
Understanding Object-level Memory Access Pa�erns Across the
Spectrum

Xu Ji
Tsinghua University

Qatar Computing Research Institute,
HBKU

Chao Wang
Oak Ridge National Laboratory

Nosayba El-Sayed∗
CSAIL, MIT

Xiaosong Ma
Qatar Computing Research Institute,

HBKU

Youngjae Kim
Sogang University

Sudharshan S. Vazhkudai
Oak Ridge National Laboratory

Wei Xue
Tsinghua University

Daniel Sanchez
CSAIL, MIT

ABSTRACT
Memory accesses limit the performance and scalability of countless
applications. Many design and optimization e�orts will bene�t
from an in-depth understanding of memory access behavior, which
is not o�ered by extant access tracing and pro�ling methods.

In this paper, we adopt a holistic memory access pro�ling ap-
proach to enable a better understanding of program-system memory
interactions. We have developed a two-pass tool adopting fast on-
line and slow o�ine pro�ling, with which we have pro�led, at the
variable/object level, a collection of 38 representative applications
spanning major domains (HPC, personal computing, data analyt-
ics, AI, graph processing, and datacenter workloads), at varying
problem sizes. We have performed detailed result analysis and code
examination. Our �ndings provide new insights into application
memory behavior, including insights on per-object access patterns,
adoption of data structures, and memory-access changes at di�er-
ent problem sizes. We �nd that scienti�c computation applications
exhibit distinct behaviors compared to datacenter workloads, moti-
vating separate memory system design/optimizations.

KEYWORDS
Memory pro�ling, object access patterns, workload characteriza-
tion, tracing, data types and structures

ACM Reference format:
Xu Ji, Chao Wang, Nosayba El-Sayed, Xiaosong Ma, Youngjae Kim, Sud-
harshan S. Vazhkudai, Wei Xue, and Daniel Sanchez. 2017. Understanding
Object-level Memory Access Patterns Across the Spectrum. In Proceedings
of SC17, Denver, CO, USA, November 12–17, 2017, 12 pages.
DOI: 10.1145/3126908.3126917

∗Hosted partially by QCRI, HBKU through a CSAIL-QCRI joint postdoctoral program.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SC17, Denver, CO, USA
© 2017 ACM. 978-1-4503-5114-0/17/11. . . $15.00
DOI: 10.1145/3126908.3126917

1 INTRODUCTION
The memory subsystem is crucial to computational e�ciency and
scalability. Today’s computer systems o�er both high DRAM ca-
pacity/performance e�ciency and a deep memory cache layer that
mixes HBM, DRAM, and one or more NVMs. This trend has enabled
in-memory processing in multiple application domains [24, 51, 63].
On the other hand, in recent years there has been a dramatic in-
crease in both the number of cores and the application (VM) concur-
rency on a physical node, as seen in supercomputers, datacenters,
and public/private clouds. As a result, the memory-bandwidth-to-
FLOP ratio has been steadily declining, e.g., from 0.85 for the No. 1
supercomputer on Top500 [54] in 1997 to 0.01 for the upcoming
projected Exa�op machines [43]. For both commercial and scien-
ti�c computing, it remains important to optimize programs and
systems for e�cient memory access.

Such optimizations have to build upon an understanding of the
memory access behavior of the program itself, which is highly
challenging. Unlike I/O or network requests, which are commonly
traced and analyzed, memory access requires temporal and spatial
analysis, is a �xed high-speed transaction, and is expensive to
perform online analysis. To this end, many optimization techniques
adopt o�ine memory access pro�ling [16, 48, 59, 62] that collects
information during separate pro�ling runs to guide decision making
in future “production runs".

Although much more a�ordable, existing o�ine memory access
pro�ling techniques mostly collect high-level statistics (such as
total access volume and memory references per thousand instruc-
tions) [18, 19, 21, 38] or full access sequences [27, 35] (including
complete/sampled traces and derived information such as reuse
distance distributions). These properties and data, while useful,
are based on logical addresses and are disconnected from program
semantics. Also, the same application cannot be expected to have
the same memory access pattern for di�erent input problem sizes
or input data. Moreover, HPC (scienti�c computing) applications in
particular have received much less attention from existing memory
allocation/access characterization studies.

In this work, we address these problems by providing more
intuitive pro�ling results that bridge runtime low-level memory
references and their high-level semantics (e.g., data structures that
re�ect programmers’ view of execution). This means that addresses

SC17, November 12–17, 2017, Denver, CO, USA X. Ji et al.

need to be mapped back to “objects" allocated at runtime and fur-
ther mapped to “variables" in the source code. To do this, we design
and implement a two-pass pro�ling tool for variable-level access
pattern analysis. Our tool performs the above address-to-object
and object-to-variable mapping, which facilitates subsequent on-
line memory trace processing to report object-level access behavior.
This two-pass framework provides the option of collecting object
allocation/access information at di�erent levels of detail and over-
head, with the �rst (fast) pass available for independent deployment.

Using this tool, we have pro�led at the variable/object level, a
collection of 38 representative applications spanning major domains
(personal computing, HPC, AI, data analytics, graph processing,
and datacenter servers), each at three di�erent problem sizes. For
each application, we have further identi�ed the major program
variables, which are most dominant in memory consumption, and
have collected detailed access behavior pro�les such as object size
and lifetime distribution, spatial density in accesses, read-write
ratio, sequentiality, and temporal/spatial locality. For such major
variables, we have performed considerable manual inspections to
identify the type and purpose of the data structures in the source
code, investigating which major data structures are adopted and
how they are accessed.

We have performed detailed pro�ling result analysis, espe-
cially focusing on comparing the behavior of scienti�c vs. commer-
cial/personal computing applications. To the best of our knowledge,
our study is the �rst to perform such a thorough, comparative anal-
ysis between these application classes. We organize our �ndings
into 7 key observations, and discuss their practical implications,
illustrating how they shed light on the complex heap memory allo-
cation and access activities of modern workloads. Our results reveal
that scienti�c applications possess multiple qualities enabling ef-
�cient combination of o�ine and online pro�ling (such as fewer,
larger, and more long-lived major data structures), and more uni-
form scaling behavior across variables when computing problems
of di�erent sizes. However, they still have dynamic and complex
memory access patterns that cannot be properly measured by sam-
pling billion-instruction or shorter episodes even during their stable
phases.

2 PROFILING METHODOLOGY
2.1 Objects and Variables
We �rst de�ne the building blocks that form the basis of our pro�l-
ing framework, namely objects and variables. Programs statically
or dynamically allocate space for data from memory. Conven-
tionally, such a piece of allocated memory is called an “object”,
instantiating a “variable” for reference in the program. Due to the
direct link between variables and program semantics, it is more
interesting and less redundant to study allocation/access at the
variable level. However, it is not straightforward to build the map-
ping between variables and objects. For example, objects might
be allocated in a utility function, whose addresses are returned to
callers performing very di�erent tasks.

In this work, we adopt the methodology of identifying variables
by the call-stack, following existing work [4]. For heap objects, we
consider the contiguous heap memory region allocated by dynamic
memory allocation functions, such as malloc(), calloc(), or
realloc() in C/C++ and allocate() in Fortran, as an object. We

then de�ne the entity grouping all the objects allocated within the
same call-stack as a variable. Here, the call-stack encompasses
a series of function names and return addresses, from the main
function all the way to the �nal heap memory allocation call.
Therefore, two malloc() calls within the same function are
considered allocating for di�erent variables.
void
eo_fermion_force(double eps, int nflavors, field_offset x_off)
{ ...

/* Allocate temporary vectors */
for(mu = 0; mu < 8; mu++)

tempvec[mu] = (su3_vector *)
calloc(sites_on_node, sizeof(su3_vector));

/* Copy x_off to a temporary vector */
temp_x = (su3_vector *)

calloc(sites_on_node, sizeof(su3_vector));
...

}

Figure 1: Sample code from SPEC milc

To illustrate these de�nitions, Figure 1 shows sample code
from SPEC milc [53]. Here, eight di�erent objects (tempvec[0],
tempvec[1], ..., tempvec[7]) are created by the �rst calloc() in
the for loop (each through a separate call to calloc()). However,
since they share exactly the same call-stack, these objects are con-
sidered members of the same variable. The object temp_x, on the
other hand, is created through another call-stack, and hence be-
longs to another variable. For static/global variables residing in the
data segment, such object-variable mapping is easy and one-to-one.

2.2 Two-Pass Variable/Object-Level Pro�ling
We now present the design of our variable/object memory behavior
pro�ling framework, shown in Figure 2. The main idea is to perform
two-pass pro�ling to avoid the prohibitive time and space overheads
of capturing individual references to all objects.

Figure 2: Two-pass pro�ling work�ow

Fast pass to collect per-object data We �rst run the target ap-
plication and perform a fast pass of pro�ling to quickly collect
per-object information such as object size, allocation/deallocation
time, and allocation call-stack. This is done via a custom mem-
ory allocation library, a shared library that intercepts every call to
commonly used heap memory routines such as malloc, calloc,
realloc, free in C/C++ and mmap in Fortran (note that large dy-
namic memory allocation is managed by mmap in Fortran). We
perform online processing of call-stacks, using hashing to �nd
object-to-variable mapping and also to avoid saving redundant call-
stacks. The output of the fast pass is the aforementioned per-object
information, including the common call-stack for objects identi�ed

Understanding Object-level Memory Access Pa�erns SC17, November 12–17, 2017, Denver, CO, USA

to belong to the same variable. By avoiding detailed memory refer-
ence tracing or full call-stack output, this fast pass introduces small
to moderate execution slowdown (1.0× to 42.9× in our experiments
using 30+ applications, with median at 1.2×).1
O�line processing Next, we process the collected per-object
information, such as object lifetime and size, to identify a much
smaller subset of target variables o�ine. In this study, we select up
to 10 major variables per application for detailed access behavior
tracing and analysis. The criteria for identifying these variables is
described in detail in Section 4.
Slow pass using a custom Pin tool With the scope of variables
reduced to this focus group, we next perform the second, slow-pass
pro�ling, using the popular Intel Pin tool [35] for memory tracing,
which we have customized with special online processing. In this
pass, we rerun the target application in our customized Pin envi-
ronment, where this custom Pin tool matches on the �y, the virtual
address of each memory reference with virtual address extents of
target objects (identi�ed also online through call-stack matching to
known major variables). A hash table is used to speedup such online
search. However, Pin-based memory tracing alone is costly and the
above online search could turn out to be highly expensive when an
identi�ed major variable has a large number of member objects. In
our experiments the slow-pass pro�ling incurs slowdown between
30× and 3000× (median at 226×).

This two-pass process enables pro�ling long-running applica-
tions by performing online per-object access characteristics analysis
at a fraction of the overhead of traditional tracing, which easily
accumulates TBs of trace data within minutes or seconds of execu-
tion. Combined with o�ine analysis, it also allows the second-pass
pro�ling to focus on selected variables/objects of interest to users.

3 EXPERIMENT SETUP
3.1 Execution Platforms
Most of our experiments are conducted on a machine with two Intel
12-core E5-2697 v2 CPUs and 256GB memory, running Ubuntu 14.04
with Linux kernel 3.13. For running parallel experiments with multi-
threaded or multi-process executions, we use a 10-node cluster with
each node consisting of two Intel 12-core E5-2670 v3 CPUs and
128GB memory, running CentOS 7.0 with Linux kernel 3.10.

3.2 Application Workloads
Our goal is to pro�le the memory-access patterns of workloads
that represent a wide range of popular contemporary applications.
We therefore sampled from several major categories of computing
workloads running on today’s typical platforms (desktops, servers,
HPC clusters, and datacenters). The majority of our test applications
are from well-known benchmark suites, while the rest are real-
world applications, including both C/C++ and Fortran programs.
SPEC CPU2006: SPEC CPU2006 [53] is a widely used, industry-
standard benchmark suite that includes 31 common end-user ap-
plications. We study all 17 SPEC programs written in C/C++ (both
integer and �oating point).

1Note that the custom memory allocation library can be used as a stand-alone tool to
gather high-level variable/object behavior, such as memory footprint evolution and
object size distribution.

Real-world HPC Applications: We sample three real-world
applications, representing di�erent categories of parallel scienti�c
codes. gromacs [1] is a widely used open-source computational
chemistry software, performing dynamic bio-molecule simulation.
mpiBLAST [13] is a popular parallel implementation of the NCBI
BLAST [29] biological sequence alignment tool, routinely used
in bioinformatics research. LAMMPS [32] is a classical molecular
dynamics code performing parallel particle simulation at the atomic,
meso, or continuum scale.
NPB: The NAS Parallel Benchmarks (NPB) [42] contain a group
of representative HPC codes: the original 5 kernels (IS, EP, CG, MG,
and FT), 3 pseudo-applications (BT, SP, LU), and UA, a more recently
added benchmark with unstructured adaptive meshes. As we select
NPB to study scienti�c applications’ memory access patterns, we
pro�le 7 of the above members, excluding IS (integer sorting) and
EP (almost all-stack accesses, with very small memory footprint).
PARSEC: PARSEC (Princeton Application Repository for Shared-
Memory Computers) [8] is a well-known benchmark suite for eval-
uating executions on chip-multiprocessors, containing 12 applica-
tions performing tasks such as simulated annealing, data deduplica-
tion, and data mining. The benchmark suite covers a wide spectrum
of memory behavior, in terms of working set size, locality, data
sharing, synchronization, and o�-chip tra�c. Again we pro�le all
7 PARSEC applications that are written in C/C++.
PBBS: The Problem-Based Benchmark Suite (PBBS) [52] by CMU
is a relatively recent collection containing 16 representative data-
center tasks. Considering the scope already covered by the above
application categories, here we choose to sample from PBBS, two
representative graph applications: Breadth First Search (BFS) and
Spanning Forest (SF).
Other Datacenter Workloads: We further sample two mem-
bers from the new MIT TailBench suite [30] for request-driven
applications. silo [55] is a scalable in-memory database, running
TPC-C with masstree [37] as a building block. dnn is an AI ap-
plication based on OpenCV [9], using deep neural network-based
auto-encoder to identify hand-written characters.

3.3 Pro�ling with Multiple Problem Sizes
A major goal here is to understand programs’ memory alloca-
tion/access behaviors when processing di�erent problem sizes. For
all 38 applications, we pro�le executions under three di�erent prob-
lem sizes, referred to as “small”, “medium”, and “large” for brevity,
indicating the relative problem sizes in our experiments. Note that
standard benchmarks usually come with multiple problem sizes
(such as the “test”, “train”, and “ref” sizes for SPEC). For several
other applications (such as mpiBLAST and gromacs), we set up three
problem sizes based on their documentation and available input
datasets. When not studying objective behavior under di�erent
problem sizes, we report results only from the “large” run.

4 SUMMARY OF PROFILING TARGETS
4.1 Overall Variable/Object Behavior
We begin by providing an overview of variable/object-level charac-
teristics observed in the 38 workloads. Table 1 provides summary
statistics on the objects, variables, and memory footprints identi�ed
in all the pro�led applications. In our experiments, we run every
application multiple times while varying the input data size. Due

SC17, November 12–17, 2017, Denver, CO, USA X. Ji et al.

to space limit we only list measurements from the run with the
largest problem size we pro�led, e.g., “ref” for SPEC, “native” for
PARSEC, and class “B” for NPB.

For each application, Table 1 lists the total number of vari-
ables/objects, the maximum number of concurrent objects, and
the distribution of object sizes (min, max, and median). Though not
shown in the table, we record object lifetime as the elapsed time be-
tween memory allocation and de-allocation of a given object (such
timestamps are also used in calculating the number of concurrent
objects). We also calculate variable lifetime as the average lifetime
of all pro�led objects that belong to this variable.

4.2 Focused Study of Major Variables
To understand applications’ detailed memory access behaviors, we
“zoom in” to a group of representative variables of each application,
for which we collect, analyze, and report detailed pro�ling results.

We select major variables with the top-10 largest per-variable
footprint (peak combined memory consumed by its concurrent mem-
ber objects). We discard variables whose largest object (in the
“large” run) does not reach the page size (4KB in our systems). This
criterion thus targets the most footprint-consuming variables, by
considering their concurrent member objects (sharing the same
allocation call-stack) at any given time during program execution.

Such �ltering produces 268 major variables in total across all
38 applications, as many of them have fewer than 10 qualifying
variables. Note that when re-scoping to major variables, we have
lost three of the 38 applications, namely silo, omnetpp, and astar,
who do not have any qualifying variables.2 The last 2 columns in
Table 1 summarize the number of major variables and the average
object count across them, in each application.

Before investigating more detailed per-variable behavior, we �rst
examine how homogeneous are objects that belong to the same
major variable. This analysis serves two main purposes. First, it
helps us study the hypothesis that a variable’s member objects
behave similarly in terms of access patterns and locality. Second, a
practical reason for doing this is that detailed object-level pro�ling
is quite time-consuming. Especially, when there are many runtime
objects to be pro�led, each memory access has to be compared
to the address interval of these target objects, potentially causing
1000× slowdowns. Understanding object homogeneity thus helps
us reduce such overhead, by sampling representative objects only.

Table 1 shows that in most cases, each major variable owns fewer
member objects, compared to the statistics of all variables in the
application. This is particularly the case for real-world HPC ap-
plications, mostly with no more than dozens of objects per major
variable, and NPB applications, with only one object per variable.
Furthermore, SPEC applications performing scienti�c computing
(e.g. milc for quantum chromodynamics and hmmer for gene se-
quence search) also possess signi�cantly fewer member objects
per major variable, unlike most commercial/desktop applications.
As a side note, this study does show that the NPB programs, as
widely used HPC benchmarks, display rather simplistic object al-
location behavior (one object per variable) than larger, real-world
applications.
2These applications do possess an important class of behavior, with small objects
composing larger data structure such as trees. While this work focuses on larger
objects due to online pro�ling cost, we plan to revisit them in future work.

To check their behavior consistency, we sampled multiple mem-
ber objects of each variable and examined their access attributes (to
be described later). We observe that in general, objects associated
with the same variable are found to possess identical or highly
similar behavior, especially in access patterns. So unless otherwise
noted, we report results from the largest member object in each
major variable (the �rst one allocated if tied in size).

4.3 Pro�ling Parallel Applications
Nine programs in our study are multi-process parallel codes
(gromacs, mpiBLAST, LAMMPS, and all NPB members except UA). We
ran these applications with 4 processes and conducted per-process
pro�ling. We observed in general very minor inter-process memory
di�erences in variable allocation and access behaviors, intuitively
due to their SPMD nature and existing optimizations to enhance
load balance (lower than 5% di�erence). The only exception is NPB
CG, which uses a conjugate gradient method to compute an ap-
proximation to the smallest eigenvalue of a large sparse symmetric
matrix. Its unstructured matrix involved in vector multiplication
causes irregular access patterns across processes.

In addition, 16 programs (NPB, PARSEC, and PBBS) support
multi-threaded execution. We performed two sets of pro�ling to (1)
compare access patterns among threads and (2) compare process-
level aggregate access patterns between single-thread and 4-thread
runs. Again, we �nd allocation and access patterns to be similarly
consistent across threads, while the combined multi-thread access
patterns are consistent with those from a single-thread run com-
puting the same input problem, except for limited di�erences in
ordering of accesses to shared variables.

Considering the high degree of homogeneity across pro-
cesses/threads in behavior, for the rest of this paper we focus on
studying allocation/access activities within a thread/process.

5 RESULTS AND ANALYSIS
To facilitate comparison, we have classi�ed all individual appli-
cations roughly into two groups, mainly by checking their do-
main/purpose: scienti�c computing applications (Sci-comp) and
commercial/desktop applications (Others). Note that such manual
classi�cation is by no means rigid—there are commercial scien-
ti�c applications, for example. Here, we consider the Sci-comp
group containing the programs more likely to run on conventional
HPC platforms, such as in-house clusters, cloud-based virtual clus-
ters, and supercomputers. This classi�cation results in 15 pro-
grams in the Sci-comp group, including all NPB members tested,
all real-world HPC applications, and milc, dealII, soplex, hmmer,
libquantum from SPEC in Table 1. The Others group contains the
rest of the workloads (23 programs).

5.1 Variable/Object Size and Concurrency
We begin by looking at object/variable counts and sizes. Applica-
tions vary widely in the number of objects and variables they use.
They allocate from as few as 3 to over 267 million heap objects
(median at 78,447 and 90th percentile at 61,217,343). The number
of variables is much smaller, ranging from 3 to 49,690 (median at 97
and 90th percentile at 2,777). This indicates that, for most applica-
tion, the vast majority of heap objects share a much smaller set of

Understanding Object-level Memory Access Pa�erns SC17, November 12–17, 2017, Denver, CO, USA

ID # Benchmarks Total # of Total # of Max # of Distribution of Object Size (Bytes) # of major Avg. object count
variables objects concurrent objects Min Median Max variables per major variable

1 perlbench 7,268 59,080,718 1,679,911 1 19 1M 1 911,292
2 bzip2 10 28 9 5,104 262K 32M 10 2.8
3 gcc 49,690 1,846,890 81,822 1 32 61M 9 6
4 mcf 3 3 3 3M 5M 1.7G 3 1
5 milc 56 6,521 59 16 7.6M 327M 10 18
6 gobmk 43 118,627 9,433 2 24 9.6M 3 1
7 dealII 1,815 151,259,190 13,197,031 4 40 105M 4 24

SPEC 8 soplex 341 301,189 141 1 64 29M 10 10.9
9 povray 1,909 2,461,231 17,505 1 12 151K 6 65.5

10 hmmer 84 250,146 43 2 540 771K 10 7.4
11 sjeng 4 4 4 12M 54M 60M 4 1
12 libquantum 10 179 4 2 958K 33M 7 19.4
13 h264ref 193 38,267 13,339 8 260 894K 8 60.75
14 omnetpp 9,400 267,064,936 2,198,026 2 184 262K 0 -
15 astar 178 3,683,332 436,124 8 1,024 33M 0 -
16 sphinx3 263 14,224,558 200,682 1 24 7M 8 15.5
17 xalancbmk 4,802 135,155,557 1,904,727 1 32 2M 2 407561
18 gromacs 825 4,027 687 1 432 47M 10 1.4

HPC 19 mpiBLAST 1,284 5,961,518 36,484 1 1.3K 889M 9 2.3
20 LAMMPS 693 3,004 598 1 6K 56M 10 27.2
21 CG 12 12 12 292K 585K 112M 10 1
22 MG 3 3 3 131M 150M 150M 3 1
23 FT 5 5 5 264K 257M 513M 5 1

NPB 24 BT 16 16 16 1K 8M 41M 10 1
25 SP 13 13 13 414K 8M 41M 10 1
26 LU 10 10 10 4K 8M 41M 9 1
27 UA 110 110 110 12 35K 21M 10 1
28 bodytrack 220 429,306 8,067 12 124 1M 8 587.9
29 canneal 17 30,728,157 11,987,673 8 30 184M 4 425.8
30 dedup 29 1,865,059 332,397 8 4,779 704M 8 20774.8

PARSEC 31 ferret 109 524,776 140,066 4 48 52M 10 8028.7
32 freqmine 60 2,850 477 4 20M 40M 6 86.4
33 streamcluster 35 9,755 16 8 128 102M 9 2.8
34 vips 892 2,380,375 1,369 1 1,952 7M 10 23660.1
35 SF 20 219 10 27 67M 833M 10 20.8

PBBS 36 BFS 26 423 12 27 268M 928M 10 30.7
Datacenter 37 silo 926 66,202,804 3,204,424 1 41 25M 0 -
Servers 38 dnn 210 541,629 60,011 8 6,300 288M 10 1.6

Table 1: Summary of variable-level and object-level statistics

allocation call-stacks. The maximum number of concurrently-live
objects for each application runs in the middle, from 3 to over 13
million (median at 643 and 90th percentile at 1,992,716).

Furthermore, our pro�ling results show that scienti�c applica-
tions tend to have fewer objects per major variable: a median of 1 for
Sci-comp vs. 2579 for Others. Not surprisingly, scienti�c applica-
tions tend to have larger objects, with minimum/median/maximum
object sizes at 8.6MB/27.8MB/240MB in the Sci-comp group and
0.5MB/17.0MB/153MB in Others, respectively.

With respect to concurrent objects, we �nd that with the excep-
tion of dealII, an adaptive �nite element method library that cre-
ates more than 13 million concurrent objects, the Sci-comp group
members possess signi�cantly lower concurrent object counts.
Finally, in scienti�c applications, each variable appears to have
fewer objects. In particular, when we examine only the major vari-
ables, there is dramatic contrast between the Sci-comp and Others
groups in terms of object count per variable: 90th percentile at 24
and maximum at 53 for Sci-comp, while 90th percentile at 1044
and maximum at over one million for Others.

Observation 1 Applications exhibit highly diverse patterns in
the number and size distributions of their variables and objects.
However, in general scienti�c applications have fewer and larger
variables, compared with commercial or desktop workloads. Sci-
enti�c applications also tend to have signi�cantly fewer number
of concurrent objects during their execution.
Implications The large number of memory objects created in ap-
plications makes tasks like memory allocation and garbage col-
lection performance-critical. Meanwhile, object behavior, both
across applications and among variables within the same applica-
tion, exhibits wide variability. This makes judicious placement (for
NUCA [6, 12, 26], NUMA [3, 14], emerging hybrid memory systems
spanning multiple levels of heterogeneous memory hardware [16],
and out-of-core systems [57]) highly important and pro�table. In
particular, with fewer and larger objects, scienti�c computing ap-
plications are good candidates to explore runtime memory object
placement, as such optimization is likely to be more cost-e�ective
compared to applications with millions of small objects.

SC17, November 12–17, 2017, Denver, CO, USA X. Ji et al.

5.2 Variable Lifetime
We now examine how variable lifetime, i.e., the average lifetime
of its member objects, is distributed across application variables,
particularly in relation to variable size. Over all applications, we
�nd that the distributions of variable sizes and lifetimes are quite
skewed: 97.0% of variables have an average size that is under 1%
of the largest variable in the same application, and 54.4% of vari-
ables report lifetimes under 1% of their application’s execution time.
Additionally, we �nd no evidence of a strong correlation between
variable size and variable lifetime, as indicated by a low Pearson co-
e�cient (R=0.089 for Sci-comp applications; R=-0.016 for Others)
with high statistical signi�cance (p −value < 0.001).

When we limit the examination to major variables only, we
�nd that the lifetime distribution becomes quite disparate between
the two groups. Major variables in the scienti�c applications are
much more likely to be long-lived, with 25th percentile and median
normalized lifetimes at 0.08 and 0.99, respectively, compared to 0.01
and 0.19 for the Others group.
Observation 2 We �nd that the vast majority of objects are short-
lived, in both scienti�c and other applications. However, the
majority of footprint-consuming (major) variables in scienti�c
applications are indeed long-lived, while this does not apply to
most of the commercial/desktop applications. In addition, there is
no strong correlation observed between variable size and lifetime.
Implications Scienti�c applications have long-lived major vari-
ables (many with a single object as indicated by earlier results).
This again makes these codes appealing for memory alloca-
tion/placement optimizations, as most “important variables” live
throughout the execution, paying optimization overhead once yet
enjoying its bene�t for a signi�cant portion of the execution (and
potentially for subsequent runs of the same application).

On the �ip side, such long-lived and large data structures in
scienti�c applications, once allocated to a faster memory, might tie
up precious space there. Applications in the Others group, however,
have dramatically higher fractions of short-lived objects, allowing
more �exible, interleaved utilization of faster memory layers. As our
study also indicates that there is no apparent correlation between
object size and lifetime, short-lived major variables in Others are
potentially good candidates for exploiting optimized placement at
a�ordable overheads.

5.3 Problem Size Scaling
Running the same workload with di�erent input sizes is common
in most computing scenarios, scienti�c, commercial, or personal.
One of our goals in this study is thus to understand the behavior
changes of applications under di�erent problem sizes. Throughout
our analysis here, we focus on the identi�ed major variables.

We start by examining the simplest attribute, the size of the
leading (largest) object of each variable, and categorize their be-
havior into three groups: �xed, where object size stays constant
across three problem sizes; scaling, where object size grows with
increasing problem size; and irregular, where object size shrinks or
exhibits non-monotonic changes.

Figure 3 plots the per-application distribution of major variables
by these three scaling behavior types. The left side shows the 15
programs in the Sci-comp group, while the right side shows 20

 0

 2

 4

 6

 8

 10

II

sop
x

h

r

bqu
ntu

gro

s

p
B
LA

ST

LA
M

M
PS

C
G
M
G
FT BT

SP LU UA
perlbench

bzip2

gcc
m
cf
gobm

k

povray

sjeng

h264ref

sphinx3

xalancbm
k

bodytrack

canneal

dedup

ferret

freqm
ine

stream
cluster

vips
SF BFS

dnn

Fixed
Scale

Irregular

Figure 3: Major variable size scaling behavior by application (left
group: Sci-comp, right group: Others)

from Others (recall that 3 among the Others applications do not
have any major variables identi�ed).

We observe that the two groups exhibit highly distinct behaviors.
117 out of 127 total major variables in the Sci-comp group scale
with a growing problem size, with 9 �xed and 1 irregular. The
Others group shows much more diverse breakdowns. Among all
141 major variables there, 80 are scaling, 57 are �xed, and 4 are
irregular. This indicates that typical scienti�c applications exhibit
more uniform tendency to have their major variables grow with
input problem size, while for the other applications, there is a sig-
ni�cant chance that major variables do not grow when computing a
larger problem. Intuitively, not all footprint-consuming data struc-
tures (such as bu�ers or hash tables) are associated with the overall
problem size. Plus, for some benchmarks, the given problem sizes
may scale in parameters not a�ecting space consumption of storing
the “main subject”, such as computing more steps in chess games
(more computation yet not necessarily larger datasets).

To further analyze, we exclude the small set of “irregular” vari-
ables and then roughly classify applications into three categories:
�xed, where all major variables are “�xed”; scaling, where all major
variables left are “scaling”; and hybrid, where major variables ex-
hibit both behaviors. Below we list the applications in each category
(35 in total, excluding the three with no major variables identi�ed):
• Fixed (5): sjeng, gobmk, povray, h264ref , mpiBLAST.
• Scaling (23): milc, dealII, soplex, hmmer, libquantum,

gromacs, LAMMPS, CG, MG, FT, BT, SP, LU, UA, ferret, perlbench,
gcc, mcf, sphinx3, canneal, streamcluster, BFS, SF.

• Hybrid (7): dnn, bzip2, bodytrack, freqmine, vips, dedup,
xalancbmk.

We �nd 5 of the 35 applications in the “�xed” group, with all
major variables (except very few “irregular” ones) having constant
sizes across problem sizes. A closer look reveals that they belong
to the aforementioned case where problem size scaling is done by
incurring more computation rather than processing larger datasets.

The “scaling” and “hybrid” groups of applications are easier
to explain. For these groups, we further examine if their scaling
variables grow at consistent speed. We analyzed the growth factor
of individual scaling variables across problem sizes, and found that
multiple variables are often grouped under several “scaling speeds”
(which can be quite di�erent from one another). Four applications
have all 10 major variables sharing the same growth factors and no

Understanding Object-level Memory Access Pa�erns SC17, November 12–17, 2017, Denver, CO, USA

application has more than 3 distinct speed groups. This behavior is
consistent across the Sci-comp and Others programs. In particular,
many of the scienti�c applications we pro�led have 3 variable size
growth speeds, corresponding to the x , y, and z dimensions of
their simulation subjects. In these applications, major variables
belonging to such scaling speed groups often follow identical scaling
factors across problem sizes.
Observation 3 Sci-comp applications exhibit highly uniform
scaling behavior, with major variables almost always growing in
size when computing larger problems. Others applications have
much weaker consistency in this regard. For both groups, major
variables of the same application that scale with problem sizes
often cluster into up to three di�erent “scaling speeds”.
Implications When we run the same application at a di�erent
scale, variable sizes may or may not change signi�cantly. Scienti�c
applications emerge as a rather predictable group here, with their
major variables dominantly growing in size when the input problem
size is scaled up. Commercial/desktop applications, in contrast,
exhibit more diverse behaviors.

This makes optimizations based on o�ine pro�ling more chal-
lenging. E.g., unlike assumed by X-Mem [16], a signi�cant portion
of important variables have �xed size across problem sizes in com-
mercial/desktop applications. Even with scienti�c applications,
nearly uniform scaling behavior does not imply a uniform size
growth rate among scaling variables of the same program. Instead,
certain amounts of online pro�ling should be conducted to supple-
ment variable-level memory access characterization results based
on past executions.

To this end, our study also reveals potential solutions by �nding
that objects can be tied to each other in “scaling speed”, while
there might be up to three such distinct “speed groups” among the
scaling variables in an application. This implies that by sampling
a few representative variables, we can rather reliably predict the
sizes of major variables. Such capability might be of more interest
for commercial/desktop applications, though, which have more
short-lived yet footprint-consuming objects.

5.4 Object Footprint
We next examine the total object footprint (the total size of all active
non-stack objects – footprint for short) during each application’s
execution, in an attempt to answer the question of “how early does
an application typically approach its peak allocation?”

Figure 4: CDF of number of applications that reach 80%, 90%,
and peak footprint at certain times during execution

Figure 4 shows the fraction of applications reaching three foot-
print milestones along the execution timeline. The majority of
applications pro�led make the bulk of their overall footprint fairly
early in their execution: 33 out of the 38 applications reach 80% of
peak footprint by relative time of 0.28, 90% by 0.35, and 100% by
0.99; half of them reach 80% by 0.02, 90% by 0.05, and 100% by 0.11.
The Sci-comp group, though not individually plotted, have 13 of
their 15 members reach peak footprint before the relative execution
time of 0.3 (outliers to be explained below).

Compared to the case with reaching the 90% footprint, signi�-
cantly more applications arrive at their full footprint later in their
execution. By inspection, we found that this is due to data struc-
tures allocated during the result processing and �nalization stage,
as demonstrated by the surge near the end of execution in Figure 4.
The vertical line in Figure 4 indicates that by 20% time into exe-
cution, 32, 28, and 23 applications out of 38 have reached the 80%,
90%, and 100% milestones, respectively.

Figure 5: Footprint evolution of 5 outlier applications

We next take a closer look at the behavior of applications whose
peak-memory consumption patterns deviated signi�cantly from
the average case. Figure 5 shows the �ve “late bloomers” identi�ed
from our footprint analysis. Interestingly, these outliers showcase
di�erent scenarios generating continuous or late footprint growth.
For the three Others applications: perlbench (performing Perl in-
terpreter evaluation with multiple mail processing scripts) allocates
ad-hoc objects continuously; canneal performs simulated anneal-
ing for chip design optimization, which has growing footprint due
to gradually involving more elements; silo is a TPC-C style in-
memory database benchmark, incurring steady growth in memory
consumption during the initial database building, which continued
at a slower speed in the query processing stage. The Sci-comp out-
liers are dealII and libquantum. dealII performs adaptive �nite
elements analysis with error estimation where dynamic re�nement
gradually increases footprint by deallocating objects (hence the
brief drops) and allocating new and larger ones. libquantum per-
forms simulation of a quantum computer, with a �nalization phase
where heap memory consumption grows by 45%.

Finally, we veri�ed that such footprint evolution behavior stays
consistent across multiple input problem sizes; we omit the detailed
plots here for space purposes.

Observation 4 Applications typically reach a signi�cant portion
(80%) of their peak heap footprint quite early in their execution,
and 24 of applications reach their total peak footprint by 20% of
execution time. In particular, most scienti�c applications reach
their peak footprint very early during their executions.

SC17, November 12–17, 2017, Denver, CO, USA X. Ji et al.

Implications Our memory footprint study indicates that most
applications reach near-peak footprint rather early in their execu-
tion, and this behavior persists across problem sizes. Such pro�ling
results may guide cloud/datacenter managers in VM migration and
load consolidation.

Also, the early arrival of peak memory allocation in scienti�c
applications (likely a side e�ect of their long-lived major variables)
enables online pro�ling, if necessary, to be swift. Collected run-
time object characteristics can be used for memory allocation and
placement optimization, without the need for continued online
monitoring and pro�ling.

5.5 Major Variable Data Structure Types
Next, we study the per-variable semantics and access patterns.
Fortunately we could carry out the much more detailed monitoring
and examination here, after reducing the pro�ling scope to the
identi�ed major variables only. This includes a signi�cant amount
of manual code study to identify the data structures of the major
variables, categorized into the following data structure types (DSTs):
• 1-D hash table: Typically identi�ed by variable name or the use

of hash function;
• 1-D bu�er: Array for intermediate storage (typically for in-

put/output data) outside the main computation of an applica-
tion/function, identi�ed by name or lifetime plus processing
behavior;

• 1-D index: Array indexing into another data structure, identi�ed
by name or the use of indexing operations;

• 1-D bitmap: Identi�ed by name or the use of bit-level operations
(after excluding the above three types);

• 1-D vector: Default category for 1-D arrays not identi�ed as the
above four types;

• 2-D matrix: 2-D array storing homogeneous data elements, iden-
ti�ed by name plus (x ,y)-style reference pattern;

• 2-D collection: Set of arrays presenting independent objects,
such as di�erent attributes of the same data entity, identi�ed by
name or element data types.

• M-D matrix: Multi-Dimensional array storing data elements,
identi�ed by data semantics plus (x ,y, z, ...)-style references.

(a) Sci-comp (b) Others

Figure 6: Data structure type distribution of the two applica-
tion groups, by count

Figure 6 presents the breakdown of these DSTs across major
variables in the Sci-comp and Others groups (127 and 141, respec-
tively), in terms of variable count. Generic arrays (1-D vectors)
are a leading DST for both classes of applications, comprising 39%
of major variables in the Sci-comp group, and 34% in Others. In-
terestingly, multi-dimensional matrices (MD-MTX) co-leads the

Sci-comp major variables (also at 39%), but it is completely absent
in Others. Similarly, DSTs such as hash tables, bu�ers, bitmaps,
and index arrays, are much better represented at the Others side.

We also repeated the distribution calculation by total object size
and by total footprint. Due to space limit we omit related �gures
and detailed discussion. In summary, we found the types array (1-D,
2-D, and multi-D), index, and bu�er to be more space/footprint-
consuming. All the other DSTs combine to occupy much smaller
footprint (1.4% for Sci-comp and 3.4% for Others).
Observation 5 Scienti�c and commercial/desktop applications
have highly contrasting distributions of the data structure types
de�ning their major variables: multi-dimensional matrices are
a prominent DST for Sci-comp but missing from the Others
data structure list, while DSTs such as bitmap and hash table are
heavily favored by Others applications. In addition, certain DSTs,
such as array, index, and bu�er, are more footprint-consuming.
Implications Our results con�rm common perceptions that pro-
gram semantics in scienti�c computing applications di�er from
other programs. However, the degree of di�erences (e.g. regard-
ing multi-dimensional matrices) is somewhat surprising. Such
disparate data structure preference may motivate di�erent design
or optimization along the memory hierarchy, such as annotation
by programmer or compiler for data placement [16, 39], to assist
runtime decision making.

5.6 Per-object Memory Access Patterns
Next, we study per-variable detailed access patterns, as de�ned
below. We report pro�ling results on the leading object of each
major variable.
De�nitions: The read (write) ratio of an object is the fraction of
the object’s reference volume from read (write) operations, with
the two ratios adding up to 1. This metric is particularly important
for hybrid memory systems, which incorporate technologies that
have asymmetric read/write costs (such as STT-RAM) and/or lack
in-place updates plus endurance concerns (such as NAND �ash).

For a given reference sequence to an object, we consider a refer-
ence sequential if it accesses data adjacent to that referenced in the
previous access. Accordingly, we de�ne an object’s access sequen-
tial ratio as the fraction of its reference volume that are sequential.

One more attribute critical to memory performance is locality.
We consider both temporal and spatial locality and quantify them
using Gupta’s method [22]. An object’s temporal locality is cal-
culated as the fraction of references accessing the same cacheline
visited within a certain “near future” window over all references.
Following another existing study [40], we set the window size to
1,000 instructions in our experiments. Similarly, an object’s spatial
locality is calculated as the fraction of references where data in its
spatial neighborhood (8 cachelines in our experiments, excluding
itself) has been accessed within the previous 1,000 instructions.

Finally we examine the major variables’ per-object access density
(density for short), de�ned as an object’s total reference volume
divided by its size. It describes how many times each byte of an
object is referenced on average, alluding to their relative importance,
which is particularly useful for judicious object placement.
Summary of Read/Write and Address Distribution We exam-
ined the major variables’ read ratio, sequential ratio, and tempo-
ral+spatial locality and compared their distribution between the

Understanding Object-level Memory Access Pa�erns SC17, November 12–17, 2017, Denver, CO, USA

two application groups. Overall, the Sci-comp and Others groups
do not show signi�cant di�erence in these attributes, though the
Sci-comp are found to be slightly more read-intensive and have
slightly higher locality, both temporally and spatially. The two
groups also have a similar ratio of accesses being sequential. Due
to space limit, we omit detailed results here.
Multi-Dimensional Matrix Access Patterns Recall that multi-
dimensional matrices (MD-MTX) are very common on the
Sci-comp side (39% by major variable count and 64% by footprint)
and completely absent on the Others side. As a case study, we
looked into these variables (49 from 7 Sci-comp applications) and
found that they do possess unique patterns seldom found in Others.

Table 2 categories these 49 MD-MTX variables (all from NPB)
into three distinct behavior types, plus one combination type, as
described below.

Type Application name (# of variables)
Sparse CG(2), MG(1), FT (1), LU (1), UA(5)
Sequential MG(2), FT (2), LU (2), UA(1)
Random CG(2), UA(2)
Mixed (Seq.+Sps.) BT (10), SP(10), LU (6), UA(2)

Table 2: Categorization of MD-matrices by reference pat-
terns

Sparse stands for typical access patterns in applications with
stencil/diagonal computation models (though the matrices are of-
ten dense). Here the program updates a matrix element based on
a function of certain neighboring elements, or traverse a matrix
diagonally. With this type, the object is accessed in small chunks
(4 or 8 bytes in our results), with large address o�set in between.
The o�sets are not uniform (i.e., not strictly “strided”), but concen-
trated at several to dozens of distinct values. 38 major variables
from 7 applications possess this behavior, including 26 with hybrid
sequential-sparse accesses. By studying the code, we have found
that within such variables accesses are predominantly sparse in
nature, with sequential accesses during initialization/�nalization.

Sequential here stands for dominantly sequential accesses, where
long sequential access runs are separated by infrequent strides. The
length of such sequential access runs depends on the problem size,
but in most cases are signi�cantly larger than the cache line size
and often larger than page size.

Random stands for random accesses, where each access is strictly
one data element and the address o�set values between adjacent
accesses are found to be random. There are only 4 variables from
2 applications with this access behavior. Studying the code shows
that all of them have accesses dictated by index arrays.
Spatial Density by Application Figure 7 shows the per-
application density distribution among major variables by count.
Density varies a lot among variables, from very sparse (18 variables
under 0.01) to very dense (26 above 100,000). Also, most applications
have rather diverse density across their variables, highlighting that
peer variables have vastly di�erent access heat levels. Sci-comp ap-
plications overall have the distribution biased toward the dense end,
with 65% of major variables having density of over 100, compared
to 34% among Others.

Finally, Figure 8 shows the distribution of variance observed with
growing problem sizes, by plotting the number of major variables
that are either: �xed, where changes in density across problem sizes
are within 10%; scaling, where changes in density are above 10% and

 0

 2

 4

 6

 8

 10

II

sop
x

h

r

bqu
ntu

gro

s

p
B
LA

ST

LA
M

M
PS

C
G
M
G
FT BT

SP LU UA
perlbench

bzip2

gcc
m
cf
gobm

k

povray

sjeng

h264ref

sphinx3

xalancbm
k

bodytrack

canneal

dedup

ferret

freqm
ine

stream
cluster

vips
SF BFS

dnn

(-∞,0.01)
[0.01,1)

[1,100)
[100,1e5)

[1e5,+∞)

Figure 7: Density distribution among variables by application

 0

 2

 4

 6

 8

 10

II

sop
x

h

r

bqu
ntu

gro

s

p
B
LA

ST

LA
M
M
PS

C
G
M
G
FT BT

SP LU UA
perlbench

bzip2

gcc
m
cf
gobm

k

povray

sjeng

h264ref

sphinx3

xalancbm
k

bodytrack

canneal

dedup

ferret

freqm
ine

stream
cluster

vips
SF BFS

dnn

fixed
scaling

irregular

Figure 8: Density scaling behavior by application

grow monotonically with problem size; and irregular otherwise. At
a �rst glance, most variables have either �xed (93) or scaling (103)
density behavior, while most applications have variables belonging
to both groups. Six applications (including most of those with “�xed-
only” behavior in object sizes), however, have most of their variables
scaling in density, implying that their major data structures carry
higher computation complexity or are increasingly reused (such
as bu�ers in streaming applications). Several other applications,
including BFS and dnn, have entirely or mostly �xed density across
problem sizes, implying stable computation-to-data ratio or stable
reuse degree. Sci-comp applications, compared to Others, appear
to have more variables with scaling behavior (71% vs. 46%).

Observation 6 Major varziables in scienti�c applications have
similar distribution as those in other domains in terms of
read/write ratio, sequentiality, and locality. However, multi-
dimensional matrices, favored by Sci-comp group only, possess
unique “stencil/diagonal” access patterns with large but regular
leaps between small access units. Spatial density varies much
across variables in the same applications may or may not scale
with the problem size. In general, Sci-comp applications’ major
variables also tend to have larger access density.

Implications The sparse access pattern very common in accessing
MD-MTX variables form interesting multiple sequential streams.
Though appearing sparse with �ne access granularity, such codes
often enjoy high temporal/spatial locality (as con�rmed by our
measurement) due to their long-term sequential sweeping access

SC17, November 12–17, 2017, Denver, CO, USA X. Ji et al.

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140 160 180

V
o
lu

m
e
(M

B
)

Episode

Var7
Var2
Var0

(a) Access volume w/ 1B-inst. episode

0%

20%

40%

60%

80%

100%

 0 20 40 60 80 100 120 140 160 180

R
e
a
d

 r
a
ti

o

Episode

Var7
Var2
Var0

(b) Read ratio w/ 1B-inst. episode

 0

 1

 2

 3

1 5 10 100

5.58

C
V

Episode length (billion instructions)

Sci
Other

(c) Distribution of CV in access volume

 0

 0.05

 0.1

 0.15

1 5 10 100

0.233

C
V

Episode length (billion instructions)

Sci
Other

(d) Distribution of CV in read ratio

Figure 9: Sample time-series log of per-object access patterns (a-b) and sensitivity to sampling episode size (c-d). The bars in
plots (c-d) show the median CV value, while the whiskers depict the minimum and 75th percentile CV values.

manner, which contrasts with random accesses in commercial ap-
plications (e.g., databases and graph).

On a di�erent note, spatial density studied in this paper may
be a good indicator of a variable’s “worthiness” to be placed on
closer/faster layers like the last-level cache or DRAM. Meanwhile,
our results suggest that within an application, both the absolute
and relative density can change signi�cantly across problem sizes,
so o�ine pro�ling for judging heat levels can be misleading.

5.7 Sampling Window Size for Access Pro�ling
Memory access pro�ling, trace collection, and trace-driven simula-
tion are expensive. It is common for practitioners to study a partial,
yet believed to be representative episode of the execution. Here we
analyze the e�ect of the length of such episodes.

Figures 9(a) and 9(b) shows time-series measurements of two
sample per-object attributes, access volume and read ratio, for
three major variables in SPEC bzip2 during a full execution. Each
data point shows the average value over a window of 1 billion
instructions. These plots indicate that (1) variables’ lifetimes and
their overlap create variation in a scope much larger than billions of
instructions, and (2) each individual variable’s access behavior also
�uctuates signi�cantly over the many billion-instruction episodes.

To quantify the variability in these access patterns under dif-
ferent episode lengths, Figures 9(c) and 9(d) plot the coe�cient of
variation (CV, standard deviation divided by mean) in readings of
these two attributes with varying episode length (in number of
instructions). The bars plot the median CV value across all ma-
jor variables in an application group, with error bars showing the
minimum and 75th percentile CV values.

As expected, increasing the episode length reduces inter-episode
variance. However, such trend stops or slows down signi�cantly
after 5 billion instructions, signaling that the inter-episode variance
at this point is likely attributed to longer-term phases in execution.
Also, Sci-comp programs appear to be more stable in access volume,
but less so in read ratio, compared to Others programs. This is
reasonable considering typical iterative scienti�c program behavior,
where variables are processed at rather predictable speed, but may
alternate between read and update passes.
Observation 7 For both scienti�c and commercial/personal ap-
plications, aggregate and per-variable access behaviors may vary
signi�cantly across adjacent billion-instruction episodes. Increas-
ing episode length removes short-term “local” variances, while
there remains longer-term behavior variation due to program
phase changes.

Implications Many prior studies on hardware architecture, mem-
ory hierarchy design or program access pattern analysis observe
and test small sample segments from program execution, with typ-
ical lengths of under 200 million instructions [17, 31, 33, 41] and
200-500 million instructions [20, 25, 36, 46, 50, 58] Our experiments
reveal that one or a few such samples often fail to capture a full
picture of the programs’ memory access behavior, even within their
“steady phase” (after initialization and before �nalization).

Meanwhile, using longer episodes might lose timely adaptation
with online monitoring or decision making, and may bring higher
pro�ling/analysis overhead. To this end, “partitioned" per-variable
accesses (like those shown in Figure 9(a)) appear to possess clear
periodic patterns, though producing much more irregular aggregate
access streams when interleaved. This suggests that variable ac-
cess pattern analysis can be conducted o�ine, then combined with
lightweight parameters and events (such as object allocation and
de-allocation) to estimate a program’s overall memory access be-
havior. The iterative phases and long object lifetimes with scienti�c
applications make such methodology more promising there.

6 RELATEDWORK
Memory Tracing Tools. There are many projects building mem-
ory tracing tools [27, 35, 38, 48] and reducing their runtime perfor-
mance overhead optimizations [18, 19, 21], including those using
dynamic sampling rates to minimize the runtime pro�ling over-
head [21]. Existing tracing tools often require source codes to be
recompiled with tracing tools and in particular, may require the use
of special heap memory allocation libraries [48]. Meanwhile, sev-
eral variable and object level pro�ling techniques [10, 11, 45, 47, 62]
have been explored to provide a �ner-grained pro�ler, and provide
a clearer picture of a program’s memory behavior. These methods
mainly rely on runtime instrumentation. In contrast, our work
does not require source code access and focuses on understanding
per-object behavior in relation to its variable within a program.
Memory Access Pattern Characterization. A large body of
memory pro�ling works in the past had objectives that were limited
to understanding the bandwidth and memory footprint require-
ments of the whole application, instead of per-variable memory
access behavior. For example, existing pro�ling work [27, 35, 38, 48]
only reported memory access information at raw memory address
level. Not only variable-level patterns are obscured, aggregate ac-
cess patterns can change in complicated ways when application in-
puts change. Instead, our work provides an insightful and intuitive

Understanding Object-level Memory Access Pa�erns SC17, November 12–17, 2017, Denver, CO, USA

understanding of applications’ memory accesses by associating ac-
cess patterns to their corresponding objects, especially by assessing
behavior changes across varied input problem sizes.

On object-level study, there have been visualization tools to high-
light memory accesses, such as HPCToolkit [2, 34]. Wu et al. [62]
proposed an e�cient object-relative translation and decomposition
technique to retrieve access information within one object. Zorn
et al. [4, 7, 49] conducted a series of studies on memory object
allocation. More recently, Voskuilen et al. [56] analyzed the be-
havior of malloc calls in multiple HPC applications to promote
application-driven allocation for multi-level memory management.
The NVMalloc library [57] allows users to explicitly allocate vari-
ables on SSD devices for out-of-core scienti�c computing, while
Hammond et al. [23] presented automated policies to assist user-
directed placement. Peng et al. [44] studied applications’ memory
behavior on Intel Knights Landing (KNL) and utilized applications’
access patterns to guide data placement on hybrid-memory sys-
tems. Our systematic study of object-level access patterns (across
38 applications from diverse domains) supplements these exist-
ing approaches and provides practical implications for ongoing
architectural, system, and programming language work.
Domain-speci�c Characterization. Many prior studies [5, 28,
60, 61] have analyzed memory access patterns in scienti�c and
commercial applications. E.g., Barroso et al. [5] provides a detailed
performance survey of three major business application classes
(such as OLTP and web search). Zhang et al. [28] studied data
locality in commercial OLTP and Weinberg et al. [60] quanti�ed
temporal locality of HPC applications. In particular, one prior
study [61] exploits temporal address correlation and stream locality
in shared memory accesses for scienti�c and commercial multi-
processor workloads, respectively. However, our research is the
�rst to systematically compare and analyze general memory access
behavior between scienti�c and other applications.
Locality Quanti�cation. Many prior studies [15, 22, 40, 60] have
examined temporal and spatial locality. Reuse distance [15, 60] is a
popular locality metric, but is costly to calculate and only useful
for scenarios with LRU-like replacement. Our approach targets
the per-object access locality (plus other patterns) naturally tied to
program semantics, which potentially allows application-level reuse
distances to be derived by synthesizing per-object access patterns,
when supplied with proper runtime parameters.

7 CONCLUSION
In this work, we have developed a two-level pro�ling framework,
and used it to obtain in-depth understanding of memory allocation
and access behaviors, while connecting memory objects with pro-
gram variables as well as computation semantics. We have pro�led
in detail 38 applications, spanning various domains including AI,
data analytics, and HPC, each running with three problem sizes.
Our comprehensive analysis of the results produced seven key ob-
servations that helped us identify critical di�erences in scienti�c
applications’ memory behavior, compared to other applications,
and the corresponding opportunities/challenges for memory system
design or memory management optimization.

Our pro�ling and analysis results have veri�ed that there are
signi�cant di�erences in variable/object allocation and access be-
haviors between HPC applications and commercial/desktop ones.

These �ndings can facilitate the design and optimization of HPC-
specialized hardware, compilers, and middleware, such as next-
generation supercomputer processors or accelerators. At the same
time, we need to be careful in applying memory management de-
sign choices or recommendations based on experiments using only
desktop/personal computing programs. Finally, commonly used
HPC benchmarks do not capture the complexity in memory object
allocation/access of real-world large applications.

ACKNOWLEDGEMENT
We appreciate the thorough and constructive com-
ments/suggestions from all our reviewers. Especially we
thank our shepherd, Simon Hammond, for his guidance and
responsiveness. This work was supported in part by the National
Key R&D Program of China (Grant No. 2016YFA0602100), National
Natural Science Foundation of China (Grant No. 91530323), Qatar
Foundation (through a QCRI-MIT collaboration program), and the
National Research Foundation of Korea (NRF) grant funded by the
Korea Government (MISP) (No. 2015R1C1A1A0152105). It was also
supported by, and used the resources of the Oak Ridge Leadership
Computing Facility at ORNL, managed by UT Battelle, LLC for the
U.S. DOE under the contract No. DE-AC05-00OR22725.

REFERENCES
[1] Mark James Abraham, Teemu Murtola, Roland Schulz, Szilárd Páll, Jeremy C

Smith, Berk Hess, and Erik Lindahl. 2015. GROMACS: High performance molec-
ular simulations through multi-level parallelism from laptops to supercomputers.
SoftwareX (2015).

[2] Laksono Adhianto, Sinchan Banerjee, Mike Fagan, Mark Krentel, Gabriel Marin,
John Mellor-Crummey, and Nathan R Tallent. 2010. HPCToolkit: Tools for per-
formance analysis of optimized parallel programs. Concurrency and Computation:
Practice and Experience (2010).

[3] Joseph Antony, Pete P Janes, and Alistair P Rendell. Exploring thread and memory
placement on NUMA architectures: Solaris and Linux, UltraSPARC/FirePlane
and Opteron/HyperTransport. In ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), 2006.

[4] David A Barrett and Benjamin G Zorn. Using lifetime predictors to improve
memory allocation performance. In ACM SIGPLAN Notices, 1993.

[5] Luiz André Barroso, Kourosh Gharachorloo, and Edouard Bugnion. 1998. Mem-
ory system characterization of commercial workloads. ACM SIGARCH Computer
Architecture News (1998).

[6] Bradford M Beckmann and David A Wood. Managing wire delay in large
chip-multiprocessor caches. In ACM/IEEE Annual International Symposium on
Microarchitecture (MICRO), 2004.

[7] Emery D Berger, Benjamin G Zorn, and Kathryn S McKinley. OOPSLA 2002:
Reconsidering custom memory allocation. In ACM SIGPLAN Notices, 2013.

[8] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The PARSEC
benchmark suite: Characterization and architectural implications. In IEEE Pro-
ceedings of the International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2008.

[9] Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer vision with the
OpenCV library. O’Reilly Media, Inc, 2008.

[10] Brad Calder, Chandra Krintz, Simmi John, and Todd Austin. Cache-conscious data
placement. In ACM Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), 1998.

[11] Trishul M. Chilimbi. E�cient representations and abstractions for quantify-
ing and exploiting data reference locality. In ACM Proceedings of the SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), 2001.

[12] Zeshan Chishti, Michael D Powell, and TN Vijaykumar. Optimizing replica-
tion, communication, and capacity allocation in CMPs. In ACM/IEEE Annual
International Symposium on Computer Architecture (ISCA), 2015.

[13] Aaron Darling, Lucas Carey, and Wu-chun Feng. 2003. The design, implementa-
tion, and evaluation of mpiBLAST. Proceedings of ClusterWorld (2003).

[14] Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud, Renaud
Lachaize, Baptiste Lepers, Vivien Quema, and Mark Roth. Tra�c management:
A holistic approach to memory placement on NUMA systems. In ACM SIGPLAN
Notices, 2013.

[15] Chen Ding and Yutao Zhong. Predicting whole-program locality through reuse
distance analysis. In ACM SIGPLAN Notices, 2003.

SC17, November 12–17, 2017, Denver, CO, USA X. Ji et al.

[16] Subramanya R Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan Sundaram,
Nadathur Satish, Rajesh Sankaran, Je� Jackson, and Karsten Schwan. Data
tiering in heterogeneous memory systems. In ACM Proceedings of the European
Conference on Computer Systems (EuroSys), 2016.

[17] Michael Ferdman, Pejman Lot�-Kamran, Ken Balet, and Babak Falsa�. Cuckoo
directory: A scalable directory for many-core systems. In IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2011.

[18] Xiaofeng Gao, Michael Laurenzano, Beth Simon, and Allan Snavely. Reducing
overheads for acquiring dynamic memory traces. In IEEE International Sympo-
sium on Workload Characterization (IISWC), 2005.

[19] Xiaofeng Gao and Allan Snavely. Exploiting stability to reduce time-space cost
for memory tracing. In International Conference on Computational Science (ICCS),
2003.

[20] Jayesh Gaur, Alaa R Alameldeen, and Sreenivas Subramoney. Base-victim com-
pression: An opportunistic cache compression architecture. In ACM/IEEE Annual
International Symposium on Computer Architecture (ISCA), 2016.

[21] Alfredo Giménez, Todd Gamblin, Barry Rountree, Abhinav Bhatele, Ilir Jusu�,
Peer-Timo Bremer, and Bernd Hamann. Dissecting on-node memory access
performance: a semantic approach. In ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis (SC), 2014.

[22] Saurabh Gupta, Ping Xiang, Yi Yang, and Huiyang Zhou. 2013. Locality principle
revisited: A probability-based quantitative approach. J. Parallel and Distrib.
Comput. (2013).

[23] Simon D. Hammond, Arun F. Rodrigues, and Gwendolyn R. Voskuilen. Multi-
Level memory policies: what you add is more important than what you take
out. In Proceedings of the Second International Symposium on Memory Systems
(MEMSYS), 2016.

[24] Stavros Harizopoulos, Daniel J Abadi, Samuel Madden, and Michael Stonebraker.
OLTP through the looking glass, and what we found there. In ACM Proceedings
of the International Conference on Management of Data (SIGMOD), 2008.

[25] Akanksha Jain and Calvin Lin. Back to the future: Leveraging Belady’s algorithm
for improved cache replacement. In ACM/IEEE Annual International Symposium
on Computer Architecture (ISCA), 2016.

[26] Aamer Jaleel, Kevin B Theobald, Simon C Steely Jr, and Joel Emer. 2010. High
performance cache replacement using re-reference interval prediction (RRIP).
ACM SIGARCH Computer Architecture News (2010).

[27] Tomislav Janjusic and Krishna Kavi. 2013. Gleipnir: A memory pro�ling and
tracing tool. ACM SIGARCH Computer Architecture News (2013).

[28] Zhang Jing, Deng Lin, and Dou Yong. Data locality characterization of OLTP
applications and its e�ects on cache performance. In International Conference on
Advanced Computer Theory and Engineering (ICACTE), 2010.

[29] Mark Johnson, Irena Zaretskaya, Yan Raytselis, Yuri Merezhuk, Scott McGinnis,
and Thomas L Madden. 2008. NCBI BLAST: a better web interface. Nucleic Acids
Research (2008).

[30] Harshad Kasture and Daniel Sanchez. Tailbench: A benchmark suite and evalua-
tion methodology for latency-critical applications. In IEEE International Sympo-
sium on Workload Characterization (IISWC), 2016.

[31] Onur Kayiran, Nachiappan Chidambaram Nachiappan, Adwait Jog, Rachata
Ausavarungnirun, Mahmut T Kandemir, Gabriel H Loh, Onur Mutlu, and Chita R
Das. Managing GPU concurrency in heterogeneous architectures. In ACM/IEEE
Annual International Symposium on Microarchitecture (MICRO), 2014.

[32] Sandia National Laboratories. 2007. LAMMPS Molecular Dynamics Simulator.
(2007). http://lammps.sandia.gov/.

[33] Xiaoyao Liang, Gu-Yeon Wei, and David Brooks. Revival: A variation-tolerant ar-
chitecture using voltage interpolation and variable latency. In ACM/IEEE Annual
International Symposium on Computer Architecture (ISCA), 2008.

[34] Xu Liu and John Mellor-Crummey. A data-centric pro�ler for parallel pro-
grams. In ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), 2013.

[35] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geo�
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Build-
ing customized program analysis tools with dynamic instrumentation. In ACM
Sigplan Notices, 2005.

[36] Raman Manikantan, Kaushik Rajan, and Ramaswamy Govindarajan. Probabilistic
shared cache management (PriSM). InACM/IEEEAnnual International Symposium
on Computer Architecture (ISCA), 2012.

[37] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. Cache craftiness for
fast multicore key-value storage. In ACM Proceedings of the European Conference
on Computer Systems (EuroSys), 2012.

[38] Jaydeep Marathe, Frank Mueller, Tushar Mohan, Bronis R de Supinski, Sally A
McKee, and Andy Yoo. METRIC: Tracking down ine�ciencies in the memory
hierarchy via binary rewriting. In International Symposium on Code Generation
and Optimization (CGO), 2003.

[39] Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez. Whirlpool: Improving
dynamic cache management with static data classi�cation. In ACM Proceedings of
the International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2016.

[40] Richard C Murphy and Peter M Kogge. 2007. On the memory access patterns
of supercomputer applications: Benchmark selection and its implications. IEEE
Trans. Comput. (2007).

[41] Arun Arvind Nair, Stijn Eyerman, Lieven Eeckhout, and Lizy Kurian John. A
�rst-order mechanistic model for architectural vulnerability factor. In ACM/IEEE
Annual International Symposium on Computer Architecture (ISCA), 2012.

[42] NASA. 2007. The NAS Parallel Benchmarks. (2007). https://www.nas.nasa.gov/
publications/npb.html.

[43] U. D. of Energy. 2007. DOE exascale initiative technical roadmap.
(2007). http://extremecomputing.labworks.org/hardware/collaboration/
EI-RoadMapV21-SanDiego.pdf.

[44] Ivy Bo Peng, Roberto Gioiosa, Gokcen Kestor, Pietro Cicotti, Erwin Laure, and
Stefano Markidis. RTHMS: A tool for data placement on hybrid memory sys-
tem. In ACM Proceedings of the SIGPLAN International Symposium on Memory
Management (ISMM), 2017.

[45] Sokhom Pheng and Clark Verbrugge. Dynamic data structure analysis for Java
programs. In IEEE Proceedings of the International Conference on Program Com-
prehension (ICPC), 2006.

[46] Seth H Pugsley, Zeshan Chishti, Chris Wilkerson, Peng-fei Chuang, Robert L
Scott, Aamer Jaleel, Shih-Lien Lu, Kingsum Chow, and Rajeev Balasubramonian.
Sandbox prefetching: Safe run-time evaluation of aggressive prefetchers. In IEEE
International Symposium on High Performance Computer Architecture (HPCA),
2014.

[47] Easwaran Raman and David I. August. Recursive data structure pro�ling. In
ACM Proceedings of the Workshop on Memory System Performance (MSP), 2005.

[48] Shai Rubin, Rastislav Bodík, and Trishul Chilimbi. An e�cient pro�le-analysis
framework for data-layout optimizations. In ACM Proceedings of the SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL), 2002.

[49] Matthew L Seidl and Benjamin G Zorn. 1997. Predicting references to dynamically
allocated objects. University of Colorado Technical Report (1997).

[50] Vivek Seshadri, Abhishek Bhowmick, Onur Mutlu, Phillip B Gibbons, Michael A
Kozuch, and Todd C Mowry. The dirty-block index. In ACM/IEEE Annual Inter-
national Symposium on Computer Architecture (ISCA), 2014.

[51] Julian Shun and Guy E Blelloch. Ligra: A lightweight graph processing frame-
work for shared memory. In ACM Sigplan Notices, 2013.

[52] Julian Shun, Guy E Blelloch, Jeremy T Fineman, Phillip B Gibbons, Aapo Kyrola,
Harsha Vardhan Simhadri, and Kanat Tangwongsan. Brief announcement: The
problem based benchmark suite. In ACM Proceedings of the Annual Symposium
on Parallelism in Algorithms and Architectures (SPAA), 2012.

[53] The Standard Performance Evaluation Corporation (SPEC). 2007. The SPEC
benchmarks. (2007). http://www.spec.org/.

[54] TOP500. 2007. TOP500 Supercomputer Sites. (2007). http://www.top500.org/.
[55] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.

Speedy transactions in multicore in-memory databases. In ACM Proceedings of
the Symposium on Operating Systems Principles (SOSP), 2013.

[56] Gwendolyn Voskuilen, Arun F. Rodrigues, and Simon D. Hammond. Analyzing
allocation behavior for multi-level memory. In Proceedings of the International
Symposium on Memory Systems (MEMSYS), 2016.

[57] Chao Wang, Sudharshan S Vazhkudai, Xiaosong Ma, Fei Meng, Youngjae Kim,
and Christian Engelmann. NVMalloc: Exposing an aggregate SSD store as a
memory partition in extreme-scale machines. In IEEE International Parallel &
Distributed Processing Symposium (IPDPS), 2012.

[58] Ruisheng Wang and Lizhong Chen. Futility scaling: High-associativity cache
partitioning. In ACM/IEEE Annual International Symposium on Microarchitecture
(MICRO), 2014.

[59] Yijian Wang and David Kaeli. Pro�le-guided I/O partitioning. In ACM/IEEE
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC), 2003.

[60] Jonathan Weinberg, Michael O McCracken, Erich Strohmaier, and Allan Snavely.
Quantifying locality in the memory access patterns of hpc applications. In
ACM/IEEE International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 2005.

[61] Thomas F Wenisch, Stephen Somogyi, Nikolaos Hardavellas, Jangwoo Kim,
Anastassia Ailamaki, and Babak Falsa�. 2005. Temporal streaming of shared
memory. ACM SIGARCH Computer Architecture News (2005).

[62] Qiang Wu, Artem Pyatakov, Alexey Spiridonov, Easwaran Raman, Douglas W.
Clark, and David I. August. Exposing memory access regularities using object-
relative memory pro�ling. In International Symposium on Code Generation and
Optimization (CGO), 2004.

[63] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient
distributed datasets: A fault-tolerant abstraction for in-memory cluster comput-
ing. In USENIX Proceedings of the Conference on Networked Systems Design and
Implementation (NSDI), 2012.

http://lammps.sandia.gov/
https://www.nas.nasa.gov/publications/npb.html
https://www.nas.nasa.gov/publications/npb.html
http://extremecomputing.labworks.org/hardware/collaboration/EI-RoadMapV21-SanDiego.pdf
http://extremecomputing.labworks.org/hardware/collaboration/EI-RoadMapV21-SanDiego.pdf
http://www.spec.org/
http://www.top500.org/

	Abstract
	1 Introduction
	2 Profiling Methodology
	2.1 Objects and Variables
	2.2 Two-Pass Variable/Object-Level Profiling

	3 Experiment Setup
	3.1 Execution Platforms
	3.2 Application Workloads
	3.3 Profiling with Multiple Problem Sizes

	4 Summary of Profiling Targets
	4.1 Overall Variable/Object Behavior
	4.2 Focused Study of Major Variables
	4.3 Profiling Parallel Applications

	5 Results and Analysis
	5.1 Variable/Object Size and Concurrency
	5.2 Variable Lifetime
	5.3 Problem Size Scaling
	5.4 Object Footprint
	5.5 Major Variable Data Structure Types
	5.6 Per-object Memory Access Patterns
	5.7 Sampling Window Size for Access Profiling

	6 Related Work
	7 Conclusion
	References

