, x86-64 ISA, 2.4 GHz, Silvermont-like OOO [37]: 8B-wide
ifetch; 2-level bpred with 512×10-bit BHSRs + 1024×2-bit PHT,
2-way decode/issue/rename/commit, 32-entry IQ and ROB, 10-entry
LQ, 16-entry SQ; 371 pJ/instruction, 163 mW/core static power [43]

L1 caches
32 KB, 8-way set-associative, split data and instruction caches,
3-cycle latency; 15/33 pJ per hit/miss [52]

Prefetchers

(Fig. 23 only)

16-entry stream prefetchers modeled after and validated against
Nehalem [59]

L2 caches
128 KB private per-core, 8-way set-associative, inclusive, 6-cycle
latency; 46/93 pJ per hit/miss [52]

Coherence

MESI, 64 B lines, no silent drops; sequential consistency; 4K-entry,
16-way, 6-cycle latency directory banks for Jenga; in-cache L3

directories for others

Global NoC

6×6 mesh, 128-bit flits and links, X-Y routing, 2-cycle pipelined
routers, 1-cycle links; 63/71 pJ per router/link flit traversal, 12/4 mW
router/link static power [43]

SRAM

banks

18 MB, one 512 KB bank per tile, 4-way 52-candidate zcache [57],
9-cycle bank latency, Vantage partitioning [58]; 240/500 pJ per
hit/miss, 28 mW/bank static power [52]

Stacked

DRAM

banks

1152 MB, one 128 MB vault per 4 tiles, Alloy with MAP-I

DDR3-3200 (1600 MHz), 128-bit bus, 16 ranks, 8 banks/rank, 2 KB

row buffer; 4.4/6.2 nJ per hit/miss, 88 mW/vault static power [10]

Main

memory

4 DDR3-1600 channels, 64-bit bus, 2 ranks/channel, 8 banks/rank,
8 KB row buffer; 20 nJ/access, 4 W static power [50]

DRAM

timings

tCAS=8, tRCD=8, tRTP=4, tRAS=24, tRP=8, tRRD=4, tWTR=4, tWR=8,
tFAW=18 (all timings in tCK; stacked DRAM has half the tCK as main
memory)

Table 1: Configuration of the simulated 36-core system.

Ubik [38]. However, these scenarios are beyond the scope of this

paper, and we leave them to future work.

Software overheads: Jenga’s configuration algorithm, including

both VH allocation and bandwidth-aware placement, completes in

40 M aggregate core cycles, or 0.4% of system cycles at 36 tiles.

It is trivial to parallelize across available cores, and it scales well

with system size, taking 0.3% of system cycles at 16 tiles. These

overheads are accounted for in our evaluation.

Jenga’s runtime runs concurrently with other useful work on the

system, and only needs to pause cores to update VHTs (i.e., a few

K cycles every 100 ms, given the hardware support for incremental

reconfigurations in Sec. 5).

7 EVALUATION
Modeled system: We perform microarchitectural, execution-driven

simulation using zsim [59] and model a 36-core system with on-chip

SRAM and stacked DRAM caches, as shown in Fig. 1. Each tile has

a lean 2-way OOO core similar to Silvermont [37] with private L1

instruction and data caches, a unified private L2, and a 512 KB SRAM

bank (same MB/core as Knights Landing [62]). We use a mesh with

2-stage pipelined routers and 1-cycle links (like [25, 28] and more

aggressive than [3, 7, 49]). Table 1 details the system’s configuration.

We compare five different cache organizations: (i) Our baseline is

an S-NUCA SRAM L3 without stacked DRAM. (ii) We add a stacked

DRAM Alloy cache with MAP-I hit/miss prediction [53]. These orga-

nizations represent rigid hierarchies.

The next two schemes use Jigsaw to partially relax the rigid hier-

archy. Specifically, we evaluate a Jigsaw L3 both (iii) without stacked

DRAM and (iv) with an Alloy L4 (we call this combination JigAlloy).

Hence, SRAM adopts an application-specific organization, but the

stacked DRAM (when present) is still treated as a rigid hierarchy.

(We also evaluated R-NUCA [25], but it performs uniformly worse

than Jigsaw.) Finally, we evaluate (v) Jenga.

All organizations that use Alloy employ MAP-I memory access

predictor [53]. When MAP-I predicts a cache miss, main memory is

accessed in parallel with the stacked DRAM cache. Jenga uses MAP-I

to predict misses to VL2s in SRAM as well as DRAM. We account

for all reconfiguration overheads (in both software and hardware).

Workloads: Our workload setup mirrors prior work [8]. First, we

simulate copies (SPECrate) and mixes of SPEC CPU2006 apps. We

use the 18 SPEC CPU2006 apps with ≥5 L2 MPKI (as in Sec. 2)

and fast-forward all apps in each mix for 20 B instructions. We use

a fixed-work methodology and equalize sample lengths to avoid

sample imbalance, similar to FIESTA [29]. We first find how many

instructions each app executes in 1 B cycles when running alone, Ii.

Each experiment then runs the full mix until all apps execute at least

Ii instructions, and we consider only the first Ii instructions of each

app when reporting system-wide performance and energy.

Second, we simulate the multi-threaded SPEC OMP2012 apps that

are cache-sensitive (those with at least 5% performance difference

across schemes). We instrument each app with heartbeats that report

global progress (e.g., when each timestep or transaction finishes)

and run each app for as many heartbeats as the baseline system

completes in 1 B cycles after the start of the parallel region.

We use weighted speedup [61] as our performance metric, and

energy-delay product (EDP) to summarize performance and energy

gains. We use McPAT 1.3 [43] to derive the energy of cores, NoC, and

memory controllers at 22 nm, CACTI [52] for SRAM banks at 22 nm,

CACTI-3DD [10] for stacked DRAM at 45 nm, and Micron DDR3L

datasheets [50] for main memory. This system takes 195 mm2 with

typical power consumption of 60 W in our workloads, consistent

with area and power of scaled Silvermont-based systems [31, 37].

7.1 Multi-programmed copies

Fig. 16 shows compares the EDP of different cache organizations

when running 36 copies of one SPEC CPU2006 app on the 36-tile

system. We select apps that exhibit a range of hierarchy-friendly

and hierarchy-averse behaviors to better understand how Jenga per-

forms vs. rigid hierarchies, and present full results later. Fig. 17

shows traffic breakdowns that give more insight into these results.

Each bar reports on-chip network traffic (in flits) relative to the

baseline. Furthermore, each bar shows a breakdown of traffic by

source-destination pairs, e.g., from private L2s to 3D-stacked DRAM.

The first two apps in Fig. 16 are hierarchy-friendly. astar has two

working sets with different sizes (512 KB and 10 MB). It accesses

the small working set very frequently and the large one less so.

Therefore, astar prefers a two-level hierarchy. Alloy does not help

much because SRAM banks absorb most accesses (little SRAM-to-

Mem traffic), but Jigsaw helps astar significantly by placing the

small working set in the local SRAM bank, eliminating L2-to-SRAM

traffic and improving EDP by 2×. JigAlloy performs close to Jigsaw,

since Alloy helps astar little. Jenga improves EDP even further (by

2.4×) because it places the 10 MB working set in a nearby DRAM

bank, reducing VL2 access latency vs. Alloy.

bzip2 has a smooth miss curve with many misses at 512 KB, few

misses at 2 MB, and virtually no misses beyond 8 MB. Alloy’s extra

DRAM capacity helps substantially, replacing SRAM-to-Mem traffic

with more efficient SRAM-to-3D-DRAM traffic. Jigsaw helps by

placing data in the local SRAM bank, eliminating L2-to-SRAM traffic.

Even though Jigsaw cannot reduce misses significantly, placing data

in the local SRAM bank lets Jigsaw miss quickly, modestly improving

9

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E
D

P
 i
m

p
ro

v
.
v
s
.
S

-N
U

C
A 4 7

.9

1
2

astar bzip2 omnet xalanc leslie

Hierarchy-friendly Hierarchy-averse

S-NUCA Alloy Jigsaw JigAlloy Jenga

Figure 16: EDP improvement on copies of SPEC CPU2006.

0.0

0.2

0.4

0.6

0.8

1.0

T
ra

ff
ic

 v
s
.
S

-N
U

C
A

astar

S A J
i

J
A

J
e

n

bzip2

S A J
i

J
A

J
e

n

omnet

S A J
i

J
A

J
e

n

xalanc

S A J
i

J
A

J
e

n

leslie

S A J
i

J
A

J
e

n

Hierarchy-friendly Hierarchy-averse

L2$SRAM
L2$3D DRAM

SRAM$SRAM
SRAM$3D DRAM

SRAM$Mem
3D DRAM$Mem

Figure 17: Traffic breakdown on copies of SPEC CPU2006.

EDP by 24%. JigAlloy combines these benefits, eliminating both

L2-to-SRAM traffic and SRAM-to-Mem traffic, and improves EDP by

2×. Jenga improves EDP even further than JigAlloy because it can

allocate capacity across the SRAM and DRAM boundary: for most

of bzip2’s execution, each VH comprises a 2 MB VL1 that is split

across the local SRAM bank and part of the closest DRAM bank (note

the L2-to-3D-DRAM traffic). The VL1 is backed by an 8 MB VL2 also

allocated in the closest DRAM bank.

The next three apps in Fig. 16 are hierarchy-averse. omnet has

single 2.5 MB working set, so the 18 MB SRAM cannot fit all working

sets. Alloy’s extra capacity helps avoid most main memory misses,

improving EDP by 3×. Jigsaw cannot fit all working sets, but it can

increase throughput by allocating SRAM to a few apps and thereby

avoid thrashing. This unfair allocation improves gmean performance

significantly, by 4× in EDP. JigAlloy combines these benefits to

improve EDP by nearly 8×.

Jenga improves EDP much more—by 12×—because it is not

bound by rigid hierarchy. Jenga adopts a very different configuration

than JigAlloy: most copies of omnet get single-level VHs with ca-

pacity split across SRAM and DRAM banks (L2-to-3D-DRAM instead

of SRAM-to-3D-DRAM traffic). This hierarchy eliminates unneces-

sary accesses to SRAM and saves significant energy, though a few

copies still get two-level VHs as in JigAlloy. Jenga achieves the same

weighted speedup as JigAlloy, but does so with 54% less energy.

xalanc behaves similarly to omnet but with a 6 MB working set.

This larger working set changes the relative performance of Alloy

and Jigsaw: Alloy is able to fit all working sets and improves EDP

by 50%, but Jigsaw is unable to fit many copies in SRAM, so its

EDP improvement is lower than Alloy’s. While JigAlloy still benefits

from each scheme, its EDP improvement is only 2.5×. Meanwhile,

Jenga improves EDP by nearly 4× by skipping SRAM and allocating

single-level VHs in DRAM banks.

Finally, leslie has a very large working set (64 MB), and even

the 1.1 GB DRAM cache cannot fit the 36 working sets. S-NUCA is

dominated by main memory accesses, and both Alloy and Jigsaw are

of limited help. Alloy reduces main memory accesses, and Jigsaw

reduces miss time, but each improve EDP by less than 50%. JigAlloy

combines the benefits of each, but Jenga does better by fitting as

many copies in DRAM banks as possible and bypassing the remainder

to main memory, reducing total traffic vs. JigAlloy.

These selected applications show that Jenga adapts to a wide range

of behaviors. Different applications demand very different hierar-

chies, so the best rigid hierarchy is far from optimal for individual

applications. Jenga improves performance and energy efficiency

over JigAlloy by specializing the hierarchy to active applications,

and its ability to allocate hierarchies out of a single resource pool

is critical, e.g., letting it build VL1s using both SRAM and DRAM

banks in omnet.

These results hold across other benchmarks. Fig. 19 shows com-

prehensive results when running 36 copies of all 18 memory-intensive

SPEC CPU2006 apps on the 36-tile chip. Jenga improves performance

over S-NUCA by gmean 47% and over JigAlloy by gmean 8%; and

Jenga improves energy over S-NUCA by gmean 31%, and over Ji-

gAlloy by gmean 13%. Overall, Jenga achieves the highest EDP

improvement, improving by 2.2× over the S-NUCA baseline, and

over JigAlloy by 23% and by up to 85% (on libquantum).

7.2 Multi-programmed mixes

Fig. 18 shows the distribution of EDP improvement and weighted

speedups over 20 mixes of 36 randomly-chosen memory-intensive

SPEC CPU2006 apps. Each line shows the results for a single scheme

over the S-NUCA baseline. For each scheme, workload mixes (the

x-axis) are sorted according to the improvement achieved. Hence

these graphs give a concise summary of results, but do not give a

direct comparison across schemes for a particular mix.

0 5 10 15 20

Workload

1.0

1.5

2.0

2.5

3.0

3.5

E
D

P
 i
m

p
ro

v
.
v
s
.
S

-N
U

C
A

S-NUCA Jigsaw Alloy JigAlloy Jenga

0 5 10 15 20

Workload

1.0

1.2

1.4

1.6

1.8

2.0

2.2
W

S
p
e
e
d
u
p
 v

s
 S

-N
U

C
A

Figure 18: EDP improvement and weighted speedup of 20 mixes

of 36 randomly-chosen SPEC CPU2006 apps.

Multi-programmed mixes present more challenges than copies of

the same application. In a mix, different applications prefer different

hierarchies and potentially different cache bank types. Although

it is hard to study 36 different applications at the same time, we

observe similar trends as we have shown earlier with copies: Alloy

helps applications that require larger capacity, and Jigsaw improves

performance by allocating SRAM resources among applications.

JigAlloy combines these benefits, but Jenga further improves over

JigAlloy by allocating resources in both SRAM and DRAM and

creating a specialized hierarchy for each application.

Jenga thus improves EDP on all mixes over the S-NUCA baseline

by up to 3.5×/gmean 2.6×, and over JigAlloy by 25%/20%. Jenga

improves EDP because it is both faster and more energy-efficient

than prior schemes. Jenga improves weighted speedup over S-NUCA

by up to 2.2×/gmean 70%, and over JigAlloy by 13%/9%.

10

1.0

1.5

2.0

2.5

3.0

E
D

P
 v

s
.
S

-N
U

C
A

3
.3

 4 7
.9

3
.3

3
.9

1
2

gobmk milc zeus h264 gcc gems calculix cactus astar leslie hmmer bzip2 libqntm mcf sphinx3 lbm xalanc omnet

S-NUCA Alloy Jigsaw JigAlloy Jenga

1.0

1.2

1.4

1.6

1.8

2.0

2.2

gmean

(a) EDP improvement

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

S
p
e
e
d
u
p
 v

s
.
S

-N
U

C
A

2
.4

2
.1

3
.6

1
.9

 2 3
.6

gobmk milc zeus h264 gcc gems calculix cactus astar leslie hmmer bzip2 libqntm mcf sphinx3 lbm xalanc omnet

S-NUCA Alloy Jigsaw JigAlloy Jenga

1.0

1.1

1.2

1.3

1.4

1.5

gmean

(b) Weighted speedup

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
n
e
rg

y
 v

s
.
S

-N
U

C
A

gobmk

S A J
i

J
A

J
e

n

milc

S A J
i

J
A

J
e

n

zeus

S A J
i

J
A

J
e

n

h264

S A J
i

J
A

J
e

n

gcc

S A J
i

J
A

J
e

n

gems

S A J
i

J
A

J
e

n

calculix

S A J
i

J
A

J
e

n

cactus

S A J
i

J
A

J
e

n

astar

S A J
i

J
A

J
e

n

leslie

S A J
i

J
A

J
e

n

hmmer

S A J
i

J
A

J
e

n

bzip2

S A J
i

J
A

J
e

n

libqntm
S A J
i

J
A

J
e

n

mcf

S A J
i

J
A

J
e

n

sphinx3

S A J
i

J
A

J
e

n

lbm

S A J
i

J
A

J
e

n

xalanc

S A J
i

J
A

J
e

n

omnet

S A J
i

J
A

J
e

n

Static Core Net SRAM Stacked DRAM Off-chip DRAM

0.0

0.2

0.4

0.6

0.8

1.0

1.2

mean

S A J
i

J
A

J
e

n

(c) Energy breakdown

0.0

0.2

0.4

0.6

0.8

1.0

T
ra

ff
ic

 v
s
.
S

-N
U

C
A

gobmk

S A J
i

J
A

J
e

n

milc

S A J
i

J
A

J
e

n

zeus

S A J
i

J
A

J
e

n

h264

S A J
i

J
A

J
e

n

gcc

S A J
i

J
A

J
e

n

gems

S A J
i

J
A

J
e

n

calculix

S A J
i

J
A

J
e

n

cactus

S A J
i

J
A

J
e

n

astar

S A J
i

J
A

J
e

n

leslie

S A J
i

J
A

J
e

n

hmmer

S A J
i

J
A

J
e

n

bzip2

S A J
i

J
A

J
e

n

libqntm

S A J
i

J
A

J
e

n

mcf

S A J
i

J
A

J
e

n

sphinx3

S A J
i

J
A

J
e

n

lbm

S A J
i

J
A

J
e

n

xalanc

S A J
i

J
A

J
e

n
omnet

S A J
i

J
A

J
e

n

L2$SRAM L2$3D DRAM SRAM$SRAM SRAM$3D DRAM SRAM$Mem 3D DRAM$Mem

0.0

0.2

0.4

0.6

0.8

1.0

mean

S A J
i

J
A

J
e

n

(d) Traffic breakdown

Figure 19: Simulation results on 36 concurrent copies SPEC CPU2006 apps (rate mode).

0.0

0.2

0.4

0.6

0.8

1.0

E
n
e
rg

y
 v

s
.
S

-N
U

C
A

S A J
i

J
A

J
e

n

Off-chip DRAM

Stacked DRAM

SRAM

Net

Core

Static

0.0

0.2

0.4

0.6

0.8

1.0

T
ra

ff
ic

 v
s
.
S

-N
U

C
A

S A J
i

J
A

J
e

n

3D DRAM$Mem
SRAM$Mem
SRAM$3D DRAM
SRAM$SRAM
L2$3D DRAM
L2$SRAM

Figure 20: Average energy and traffic over the 20 mixes.

Fig. 20 compares the average energy and network traffic across

mixes for each scheme. Jenga’s benefits come from three factors:

(i) improving performance so that less static energy is required to per-

form the same amount of work, (ii) placing data to reduce network

energy and traffic, and (iii) eliminating wasteful accesses by adopt-

ing an application-specific hierarchy. In multiprogrammed mixes,

wasteful accesses are mostly to SRAM banks for applications whose

data settles in DRAM banks, as can be seen Jenga’s lower SRAM

energy vs. JigAlloy. However, in multiprogrammed mixes, Jenga’s

biggest energy benefit comes from data placement, as reflected in

lower network energy and total traffic. (Individual apps show larger

differences, e.g., Jenga eliminates accesses to DRAM banks in some

multithreaded apps, see below.)

As a result, Jenga reduces energy by 31% over the S-NUCA base-

line, and by 10% over JigAlloy. Jenga reduces network traffic by

64% over S-NUCA, and by 33% over JigAlloy.

We have also evaluated Jenga on 20 mixes selected from all 29

SPEC CPU2006 apps. In such mixes, some apps are cache-insensitive,

so the differences across schemes are smaller. Nevertheless, Jenga

improves EDP over S-NUCA/JigAlloy by 76%/17% on average.

7.3 Multi-threaded applications

Jenga’s benefits carry over to multi-threaded apps. Fig. 21 reports

EDP improvements, speedups, and energy breakdowns for the seven

cache-sensitive SPEC OMP2012 benchmarks.

11

Multi-threaded applications add an interesting dimension, as data

is either thread-private or shared among threads. For example, swim

and smithwa are apps dominated by thread-private data. Jigsaw

helps them by placing private data near threads. Alloy helps when

their private data does not fit in SRAM (smithwa). JigAlloy com-

bines these benefits, but Jenga performs best by placing private data

intelligently across SRAM and stacked DRAM. For apps with more

frequent accesses to shared data (e.g. ilbdc and mgrid), Jenga im-

proves their EDP by selecting the right banks to hold this shared data

and by avoiding hotspots in DRAM banks.

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

E
D

P
 v

s
.
S

-N
U

C
A

2
.9

 4

bt331 fma3d bwaves ilbdc swim mgrid smithwa

S-NUCA

Alloy

Jigsaw

JigAlloy

Jenga

1.0

1.1

1.2

1.3

1.4

1.5

1.6

gmean

(a) EDP improvement

1.0

1.2

1.4

1.6

1.8

S
p
e
e
d
u
p
 v

s
.
S

-N
U

C
A

1
.9

2
.1

bt331 fma3d bwaves ilbdc swim mgrid smithwa

S-NUCA

Alloy

Jigsaw

JigAlloy

Jenga

1.00

1.05

1.10

1.15

1.20

1.25

1.30

gmean

(b) Speedup

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

E
n
e
rg

y
 v

s
.
S

-N
U

C
A

bt331

S A J
i

J
A

J
e
n

fma3d

S A J
i

J
A

J
e
n

bwaves

S A J
i

J
A

J
e
n

ilbdc

S A J
i

J
A

J
e
n

swim

S A J
i

J
A

J
e
n

mgrid

S A J
i

J
A

J
e
n

smithwa

S A J
i

J
A

J
e
n

Static

Core

Net

SRAM

Stacked DRAM

Off-chip DRAM

0.0

0.2

0.4

0.6

0.8

1.0

mean

S A J
i

J
A

J
e
n

(c)
Energy

breakdown

Figure 21: Simulation results for SPEC OMP2012 applications on

several rigid hierarchies and Jenga.

Therefore, Jenga improves EDP by up to 4.1×/gmean 62%, and

over JigAlloy by 42%/20%. Jenga improves performance over S-

NUCA by up to 2.1×/gmean 26%, and over JigAlloy by 30%/5%.

Jenga’s energy savings on multi-threaded apps exceed its perfor-

mance improvements: Jenga reduces energy by 23% over the S-

NUCA baseline, and by 17% over JigAlloy.

7.4 Sensitivity studies

Factor analysis: Fig. 22 compares the performance of JigAlloy and

different Jenga variants on copies of SPEC CPU2006: (i) Jenga-Single,

which uses Jenga’s hardware but Jigsaw’s OS runtime (modified

to model heterogeneous banks) to allocate a single-level hierarchy;

(ii) Jenga-BW, which enhances Jenga-Single with bandwidth-aware

placement; and (iii) Jenga, which uses both hierarchy allocation and

bandwidth-aware placement. This analysis shows the benefits of

Jenga’s new algorithms.

Overall, though Jenga-Single suffices for some apps, bandwidth-

aware placement and dynamic hierarchy allocation give significant

gains on many applications. Jenga-BW avoids bandwidth hotspots

and significantly outperforms Jenga-Single on memory-intensive

0.75

0.80

0.85

0.90

0.95

1.00

1.05

S
p

e
e

d
u

p
 v

s
.

J
e

n
g

a

lbm omnet xalanc
0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

astar bzip2 calculix gcc

JigAlloy Jenga-Single Jenga-BW Jenga

0.92

0.94

0.96

0.98

1.00

gmean

Figure 22: Performance of different Jenga techniques.

apps. Jenga-BW improves performance on lbm, omnet, and xalanc

by 8%, 18%, and 10%, respectively.

Virtual hierarchy allocation further improves results for hierarchy-

friendly apps. Jenga improves performance on astar, bzip2, calcu-

lix, and gcc by 7%, 4%, 14%, and 8% over Jenga-BW, respectively.

Since they lack two-level hierarchies, Jenga-Single and Jenga-BW

perform worse than JigAlloy on these apps.

The right side of Fig. 22 presents the gmean performance across

all of SPEC CPU2006. Jenga-Single by itself already outperforms

JigAlloy by 2%, showing the benefits of treating all memories as

a single resource pool, but Jenga’s new techniques are crucial to

achieve the full benefits across all apps.

Prefetchers: Fig. 23 shows the EDP improvements of different

schemes with stream prefetchers, where Jenga improves gmean EDP

on copies/mixes of SPEC CPU2006 over S-NUCA by 2.2×/3.2×and

over JigAlloy by 23%/19%.

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

w
/o

w
it
h

MixesRepeats

EDP improv. w/ vs. w/o prefetchers

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
o

rm
a

liz
e

d
 E

D
P

 i
m

p
ro

v
.

MixesRepeats

EDP improv. vs. S-NUCA w/ prefetchers

S-NUCA Alloy Jigsaw JigAlloy Jenga

Figure 23: Sensitivity study for a system with prefetchers.

Prefetchers degrade EDP for schemes without stacked DRAM, as

mispredicted prefetches waste bandwidth to main memory. This is

shown on the right of the figure, where prefetchers degrade EDP by

over 10% for S-NUCA and Jigsaw. We thus compare against schemes

without prefetchers to be fair to prior work. Stacked DRAM’s abun-

dant bandwidth allows prefetchers to improve EDP, and Jenga’s

benefits over JigAlloy are similar with or without prefetchers.

Jigsaw SRAM L3 + Jigsaw DRAM L4: To show the advantage of

putting all resources in a single pool, we also implement a rigid

hierarchy where SRAM L3 and DRAM L4 are managed by two inde-

pendent sets of Jigsaw hardware/software, which we call JigsawX2.

Note that JigsawX2 has 2× hardware/software overheads vs. Jenga.

We find that JigsawX2 improves EDP over JigAlloy by only 6%

on copies and by 4% on mixes. Jenga improves EDP over JigsawX2

by 13% on copies and by 17% on mixes. JigsawX2 performs poorly

for three reasons: (i) It cannot allocate cache levels across multiple

technologies. JigsawX2 is still a rigid hierarchy (SRAM L3 + DRAM

L4). Since SRAM and DRAM banks are managed independently, Jig-

sawX2 cannot build caches that span SRAM and DRAM (e.g., bzip2

in Sec. 7.1). (ii) Jigsaw’s data placement algorithm is bandwidth-

agnostic, so it often causes hotspots in DRAM banks and performs

12

worse than JigAlloy. For example, JigsawX2 degrades EDP by 28%

over JigAlloy for copies of omnet due to imbalanced bandwidth uti-

lization. (iii) Finally, JigsawX2’s uncoordinated allocations can lead

to thrashing. Although JigsawX2 carefully staggers reconfigurations

to avoid unstable decisions, we find that this is insufficient in some

cases, e.g., xalanc suffers from oscillating L3 and L4 allocations.

These results show the importance of taking globally coordinated

decisions to unlock the full potential of heterogeneous memories.

Hierarchy-friendly case study: Copies of SPEC CPU2006 apps are

often insensitive to hierarchy, but this is not true generally. For

example, cache-oblivious algorithms [22] generally benefit from

hierarchies because of their inherent recursive structure. To study

how Jenga helps such applications, we evaluate three benchmarks:

btree, which performs random lookups on binary trees of two

sizes (S, 100K nodes, 13 MB; and L, 1M nodes, 130 MB); dmm, a

cache-oblivious matrix-matrix multiply on 1K×1K matrices (12 MB

footprint); and fft, which uses cache-oblivious FFTW [21] to com-

pute the 2D FFT of a 512×512 signal (12 MB footprint).

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

E
D

P
 i
m

p
ro

v
.
v
s
.
J
e
n
g
a

BTreeL BTreeS DMM FFT

JigAlloy

Jenga-Single

Jenga-BW

Jenga

Figure 24: EDP on micro-

benchmarks.

Fig. 24 shows the EDP im-

provements for those bench-

marks normalized to JigAlloy.

Jenga builds a two-level hi-

erarchy entirely in SRAM for

btree-S, dmm and fft, im-

proving EDP up to 51% over

JigAlloy. For btree-L, Jenga

places the second level in

stacked DRAM, and improves

EDP by 62% over JigAlloy.

These apps benefit from hierar-

chy: vs. Jenga-Single, Jenga im-

proves EDP by 20%. These re-

sults demonstrate that application-specific hierarchies have a more

significant effect on cache-intensive, hierarchy-friendly applications.

7.5 Other system architectures

Finally, we evaluate Jenga under different a DRAM cache architecture

to show that Jenga is effective across packaging technologies. Specif-

ically, we model a “2.5D”, interposer-based DRAM architecture with

8 vaults located at chip edges. In aggregate, this system has 2 GB

of on-package DRAM and 200 GBps of bandwidth, and is similar to

Intel Knights Landing [62], AMD Fiji [46], and NVIDIA Pascal [30].

Fig. 25 shows the gmean improvement of various schemes in EDP,

performance, and energy under the 2.5D system. Jenga achieves

similar improvements to the system with 3D-stacked DRAM.

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

N
o

rm
a

liz
e

d
 E

D
P

Mixes Repeats
1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

N
o

rm
a

liz
e

d
 P

e
rf

.

Mixes Repeats
0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
a

liz
e

d
 E

n
e

rg
y

Mixes Repeats

Alloy Jigsaw JigAlloy Jenga

Figure 25: Improvements in EDP, performance, and energy of

schemes over S-NUCA on a 2.5D DRAM system.

8 CONCLUSION
Rigid cache hierarchies waste time and energy when cache levels

do not fit the working set. These overheads are problematic when

differences across levels are small—as they are in emerging tech-

nologies like 3D-stacked DRAM. Prior techniques hide the latency

of unwanted cache levels through speculation, trading off energy

for performance. This path is unsustainable in power-limited sys-

tems. We have proposed Jenga, a software-defined, reconfigurable

cache hierarchy that adopts an application-specific organization and

is transparent to programs. Jenga sidesteps the performance-energy

tradeoff by eliminating wasteful accesses. As a result, Jenga signif-

icantly improves both performance and energy efficiency over the

state of the art.

ACKNOWLEDGMENTS
We sincerely thank Christina Delimitrou, Joel Emer, Mark Jeffrey,

Harshad Kasture, Anurag Mukkara, Suvinay Subramanian, Guowei

Zhang, our shepherd Martha Kim, and the anonymous reviewers

for their helpful feedback on prior versions of this manuscript. This

work was supported in part by NSF grants CCF-1318384 and CAREER-

1452994, a Samsung GRO grant, and a grant from the Qatar Comput-

ing Research Institute.

REFERENCES
[1] N. Agarwal, D. Nellans, M. O’Connor, S. W. Keckler, and T. F. Wenisch, “Un-

locking bandwidth for GPUs in CC-NUMA systems,” in Proc. HPCA-21, 2015.
[2] D. H. Albonesi, “Selective cache ways: On-demand cache resource allocation,” in

Proc. MICRO-32, 1999.
[3] M. Awasthi, K. Sudan, R. Balasubramonian, and J. Carter, “Dynamic hardware-

assisted software-controlled page placement to manage capacity allocation and
sharing within large caches,” in Proc. HPCA-15, 2009.

[4] R. Balasubramonian, D. H. Albonesi, A. Buyuktosunoglu, and S. Dwarkadas, “A
dynamically tunable memory hierarchy,” IEEE TOC, vol. 52, no. 10, 2003.

[5] B. M. Beckmann, M. R. Marty, and D. A. Wood, “ASR: Adaptive selective
replication for CMP caches,” in Proc. MICRO-39, 2006.

[6] B. M. Beckmann and D. A. Wood, “Managing wire delay in large chip-
multiprocessor caches,” in Proc. ASPLOS-XI, 2004.

[7] N. Beckmann and D. Sanchez, “Jigsaw: Scalable software-defined caches,” in
Proc. PACT-22, 2013.

[8] N. Beckmann, P.-A. Tsai, and D. Sanchez, “Scaling distributed cache hierarchies
through computation and data co-scheduling,” in Proc. HPCA-21, 2015.

[9] J. Chang and G. S. Sohi, “Cooperative caching for chip multiprocessors,” in Proc.

ISCA-33, 2006.
[10] K. Chen, S. Li, N. Muralimanohar, J. H. Ahn, J. B. Brockman, and N. P. Jouppi,

“CACTI-3DD: Architecture-level modeling for 3D die-stacked DRAM main mem-
ory,” in Proc. DATE, 2012.

[11] Z. Chishti, M. D. Powell, and T. Vijaykumar, “Optimizing replication, communi-
cation, and capacity allocation in CMPs,” in Proc. ISCA-32, 2005.

[12] S. Cho and L. Jin, “Managing distributed, shared L2 caches through OS-level
page allocation,” in Proc. MICRO-39, 2006.

[13] C. Chou, A. Jaleel, and M. K. Qureshi, “BEAR: techniques for mitigating band-
width bloat in gigascale DRAM caches,” in Proc. ISCA-42, 2015.

[14] B. A. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. F. Duato, “Increasing the
effectiveness of directory caches by deactivating coherence for private memory
blocks,” in Proc. ISCA-38, 2011.

[15] W. J. Dally, “GPU Computing: To Exascale and Beyond,” in Proc. SC10, 2010.
[16] A. Das, M. Schuchhardt, N. Hardavellas, G. Memik, and A. Choudhary, “Dynamic

directories: A mechanism for reducing on-chip interconnect power in multicores,”
in Proc. DATE, 2012.

[17] X. Dong, Y. Xie, N. Muralimanohar, and N. P. Jouppi, “Simple but effective
heterogeneous main memory with on-chip memory controller support,” in Proc.

SC10, 2010.
[18] N. Duong, D. Zhao, T. Kim, R. Cammarota, M. Valero, and A. V. Veidenbaum,

“Improving cache management policies using dynamic reuse distances,” in Proc.

MICRO-45, 2012.
[19] H. Dybdahl and P. Stenstrom, “An adaptive shared/private nuca cache partitioning

scheme for chip multiprocessors,” in Proc. HPCA-13, 2007.
[20] S. Franey and M. Lipasti, “Tag tables,” in Proc. HPCA-21, 2015.
[21] M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,” Proc.

of the IEEE, vol. 93, no. 2, 2005.

13

[22] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, “Cache-oblivious
algorithms,” in Proc. FOCS-40, 1999.

[23] D. Gross, Fundamentals of queueing theory. John Wiley & Sons, 2008.
[24] P. Hammarlund, A. J. Martinez, A. A. Bajwa, D. L. Hill, E. Hallnor, H. Jiang,

M. Dixon, M. Derr, M. Hunsaker, R. Kumar, R. B. Osborne, R. Rajwar, R. Sing-
hal, R. D’Sa, R. Chappell, S. Kaushik, S. Chennupaty, S. Jourdan, S. Gunther,
T. Piazza, and T. Burton, “Haswell: The Fourth-Generation Intel Core Processor,”
IEEE Micro, vol. 34, no. 2, 2014.

[25] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reactive NUCA: near-
optimal block placement and replication in distributed caches,” in Proc. ISCA-36,
2009.

[26] N. Hardavellas, I. Pandis, R. Johnson, N. Mancheril, A. Ailamaki, and B. Falsafi,
“Database servers on chip multiprocessors: Limitations and opportunities,” in Proc.

CIDR, 2007.
[27] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative

Approach (5th ed.). Morgan Kaufmann, 2011.
[28] E. Herrero, J. González, and R. Canal, “Elastic cooperative caching: an au-

tonomous dynamically adaptive memory hierarchy for chip multiprocessors,”
in Proc. ISCA-37, 2010.

[29] A. Hilton, N. Eswaran, and A. Roth, “FIESTA: A sample-balanced multi-program
workload methodology,” Proc. MoBS, 2009.

[30] J.-H. Huang, “Leaps in visual computing,” in Proc. GTC, 2015.
[31] Intel, “Knights Landing: Next Generation Intel Xeon Phi,” in Proc. SC13, 2013.
[32] J. Jaehyuk Huh, C. Changkyu Kim, H. Shafi, L. Lixin Zhang, D. Burger, and

S. Keckler, “A NUCA substrate for flexible CMP cache sharing,” IEEE TPDS,
vol. 18, no. 8, 2007.

[33] A. Jaleel, K. Theobald, S. C. Steely, and J. Emer, “High performance vache
replacement using re-reference interval prediction (RRIP),” in Proc. ISCA-37,
2010.

[34] D. Jevdjic, S. Volos, and B. Falsafi, “Die-stacked DRAM caches for servers: Hit
ratio, latency, or bandwidth? Have it all with footprint cache,” in Proc. ISCA-40,
2013.

[35] X. Jiang, N. Madan, L. Zhao, M. Upton, R. Iyer, S. Makineni, D. Newell, D. Soli-
hin, and R. Balasubramonian, “CHOP: Adaptive filter-based DRAM caching for
CMP server platforms,” in Proc. HPCA-16, 2010.

[36] A. Kannan, N. E. Jerger, and G. H. Loh, “Enabling interposer-based disintegration
of multi-core processors,” in Proc. MICRO-48, 2015.

[37] D. Kanter, “Silvermont, Intel’s low power architecture,” 2013.
[38] H. Kasture and D. Sanchez, “Ubik: Efficient cache sharing with strict QoS for

latency-critical workloads,” in Proc. ASPLOS-XIX, 2014.
[39] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco, “GPUs and

the future of parallel computing,” IEEE Micro, vol. 31, no. 5, 2011.
[40] S. M. Khan, Y. Tian, and D. A. Jimenez, “Sampling dead block prediction for

last-level caches,” in Proc. MICRO-43, 2010.
[41] C. Kim, D. Burger, and S. Keckler, “An adaptive, non-uniform cache structure for

wire-delay dominated on-chip caches,” in Proc. ASPLOS-X, 2002.
[42] H. Lee, S. Cho, and B. R. Childers, “CloudCache: Expanding and shrinking

private caches,” in Proc. HPCA-17, 2011.
[43] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi,

“McPAT: An integrated power, area, and timing modeling framework for multicore

and manycore architectures,” in Proc. MICRO-42, 2009.
[44] G. H. Loh, “3D-stacked memory architectures for multi-core processors,” in Proc.

ISCA-35, 2008.
[45] G. H. Loh and M. D. Hill, “Efficiently enabling conventional block sizes for very

large die-stacked DRAM caches,” in Proc. MICRO-44, 2011.
[46] J. Macri, “AMD’s next generation GPU and high bandwidth memory architecture:

Fury,” in HotChips-27, 2015.
[47] N. Madan, L. Zhao, N. Muralimanohar, A. Udipi, R. Balasubramonian, R. Iyer,

S. Makineni, and D. Newell, “Optimizing communication and capacity in a 3D
stacked reconfigurable cache hierarchy,” in Proc. HPCA-15, 2009.

[48] M. R. Marty and M. D. Hill, “Virtual hierarchies to support server consolidation,”
in Proc. ISCA-34, 2007.

[49] J. Merino, V. Puente, and J. Gregorio, “ESP-NUCA: A low-cost adaptive non-
uniform cache architecture,” in Proc. HPCA-16, 2010.

[50] Micron, “1.35V DDR3L power calculator (4Gb x16 chips),” 2013.
[51] A. Mukkara, N. Beckmann, and D. Sanchez, “Whirlpool: Improving dynamic

cache management with static data classification,” in Proc. ASPLOS-XXI, 2016.
[52] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing NUCA

organizations and wiring alternatives for large caches with CACTI 6.0,” in Proc.

MICRO-40, 2007.
[53] M. Qureshi and G. Loh, “Fundamental latency trade-offs in architecting DRAM

caches,” in Proc. MICRO-45, 2012.
[54] M. K. Qureshi, “Adaptive spill-receive for robust high-performance caching in

CMPs,” in Proc. HPCA-15, 2009.
[55] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adaptive insertion

policies for high performance caching,” in Proc. ISCA-34, 2007.
[56] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A low-overhead,

high-performance, runtime mechanism to partition shared caches,” in Proc.

MICRO-39, 2006.
[57] D. Sanchez and C. Kozyrakis, “The ZCache: Decoupling ways and associativity,”

in Proc. MICRO-43, 2010.
[58] D. Sanchez and C. Kozyrakis, “Vantage: Scalable and Efficient Fine-Grain Cache

Partitioning,” in Proc. ISCA-38, 2011.
[59] D. Sanchez and C. Kozyrakis, “ZSim: Fast and accurate microarchitectural simu-

lation of thousand-core systems,” in Proc. ISCA-40, 2013.
[60] J. Sim, J. Lee, M. K. Qureshi, and H. Kim, “FLEXclusion: Balancing cache

capacity and on-chip bandwidth via flexible exclusion,” in Proc. ISCA-39, 2012.
[61] A. Snavely and D. M. Tullsen, “Symbiotic jobscheduling for a simultaneous

multithreading processor,” in Proc. ASPLOS-IX, 2000.
[62] A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim, K. Vinod, S. Chinthamani, S. Hutsell,

R. Agarwal, and Y.-C. Liu, “Knights Landing: Second-generation Intel Xeon Phi
product,” IEEE Micro, vol. 36, no. 2, 2016.

[63] J. Stuecheli, “POWER8,” in HotChips-25, 2013.
[64] D. H. Woo, N. H. Seong, D. L. Lewis, and H.-H. Lee, “An optimized 3D-stacked

memory architecture by exploiting excessive, high-density TSV bandwidth,” in
Proc. HPCA-16, 2010.

[65] L. Yavits, A. Morad, and R. Ginosar, “Cache hierarchy optimization,” IEEE CAL,
vol. 13, no. 2, 2014.

[66] M. Zhang and K. Asanovic, “Victim replication: Maximizing capacity while
hiding wire delay in tiled chip multiprocessors,” in Proc. ISCA-32, 2005.

14

	Abstract
	1 Introduction
	2 Motivation
	3 Jenga Overview
	4 Background and Related Work
	5 Jenga Hardware
	6 Jenga Software
	6.1 Jenga's latency model
	6.2 Virtual hierarchy allocation
	6.3 Bandwidth-aware data placement
	6.4 Implementation discussion

	7 Evaluation
	7.1 Multi-programmed copies
	7.2 Multi-programmed mixes
	7.3 Multi-threaded applications
	7.4 Sensitivity studies
	7.5 Other system architectures

	8 Conclusion
	Acknowledgments
	References

