
Appears in the Proceedings of the 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2018

Adaptive Scheduling for Systems with

Asymmetric Memory Hierarchies

Po-An Tsai, Changping Chen, Daniel Sanchez

Massachusetts Institute of Technology

{poantsai, cchen, sanchez}@csail.mit.edu

Abstract—Conventional multicores rely on deep cache hierar-
chies to reduce data movement. Recent advances in die stacking
have enabled near-data processing (NDP) systems that reduce
data movement by placing cores close to memory. NDP cores
enjoy cheaper memory accesses and are more area-constrained,
so they use shallow cache hierarchies instead. Since neither
shallow nor deep hierarchies work well for all applications,
prior work has proposed systems that incorporate both. These
asymmetric memory hierarchies can be highly beneficial, but they
require scheduling computation to the right hierarchy.

We present AMS, an adaptive scheduler that automatically
finds high-quality thread-to-hierarchy mappings. AMS monitors
threads, accurately models their performance under different
hierarchies and core types, and adapts algorithms first proposed
for cache partitioning to produce high-quality schedules. AMS
is cheap enough to use online, so it adapts to program phases,
and performs within 1% of an exhaustive-search scheduler. As a
result, AMS outperforms asymmetry-oblivious schedulers by up
to 37% and by 18% on average.

Index Terms—Cache hierarchies, near-data processing, asym-
metric systems, scheduling, analytical performance modeling.

I. INTRODUCTION

Data movement has become a key bottleneck for computer

systems. For example, an off-chip main memory access costs

1000× more energy and takes 100× more time than a double-

precision multiply-add [19]. Without a drastic reduction in data

movement, memory accesses and communication will limit the

scalability of future systems [31].

Conventional systems rely on deep multi-level cache hierar-

chies to reduce data movement. These hierarchies often take

over half of chip area and are dominated by a multi-megabyte

last-level cache (LLC). Deep hierarchies avoid costly memory

accesses when they can accommodate the program’s working

set. But when the working set does not fit in any cache level,

deep hierarchies add latency and energy for no benefit [67].

Recently, placing cores closer to main memory has become

a feasible alternative to deep hierarchies. Advances in die-

stacking technology [12] allow tightly integrating memory

banks and cores or specialized processors, an approach known

as near-data processing (NDP). NDP cores enjoy lower latency

and energy to the memory stacked above them, but have limited

area and power budgets [26, 62]. These factors naturally bias

NDP systems not only towards efficient cores [22, 25], but

also towards shallow hierarchies with few cache levels between

cores and memories.

Shallow hierarchies substantially outperform deep ones when

the working set does not fit in a large on-chip LLC, but they

Memory stack with

near-memory cores

Conventional processor with deep cache hierarchy

Fig. 1: A system with an asymmetric memory hierarchy.

work poorly for cache-friendly applications. Consequently, prior

work [4, 25, 34, 71, 73] has proposed asymmetric memory

hierarchies that combine deep and shallow hierarchies within a

single system. For example, Google recently proposed to use

such asymmetric systems for consumer workloads [14]. Fig. 1

shows an example system. This system includes a conventional

processor die with a deep cache hierarchy, connected to several

memory stacks, each with a small number of NDP cores and

a shallow cache hierarchy in its logic layer. The processor die

and memory stacks are connected using a silicon interposer.

Asymmetric hierarchies provide ample opportunity to im-

prove the performance and efficiency of memory-intensive

applications. We find that mapping threads to the correct

hierarchy improves their performance per Joule by up to

2.8× and by 40% on average (Sec. IV). However, achieving

this potential requires mapping threads to the right hierarchy

dynamically. As shown in prior work, the same application

can prefer different hierarchies depending on its input [4].

Moreover, colocated applications can compete for resources

in either hierarchy, which affects their preferences. Thus, it is

unreasonable to expect programmers or users to make this

choice manually. Instead, the system should automatically

schedule threads to the right hierarchy.

Nonetheless, this scheduling problem is quite challenging,

as it has a large, non-convex decision space (i.e., which

threads use the shallow hierarchy, which threads share the deep

hierarchy). Much prior work has studied dynamic resource

management and scheduling for systems with symmetric

memory hierarchies [9, 37, 50, 69, 74]. And prior work on

asymmetric systems [16, 69] focuses only on asymmetric cores,

not memory hierarchies.

To address this problem, we introduce AMS, a novel thread

scheduler for systems with asymmetric memory hierarchies

(Sec. V). The key insight behind AMS is that the problem of

modeling a thread’s preferences to different hierarchies under

contention bears a strong resemblance to the cache partitioning

problem. Therefore, AMS leverages both working set profiling

1

techniques and allocation algorithms from previous partitioning

techniques, even though AMS does not partition any cache.

Specifically, we show that by sampling a thread’s miss curve,

the number of misses a thread would incur at different cache

sizes, we can effectively model a thread’s performance over

different hierarchies under contention without trial and error.

We then extend this model to handle other asymmetries (i.e.,

core types), proposing a novel analytical model that integrates

both memory hierarchy and core asymmetries.

AMS uses the proposed model to remap threads periodically,

improving performance and efficiency. We contribute two

different mapping algorithms. First, AMS-Greedy is a simple

scheduler that performs multiple rounds of cache partitioning

and greedily maps threads to hierarchies. Second, AMS-DP

leverages dynamic programming to explore the full space of

configurations efficiently, finding the optimal schedule given

the performance model. AMS-Greedy is cheap, scales well to

large systems, and performs within 1% of AMS-DP. While

AMS-DP is more expensive, it is still practical in small systems

and serves as the upper bound of AMS-Greedy.

Evaluation results (Sec. VII) show that, on a 16-core system,

AMS outperforms an asymmetry-oblivious baseline by up

to 37% and by 18% on average. AMS adapts to program

phases and handles core and cache contention in asymmetric

hierarchies well, outperforming state-of-the-art schedulers.

Specifically, AMS outperforms a scheduler that extends LLC-

aware CRUISE [37] to NDP systems by up to 18% and by 7%

on average; and AMS outperforms the PIE [69] heterogeneous-

core-aware scheduler by up to 13% and by 6% on average.

II. BACKGROUND AND RELATED WORK

We now review related work in NDP systems and scheduling

algorithms, the areas that AMS draws from.

A. PIM and NDP systems

Processing-in-memory (PIM) systems proposed to integrate

processors and DRAM arrays in the same die. PIM systems

were studied extensively in the 90s. J-Machine [20], EXE-

CUBE [44], and IRAM [45] proposed to integrate processors

and main memory, while Active Pages [53], DIVA [28],

and FlexRAM [39] instead proposed to enhance traditional

processors using memory chips with coprocessors. Though

compelling, PIM was unsuccessful due to the difficulties of

integrating high-speed logic and DRAM [66].

With the success of 3D integration using through-silicon

vias [12], the idea of processing-in-memory has been revisited

recently in the context of die-stacked DRAM. Recent near-

data processing (NDP) research has focused on two directions:

(i) how to exploit the massive bandwidth of NDP systems

within their limited area and power budgets, and (ii) how to

integrate NDP systems with conventional systems.

Die-stacking technology offers lower latency, lower energy,

and much higher bandwidth between the logic layer and the

memory stack than conventional off-chip memories. However, it

also imposes limited area and thermal budgets in the logic layer.

This new tradeoff is attractive for data-intensive applications.

However, without careful engineering, it is difficult to saturate

the available bandwidth to fully utilize the potential of NDP

systems. Thus, one important research question in recent NDP

work is what form of computation to put in the logic layer

to best balance programmability, performance/efficiency, and

design constraints. On the one hand, several designs focus on

general-purpose NDP systems that use simple cores [22, 25,

55], GPUs [72, 73], and reconfigurable logic [24, 26]. On the

other hand, multiple projects design NDP systems tailored to

important emerging workloads, such as graph analytics [3, 52],

neural networks [27, 42], and sparse data structures [33, 35].

Although die-stacking technology has made NDP systems

practical, not all applications can benefit from NDP. Therefore,

another research direction has been how to support an asymmet-

ric system composed of both NDP and conventional chips. For

example, LazyPIM [15] studies how to provide coherence

within asymmetric systems. PIM-enabled instructions [4],

TOM [34], and Pattnaik et al. [54] focus on how to map compu-

tation across systems with asymmetric hierarchies. PIM-enabled

instructions proposes new instructions and hardware support

to decide when to offload specific instructions to in-memory,

fixed-function accelerators to maximize locality. TOM proposes

a combination of compiler, runtime, and hardware techniques

to offload computation and place data to balance bandwidth

in GPU-based asymmetric systems. Similarly, Pattnaik et al.

propose to combine compiler techniques and a runtime affinity

prediction model to schedule kernels for asymmetric systems.

Like this prior work, AMS focuses on how to schedule

threads across an asymmetric system to maximize system-wide

performance. Unlike this prior work, AMS aims to schedule

threads with no program modifications and transparently to

users, similar to how OS-level schedulers manage symmetric

systems, as recent work on OS for NDP systems advocates [7].

B. Cache, NUMA, and heterogeneity-aware thread schedulers

Scheduling applications under different constraints has been

studied extensively in many contexts. The closest techniques

to AMS are cache-contention-aware, NUMA-aware, and het-

erogeneous-core-aware schedulers.

Contention-aware schedulers [37, 49, 74] classify and

colocate compatible applications under the same memory

domain to avoid interference. For example, CRUISE [37]

dynamically schedules single-thread applications in systems

with multiple LLCs (e.g., multi-socket systems). CRUISE

classifies applications into four categories according to their

LLC behavior (insensitive, thrashing, fitting, and friendly).

It then applies fixed scheduling policies to each class. As

we will see, classification-based techniques do not work well

in asymmetric systems, where application preferences (and

thus classes) are affected by contention from other colocated

applications. They also fail to handle same-class applications

with different preference degrees (strong/weak).

NUMA-aware schedulers have different goals and constraints

than asymmetry-aware schedulers. Since memory bandwidth

is scarce in NUMA systems, prior work focuses on how to

schedule threads across NUMA nodes to reduce bandwidth

2

contention, similar to TOM for GPU-based asymmetric systems.

Tam et al. [64] profile which threads have frequent sharing

and place them in the same socket. DINO [13] clusters single-

thread processes to equalize memory intensity, places clusters in

different sockets, and migrates pages along with their threads.

AsymSched [46] studies NUMA systems with asymmetric

interconnects, migrating threads and pages to use the best-

connected nodes. These NUMA schemes focus on off-chip

memory bandwidth utilization, while AMS focuses on the

asymmetry between deep and shallow hierarchies.

Finally, scheduling techniques for systems with hetero-

geneous cores [16, 69] focus on making the best use of

asymmetric core microarchitectures like big.LITTLE. Due

to the area and power limits of memory stacks, asymmetric

systems often employ heterogeneous cores [25, 55], where the

processor die has not only a deeper hierarchy but more powerful

cores than the NDP stacks. AMS focuses on asymmetric

memory hierarchies, but its performance model can be easily

extended to consider other asymmetries. Specifically, we extend

it with PIE’s model [69] to handle asymmetry in both core

types and memory hierarchies (Sec. V-B).

III. BASELINE ASYMMETRIC SYSTEM

To make our discussion concrete, we first describe the

asymmetric system we target in this work, shown in Fig. 1

and Fig. 2. The processor die is similar to current multicores:

each core has its own private caches, and all cores share a

multi-megabyte last-level cache (LLC). The processor die is

connected to several memory stacks using high-speed SerDes

links. Each stack has multiple DRAM dies and a logic layer

with several memory controllers and NDP cores. These NDP

cores have only private caches due to the area and power

constraints of the logic layer [2]. This system uses an interposer,

but AMS would also work with other configurations, e.g., using

off-package stacks.

DRAM

Dies

Logic

Layer

NDP Core
Vault Controller

Shared LLC

Cores

Private Cache

Private Caches

SerDes

Links

Fig. 2: Baseline system with an asymmetric memory hierarchy.

A. Memory stacks with NDP cores

We assume a memory stack design similar to HMC 2.0’s [36].

Memory is organized in several vertical slices called vaults.

Each DRAM vault is managed by and accessed through a vault

controller in the logic layer. Vault controllers are connected

via an all-to-all crossbar, as Fig. 3 shows. In addition to vault

controllers, we assume the logic layer also has multiple low-

power, lean OOO cores, such as Silvermont [40] or Cortex

A57 [6]. Those cores have the same ISA as the processor

die, so they can run programs without help from the main

processor.

Crossbar

VC

VC

Core

Cache

Cache

Core

VC

VC

VC

VC

Core

Cache

Cache

Core

Fig. 3: Logic layer of each
memory stack.

Like prior work in NDP systems

using die-stacking techniques [25,

42, 55, 73], we conservatively as-

sume the logic layer has a power

and area budgets of 10 W and

50 mm2 for components other than

vault controllers and interconnect.

This budget supports up to 4 NDP

cores in the logic layer, connected

to the system via the crossbar.

Why general-purpose cores? General-purpose cores make

it easy for programmers to adapt their applications to this

asymmetric memory hierarchy [25, 55]. Since both NDP cores

and conventional cores use the same ISA, threads can migrate

between hierarchies without recompilation or dynamic binary

translation. This enables a smooth transition from traditional

systems to asymmetric systems.

B. Coherence in NDP private caches

Deep and shallow hierarchies share the same physical

address space, so their caches must be kept coherent to

ensure correctness. However, using conventional directory-

based coherence would either require NDP cores to check a

remote directory even when performing local memory accesses,

or require processor-die cores to check a memory-side directory

on the memory stacks, adding area and traffic overheads that

would limit the benefits of NDP [15].

To avoid these overheads, we perform software-assisted

coherence similar to prior work [25]. Each virtual memory

page is classified as either thread-private, shared read-only,

or shared read-write. NDP cores can cache data from thread-

private and shared read-only pages without violating coher-

ence. For simplicity, shared read-write pages are considered

uncacheable by NDP cores, which access them through the

LLC to preserve coherence with processor-die caches. This

classification technique has also been used to reduce coherence

traffic [18] and to improve data placement in NUCA caches [8,

30]. We use the same dynamic classification mechanism as this

prior work: Pages start private to the thread that allocates them.

Upon a read from any other thread, the page is reclassified as

shared read-only, and upon a write from any other thread, the

page is reclassified as shared read-write. Reclassifications are

done through TLB shootdowns [8, 30], which flush the page

from private caches. Finally, when a thread moves from the

processor die to an NDP core, its dirty LLC lines are flushed.

IV. MOTIVATION

Although technology advances have enabled systems with

asymmetric memory hierarchies, what is their potential benefit?

Moreover, how critical is to schedule threads to the right

hierarchy? In this section, we answer these questions by

characterizing the benefits of an asymmetric system for

memory-intensive applications. We also show that the ideal

scheduler should (i) identify the right hierarchy for each thread,

(ii) adapt to execution phases, and (iii) consider resource

contention among threads.

3

0
10
20
30
40
50
60
70
80

L
o
a
d
 l
a
te

n
c
y
 (

n
s
)

D
ee

p
hi
er

.

LL
C
 h

it

Sha
llo

w
 h

ie
r.

D
ee

p
hi
er

.

LL
C
 m

is
s

0

2

4

6

8

10

E
n
e
rg

y
 p

e
r

6
4
B

 (
n
J
)

D
ee

p
hi
er

.

LL
C
 h

it

Sha
llo

w
 h

ie
r.

D
ee

p
hi
er

.

LL
C
 m

is
s

DRAM

Logic layer

SerDes Link

On-chip NoC

Shared Cache

Private Caches

Fig. 4: Latency and energy of deep hierarchy LLC hits, shallow
hierarchy memory accesses, and deep hierarchy memory accesses.

A. Asymmetry in access latency and energy

One of the key differences between deep and shallow

hierarchies is the multi-megabyte LLC in the processor die. The

performance offered by deep and shallow hierarchies largely

depends on how frequently accesses hit in the LLC when

using the deep hierarchy. Fig. 4 shows the latency and energy

breakdowns of a memory reference in three situations with

increasing costs: an LLC hit in the deep hierarchy, a stacked

memory access in the shallow hierarchy, and an LLC miss

(and off-chip stacked memory access) in the deep hierarchy

(Sec. VII-A details the methodology for these costs).

Fig. 4 shows that an LLC miss from the deep hierarchy

is the worst-case scenario: the system incurs the latency of

an LLC lookup for no benefit, then it must traverse the on-

chip network and off-chip SerDes link, reach the DRAM vault

memory controller, wait for DRAM to serve the data, and

finally wait for the response to make its way back. By contrast,

a memory access from the shallow hierarchy (i.e., an NDP core)

is 40% faster, because it is not subject to the LLC lookup, on-

chip network, or SerDes link latencies. Nevertheless, stacked

DRAM is significantly slower than on-chip SRAM, so an LLC

hit in the deep hierarchy is 65% faster than a DRAM access

from the shallow hierarchy. Energy breakdowns follow similar

trends as latency breakdowns.

These costs show that shallow hierarchies complement deep

ones, but do not uniformly outperform them. If a thread’s

working set does not fit in the LLC and fits in a local memory

stack, a shallow hierarchy works best. But if the LLC can

satisfy a substantial number of accesses, a deep hierarchy will

be more attractive.

B. Effect of asymmetry on application preferences

We now simulate several memory-intensive applications to

see how they can exploit memory asymmetry. We model a

deep hierarchy with 32 KB private L1s, 256 KB L2s, and a

shared 16 MB LLC in the conventional processor. The shallow

hierarchy only has private L1 and L2 caches (see Sec. VII-A

for methodology details). Both hierarchies use 2-way OOO

cores. We later evaluate heterogeneous cores and multithreaded

applications; our goal here is to study memory asymmetry

independently. These cores with their private caches consume

less than 2.5W and 10mm2 per core, which is practical to

fabricate in the logic layer of 3D-stacked DRAM [2].

We simulate the 18 memory-intensive SPEC CPU2006

benchmarks that have >5 L2 MPKI and 8 benchmarks from the

Problem-Based Benchmark Suite [61], which contains memory-

intensive graph algorithms. Since the choice of hierarchy affects

both performance and efficiency, we use performance per Joule

(Perf/J), i.e., the inverse of energy-delay product, to characterize

the differences across hierarchies.

Applications have strong hierarchy preferences. Fig. 5

shows the Perf/J of representative applications when running

on the shallow hierarchy, relative to the Perf/J when running on

the deep hierarchy. Some applications strongly prefer the deep

hierarchy. For example, xalancbmk has a working set of about

6 MB, so it benefits significantly from the 16 MB LLC in the

deep hierarchy. xalancbmk’s Perf/J on the shallow hierarchy

is almost 2× (-50%) worse than on the deep hierarchy. By

contrast, soplex has a much larger working set that cannot fit

in the 16 MB LLC. It thus always prefers the shallow hierarchy,

which provides 2× higher Perf/J than the deep hierarchy.

Across all applications, always using the shallow hierarchy

improves gmean Perf/J over the deep hierarchy by 15%.

However, always using the hierarchy that offers the best

average Perf/J for each application improves gmean Perf/J

by 31% (Fig. 5, right), doubling the improvement achieved by

always using the shallow hierarchy. This result shows that it

is important to schedule applications to the right hierarchy.

Dynamic scheduling unlocks the full potential of asymmet-

ric hierarchies. Some applications have multiple phases, each

with different memory behaviors and working sets. For example,

as shown in Fig. 6, GemsFDTD prefers the shallow hierarchy

before it reaches 53 billion instructions, and prefers the deep

hierarchy afterward. Therefore, running GemsFDTD on either

hierarchy statically does not yield major benefits.

To show the impact of these dynamic preferences, we

implement a dynamic scheduler that always runs the application

on the best hierarchy for each 50 ms phase. This substantially

improves applications like GemsFDTD and refine. Of the 26

applications, 12 (46%) prefer different hierarchies over different

phases. Overall, our dynamic scheduler improves gmean Perf/J

by 40%, more than the 31% achieved by static decisions.

-50

0

50

100

150

200

P
e

rf
o

rm
a

n
c
e

/J
 o

v
e

r
th

e
 d

e
e

p
 h

ie
ra

rc
h

y
 (

%
)

xalanc
astar

omnet

sphinx
bzip2

mcf
calcul

MST
MIS

cactus

delaun
Gems

refin
e

leslie
match

hull

soplex
BFS

milc

lib
quan

Shallow hierarchy
Best dynamic scheduler
with oracle information

-10

0

10

20

30

40

G
m

e
a

n
 P

e
rf

/J
 i
m

p
ro

v
.

(%
)

S
h

a
llo

w

B
e

s
t

s
ta

ti
c

B
e

s
t

d
y
n

a
m

ic

Fig. 5: Performance per Joule (Perf/J) relative to the deep hierarchy. Higher is better.

40 45 50 55 60 65

Instructions (Billions)

0.5

1.0

1.5

2.0

2.5

P
e
rf

/J
 n

o
rm

a
liz

e
d
 t
o
 t
h
e
 a

v
g
.

P
e
rf

/J
 o

f
th

e
 d

e
e
p
 h

ie
ra

rc
h
y

Deep Shallow

Fig. 6: Perf/J traces of GemsFDTD,
relative to the deep hierarchy.

4

-50

0

50

100

P
e
rf

o
rm

a
n
c
e
/J

 o
v
e
r

 t
h
e
 s

h
a
llo

w
 h

ie
ra

rc
h
y
 (

%
)

bzip2 soplex omnet astar sphinx xalanc mcf

2MB LLC 4MB LLC 8MB LLC 16MB LLC

Fig. 7: Performance per Joule of deep hierarchies with different LLC
sizes, relative to the shallow hierarchy.

Application preferences are sensitive to contention. The

above results consider a single application, but in real-world

workloads, multiple applications are colocated in a single

system and compete for shared resources, such as LLC capacity.

To study this effect, we sweep the LLC size of the deep

hierarchy to mimic capacity contention among applications.

Fig. 7 shows the Perf/J improvement of deep hierarchies with

different LLC capacities over the shallow hierarchy. We select

7 representative benchmarks. The first application (bzip2)

always benefits from deep hierarchies due to its cache-friendly

working sets. The next application (soplex) instead always

prefers a shallow hierarchy due to its streaming behavior.

By contrast, the other applications have very different

preferences across LLC capacities. For example, omnetpp

benefits from LLCs ≥ 4 MB, while sphinx3 benefits from

LLCs ≥ 8 MB, and mcf only benefits from a 16 MB LLC. And

even when applications prefer the deep hierarchy, their degree

of preference also changes significantly with available capacity

(e.g, 8 MB vs. 16 MB for astar).

This result shows that when applications are colocated,

resource contention can dramatically change their preferences.

It also shows why prior classification-based schedulers can

cause pathologies with asymmetric hierarchies. For example,

CRUISE can first classify and schedule mcf to the deep

hierarchy, then later schedule others that cause capacity

contention and make mcf strongly prefer the shallow hierarchy.

In summary, these results show that applications have

strong preferences for the type of hierarchy, and that these

preferences change over time and with available resources.

These observations guide AMS’s design.

V. AMS: ADAPTIVE SCHEDULING

FOR ASYMMETRIC MEMORY SYSTEMS

AMS realizes the potential of asymmetric memory hier-

archies by accounting for contention and dynamic behavior

when mapping threads to cores. The key insight behind AMS

is that the problem of modeling a thread’s preferences to

different memory hierarchies on-the-fly and under contention

bears a strong resemblance to the dynamic cache partitioning

problem. Therefore, unlike other schedulers, AMS leverages

both working set profiling techniques and allocation algorithms

that were originally proposed for cache partitioning, even

though AMS does not perform cache partitioning.

Fig. 8 shows an overview of AMS. AMS has both hardware

and software components. AMS hardware consists of simple

Schedule threads

Estimate performance

under different hierarchies

1st Phase (Sec. V-A)

M
is

se
s

Cache size

Hardware

utility

monitors

Miss curves

2nd Phase

Find thread placement with

H
a

rd
w

a
re

S
o

ft
w

a
re

Sample

accessesProduce

AMS-Greedy (Sec. V-C)

AMS-DP (Sec. V-E)

or

Fig. 8: AMS overview.

hardware utility monitors [56] to profile per-thread miss curves,

which reflect the number of misses a thread would incur under

different cache sizes. AMS software then uses this information

to remap threads periodically, on each scheduling quantum

(every 50 ms in our implementation). This process consists of

two phases. In the first phase, AMS software uses miss curves

to accurately estimate a thread’s performance on both shallow

and deep hierarchies and under different amounts of LLC

contention (Sec. V-A). Miss curves allow AMS software to

produce these estimates without trial and error (i.e., AMS does

not run a thread in both hierarchies to infer its preferences).

In the second phase, AMS software uses these estimates

to find a thread placement that achieves high system-wide

performance. We present two thread placement algorithms:

AMS-Greedy performs multiple rounds of cache partitioning

and uses its outcomes to progressively and greedily map threads

to hierarchies (Sec. V-C), while AMS-DP leverages dynamic

programming to explore the full space of configurations

efficiently, finding the optimal schedule given the predicted

preferences (Sec. V-E). Though AMS-DP is more expensive

than AMS-Greedy, it is practical to use in small systems and

serves as AMS-Greedy’s upper bound.

To simplify the explanation, we first focus on systems

with homogeneous cores running single-thread applications.

Sec. V-B extends AMS to heterogeneous cores, Sec. V-D

extends AMS to multithreaded workloads, and Sec. V-F

discusses other scenarios, such as oversubscribed systems.

A. Estimating performance under asymmetric hierarchies

To model thread preferences, it is crucial to understand the

utility of the processor die’s LLC for each thread. To this end,

AMS leverages UMONs [56] to produce miss curves. Each

UMON is a set-associative tag array with per-way hit counters.

UMONs leverage LRU’s stack property to profile different

cache sizes simultaneously. AMS adds a 4 KB UMON to each

core. Each UMON samples private cache misses and produces a

miss curve that covers the range of possible capacities available

to the thread (from no capacity to the full LLC). We choose

UMONs for their low overhead and high accuracy, but AMS

could use other miss curve profiling techniques [9, 23, 65].

AMS models thread performance using total memory access

latency, a cost function derived with miss curves. AMS can

also optimize other cost functions, such as core cycles, as we

will show in Sec. V-B. AMS uses miss curves to derive cost

5

#

M
is

se
s

Miss curve

from UMON

LLC capacity (MB)

La
te

n
cy

Latency curves

Processor-die core

NDP core in diff.

stack from data

NDP core in the

same stack as data

LLC capacity (MB)
2 4 6 8 2 4 6 8

Fig. 9: Example latency curves for processor-die and NDP cores.

functions for all relevant scenarios. Since NDP and processor-

die cores have the same private caches, we focus on memory

references after the private cache levels.

If a thread runs on a processor-die core, its latency depends

on how much LLC capacity is available. Specifically, the total

latency in cycles as a function of LLC capacity s, which we

call the latency curve, is:

Lproc(s) = A ·LatLLC +M(s) ·Latmem,proc

where A is the number of accesses that miss in the private

cache levels (i.e., the number of LLC accesses in this case),

LatLLC is the average latency of a single LLC access, M(s) is

the number of LLC misses given capacity s, and Latmem,proc is

the average latency of a single access to off-chip main memory.

M(s) is the miss curve, and A, the number of LLC accesses,

is simply A = M(0) (with no LLC capacity, all LLC accesses

miss). Note that this formula covers the total amount of cycles

spent in memory references in a given interval, not the average

latency. This is because it is important to account for the rate at

which accesses happen, not only their unit cost. For example,

a thread that has infrequent misses from its private caches will

have low values for A and M(s), and thus will incur a low

penalty from different thread placements, even if most of the

few accesses it performs miss in the LLC.

If the thread runs on an NDP core, all A private cache misses

go to memory. Thus, the thread’s latency curve is simply

LNDP = A× Latmem,NDP. Because NDP cores do not access

a shared LLC, this curve does not change with s. However,

because the system has multiple memory stacks, the average

latency per memory access, Latmem,NDP, depends on the core’s

stack as well as the placement of the application’s data. We

use a simple algorithm that makes most NDP memory accesses

local by biasing data placement to particular stacks. We describe

this algorithm in Sec. VI. AMS simply computes Latmem,NDP

as the weighted average of the number of application pages

on each stack, times the latency to access that stack.

Fig. 9 shows three example latency curves for a particular

thread: the curve for processor-die cores and two curves for two

NDP cores on different stacks. These latency curves encode a

thread’s preferences under different scenarios. For example, if

the LLC is very contented and leaves no capacity, this thread

prefers NDP cores. But with 2 MB of LLC capacity, only the

NDP core closest to its data is better (i.e., has a lower latency).

Finally, if the thread can use over 4 MB of LLC capacity, it

prefers to run on a processor-die core with the deep hierarchy.

Moreover, the latency difference between Lproc(s) and LNDP

at each point also indicates how strong the preference is.

NDP core

M
e

m
o

ry
 l

a
te

n
cy

Latency curves

Processor-die core

LLC Capacity (MB)
2 4 6 8

Weigh

by MLP

Add

non-memory

component

weighed

by ILP Processor-die

core

LLC Capacity (MB)
2 4 6 8

NDP core

M
e

m
o

ry
 s

ta
ll

s

Memory stall curves

Processor-die

core

LLC Capacity (MB)
2 4 6 8

NDP core

C
o

re
 c

y
cl

e
s

Core cycle curves

Non-mem cycles

Fig. 10: To handle heterogeneous cores, AMS transforms the latency
curves into CPI curves using PIE’s performance model.

We find that this model matches Fig. 7’s results. Therefore,

this model lets AMS predict how applications perform under

different decisions without directly profiling or sampling their

performance under various colocation combinations.

B. Handling heterogeneous cores

Although AMS focuses on asymmetric hierarchies, we must

also consider core asymmetry, as NDP cores are typically

simpler than processor-die cores. Fortunately, it is easy to

extend AMS to handle heterogeneous cores. We combine

AMS’s model with the cycles-per-instruction (CPI) estimation

techniques from PIE [69], which targets heterogeneous cores

but assumes a symmetric memory hierarchy.

To map threads across heterogeneous cores, PIE estimates

each thread’s CPI on different core types. Its model consists of

a memory component, estimated with the core’s memory-level

parallelism (MLP), and a non-memory component, estimated

with the core’s instruction-level parallelism (ILP).

AMS with PIE models the total cycles spent across core

types and LLC sizes. It thus works on core cycle curves instead

of memory latency curves. Fig. 10 shows this transformation.

The memory component of each curve comes from AMS’s

latency curve weighted using PIE’s estimated MLP, and the

non-memory component uses PIE’s estimated ILP. This requires

collecting non-memory stall cycles using standard hardware

counters (as in PIE). Core cycle curves unify asymmetries in

both cores and memory hierarchies. They can be transformed

into other cost curves as needed (e.g., using time instead of

cycles to model cores running at different frequencies).

C. AMS-Greedy: Mapping threads via cache partitioning

Given the cost function (total latency or core cycle) curves

of all threads in the system, we can evaluate a schedule by

calculating the total cost it incurs. Finding the best mapping

in asymmetric hierarchies can be modeled as minimizing the

total cost over all possible thread mappings. We present two

optimizers for this problem, one based on greedy optimization,

and another based on dynamic programming (Sec. V-E).

AMS-Greedy works by performing multiple rounds of cache

partitioning. On each round, the algorithm identifies the threads

that benefit the least from the deep hierarchy and schedules

them away from the processor die. Fig. 11 illustrates AMS-

Greedy’s algorithm with a 4-thread example.

AMS-Greedy begins with all threads mapped to the deep

hierarchy (the processor die). We denote the cost curves for

thread i as C
proc
i (s) for the processor die and Cbest NDP

i for the

best NDP stack. First, AMS-Greedy finds threads that always

6

C
o

st

LLC Capacity (MB)
2 4 6 8

C
o

st

LLC Capacity (MB)
2 4 6 8

Processor-die

Best NDP

C
o

st

LLC Capacity (MB)
2 4 6 8

C
o

st

LLC Capacity (MB)
2 4 6 8

Thread 1

Thread 2

Thread 3

Thread 4

Always wants NDP,

move to NDP

(a) Find threads that always want
the NDP hierarchy.

C
o

st

LLC Capacity (MB)
2 4 6 8

C
o

st

LLC Capacity (MB)
2 4 6 8

C
o

st

LLC Capacity (MB)
2 4 6 8

3MB

Partition the LLC among threads 1-3

Thread 1 Thread 2 Thread 3

4MB

8MB

Opportunity cost <0

move to NDP

1MB

: Opportunity cost

(b) Partition the LLC to find threads with minimal
opportunity cost to use the NDP hierarchy.

C
o

st

LLC Capacity (MB)
2 4 6 8

Thread 1

Thread 2

Thread 3

C
o

st

LLC Capacity (MB)
2 4 6 8

Thread 4

Processor-die core group

NDP core group

……

Ordered by

opportunity cost

1st : Thread4

2nd : Thread2

: Opportunity cost

Best NDP Next best NDP

(c) Schedule threads in the NDP core group ordered by
maximum opportunity cost.

Fig. 11: An example of how AMS-Greedy schedules 4 threads with different latency curves.

prefer the shallow hierarchy. These are the threads for which

C
proc
i (s)>Cbest NDP

i across all possible LLC capacities s (e.g.,

thread 4 in Fig. 11a). AMS-Greedy moves these threads off

the processor die.

The remaining threads can benefit from the LLC if they

have enough capacity available. But there may not be enough

LLC capacity or enough processor-die cores to satisfy all

threads. Therefore, AMS-Greedy progressively moves threads

to NDP cores, stopping either when the remaining threads have

sufficient LLC capacity and cores or when NDP cores fill up.

AMS-Greedy uses cache partitioning for this goal. Spe-

cifically, it partitions the LLC using the Peekahead algorithm [8]

(a linear-time implementation of quadratic-time UCP Looka-

head [56]). AMS-Greedy uses the processor-die cost curves

(C
proc
i (s) for thread i) to drive the partitioning. This way, the

partitioning algorithm finds a set of partition sizes si that seeks

to minimize total cost (∑C
proc
i (si)). For example, in Fig. 11b,

threads 1, 2, and 3 receive partition sizes of 3, 1, and 4 MB.

Intuitively, partitioning naturally finds threads that should

give up the processor die. For example, if a thread has no

capacity after partitioning the LLC, that means fitting its

working set is too costly compared to other options. We should

thus move it to an NDP core and let others share the LLC.

Thus, AMS-Greedy ranks threads by their opportunity cost,

the extra cost they incur when moving to the best NDP core:

Opportunity costi =Cbest NDP
i −C

proc
i (si)

AMS-Greedy moves all threads with a negative opportunity

cost to NDP cores as long as NDP cores are not oversubscribed.

These threads have lower cost in NDP cores than with si LLC

capacity (e.g., thread 2 in Fig. 11b). If there is no such thread

but the processor die is still oversubscribed, AMS-Greedy

moves the thread with the smallest opportunity cost.

If after a round of partitioning and moving threads there are

still more threads than the number of processor-die cores, AMS-

Greedy performs another round of partitioning and movement

among the remaining threads. This process repeats until the

processor die is not oversubscribed.

Finally, AMS-Greedy tries to map the threads on NDP cores

to their most favorable stack. Threads are again prioritized by

opportunity cost: threads with the largest difference between

their latencies in the best and next-best NDP stacks are placed

first. For example, in Fig. 11c, thread 4 has a larger opportunity

cost than thread 2 and is mapped first.

AMS-Greedy works well because it shares the same goal as

partitioning: identifying the threads that benefit the least (or not

at all) from the LLC. AMS-Greedy leverages these algorithms

to minimize total cost at each round. Greedily moving threads

out may not yield the optimal solution because the problem is

not convex. Nonetheless, we find AMS-Greedy generates high-

quality results because opportunity cost captures the degree

of preference accurately. AMS-Greedy also scales well: its

runtime complexity is O(N2S), where N is the number of

threads and S is the number of LLC segments (O(NS) per

round of cache partitioning [8] and O(N) for up to N rounds).

Prior work has also leveraged partitioning algorithms for

other purposes, such as tailoring the cache hierarchy to each

application [67] and performing dynamic data replication in

NUCA caches [68]. AMS-Greedy shares similar insights in

using miss curves and partitioning, but it focuses on scheduling

in asymmetric systems and does not partition the cache.

D. Handling multithreaded workloads

We have so far considered only single-threaded processes.

AMS can handle multithreaded processes with extra UMONs

and simple modifications to AMS-Greedy.

Multithreaded workloads share data within the process, so

per-core UMONs may overestimate the size of the working set.

To solve this, AMS adds an extra UMON per core to profile

shared data. To distinguish private vs. shared data, we leverage

the per-page data classification scheme used for coherence

(Sec. III-B). Cache misses to private data are sampled to the

per-core UMON, and misses to shared data are sampled to

a UMON shared by all threads in the process (although this

UMON is not local to the core, this imposes negligible traffic

because only ∼1% of the misses are sampled).

Using the number of private cache misses to thread-private

data and shared data, AMS first classifies processes as thread-

private-intensive or shared-intensive. AMS then treats thread-

private-intensive processes as multiple independent threads.

This is sensible because these processes have little data sharing,

so they behave similarly to multiple single-threaded processes.

7

By contrast, AMS-Greedy groups all the threads of each shared-

intensive process into a single unit when making decisions.

The algorithm considers the miss curve for shared data only,

and performs placement decisions for all its threads at once

(considering the opportunity cost of all threads). This ensures

that threads that share data intensively stay together.

NDP cores access shared read-write data pages through the

LLC for coherence. This makes the processor die preferable

under our model for workloads dominated by shared read-

write data. However, many multithreaded applications are well-

structured: threads write mostly disjoint data and mainly use

thread-private or shared read-only pages. These applications

often prefer NDP cores.

E. AMS-DP: Mapping threads via dynamic programming

Dynamic programming (DP) [10, 17] is an optimization

technique that solves a problem recursively, by dividing it into

smaller subproblems. Each subproblem is solved only once,

and its result is memoized and reused whenever the subproblem

is encountered again. Memoization lets DP explore the full

space of possible choices efficiently. Because DP considers

all possible choices, it finds the globally optimal solution. By

contrast, greedy algorithms take locally optimal decisions but

may end up with a globally suboptimal one. However, not

all problems are amenable to DP: the problem must have the

property that an optimal solution can be computed efficiently

given optimal solutions of its subproblems. Often, the difficulty

lies in casting the problem in a way that meets this property.

Our second AMS variant, AMS-DP, leverages dynamic

programming to find the optimal solution. We again exploit

the similarities between scheduling and cache partitioning by

building on Sasinowski et al. [59], who show that DP can solve

cache partitioning optimally in polynomial time.

Cache partitioning can be solved with DP because it has

discrete decisions, at the size of cache segments (e.g., cache

ways or lines). This property allows dividing the partitioning

problem into subproblems. For example, partitioning a 4 MB

cache among eight threads can be divided into partitioning two

caches (e.g., of 2 MB each or of 1 MB + 3 MB) to two groups

of four threads. The smallest subproblem is just allocating

some amount of capacity to a single thread.

Similarly, scheduling threads to cores also has discrete

decisions. One thread can occupy only one core and leave the

rest to other threads. This property allows dividing a scheduling

problem into subproblems that schedule smaller groups of

threads across smaller systems. The smallest subproblem is

scheduling a thread to a single core, given CNDP, Cproc(s), and

some amount s of remaining LLC capacity.

Our insight is that since these two problems have discrete

decisions, we can combine them together and solve a bigger

DP problem to partition the cache and schedule threads at the

same time, which is very similar to scheduling in asymmetric

systems as we discussed. Thus, solving this DP problem leads

to the optimal partitioning and scheduling.

For the rest of the section, we use the same terminology as

Sasinowski et al. [59]. See [10] for more details on DP.

The key recurrence relation that lets Sasinowski et al. use

DP is as follows. If Mi, j is the minimum cost achieved by

partitioning j segments among the first i threads, and Ci(si) is

the cost of the ith thread when allocated si segments, then:

Mi, j = min
si

{Mi−1, j−si
+Ci(si)}

This recurrence shows that the minimum cost Mi, j is the

minimum of all possible combinations of subproblems: the

cost of thread i with si cache segments and the minimum cost

of using j− si cache segments for the first i−1 threads. By

solving each Mi, j bottom-up, we reach the optimal partitioning

for MN,S, where N is the number of threads and S is the number

of cache segments in the system.

In our case, we want to not only partition the cache (concep-

tually, to prevent cache contention) but also to schedule threads.

Therefore, we extend the recurrence by adding dimensions for

processor-die cores and NDP cores. Cores are just another type

of discrete resource to allocate. However, different cores, even

NDP cores in different stacks, should be treated differently.

Suppose the system has one processor die and one NDP stack.

We define Mi, j,kproc,knd p
as the minimum cost when partitioning

j cache segments to the first i threads and scheduling them

with exactly kproc processor-die cores and knd p NDP cores.

The recurrence above becomes:

Mi, j,kproc,knd p
= min{min

si

{Mi−1, j−si,kproc−1,knd p
+C

proc
i (si)},

Mi−1, j,kproc,knd p−1 +CNDP
i }

This recurrence states that, if we were to schedule the ith

thread on a processor-die core, we can allocate some LLC

capacity si to it and leave the remaining capacity to the first

i− 1 threads. This decision makes total cost to be the cost

C
proc
i (si) for thread i plus the minimum cost of scheduling the

first i−1 threads with j− si capacity.

If the thread is instead scheduled on an NDP core, it takes

no LLC capacity, and incurs cost CNDP
i for the thread plus the

minimum cost to schedule the first i−1 threads with 1 fewer

NDP core available. Finally, the minimum cost to schedule i

threads is simply the minimum of those two scheduling choices.

This recurrence considers a single NDP stack, but adding

more stacks as extra dimensions is straightforward (e.g.,

Mi, j,kproc,knd p,1,knd p,2
with two stacks). This lets each thread use

its different costs to each stack.

Using this recurrence, AMS-DP performs standard bottom-

up DP to find the optimal thread-to-core mapping. While

conceptually simple, AMS-DP scales poorly: every group k

(i.e., processor-die or NDP stack) adds a new dimension to the

DP algorithm. This causes O(N ·S ·kproc ∏t knd p,t) running time,

where N is the number of threads and S is the number of cache

segments. Thus, AMS-DP is practical only in small systems.

On larger systems, AMS-DP serves as the upper bound, but

simpler techniques like AMS-Greedy are needed.

F. Discussion

Our evaluation focuses on long-running, memory-intensive

batch workloads, but AMS should work in other scenarios with

minor changes. First, in oversubscribed systems with more

8

runnable threads than cores, AMS only needs to consider the

active threads in each quantum. A thread’s miss curve can

be saved when it is descheduled so that the thread can be

mapped to the right core when it is rescheduled later. Second,

kernel threads and short-lived threads or processes can evict

any long-running thread in the system. Since they run for a

fraction of the scheduling quantum, their impact is minimal.

Finally, to handle latency-critical workloads with real-time

needs, AMS can be combined with techniques that partition

the cache to maintain SLOs instead of maximizing throughput,

such as Heracles [48] or Ubik [41].

VI. DATA PLACEMENT FOR ASYMMETRIC HIERARCHIES

NDP cores are most effective when they access their local

memory stack. This requires adopting a data placement scheme

that minimizes remote accesses.

Data placement is a widely studied topic in non-uniform

memory access (NUMA) systems. Prior work [13, 21, 70] has

proposed various data migration and replication techniques to

reduce remote accesses. Other NUMA work [1, 46] focuses

on balancing available bandwidth among applications.

The key difference between NUMA and NDP systems is

bandwidth. Because memory bandwidth is scarce, NUMA

systems are limited by bandwidth to local memory, and prior

work finds that it is important to spread pages evenly across

NUMA nodes to reduce bandwidth contention [21, 46]. By

contrast, NDP systems suffer a different problem: the NDP

cores in each stack enjoy plentiful bandwidth to the memory

stacked directly atop them [26], but the bandwidth across stacks

is very limited [34]. In this case, it is more important to reduce

inter-stack traffic than intra-stack traffic, so the key constraint

is ensuring that NDP cores have local accesses.

Since relocating pages is expensive, our data placement

algorithm avoids migrating pages and uses simple heuristics

to keep data local. Its goal is to keep pages from the same

thread in as few stacks as possible, so that NDP cores have

most local accesses. When a thread starts, the system builds

up a dynamic preference list of memory stacks in the order

from which we fulfill memory allocations. This preference list

is refreshed when a memory stack is depleted.

When a new thread starts, AMS picks the memory stack

with the greatest remaining capacity as the most preferred

source. This ensures that threads that can benefit from the

shallow hierarchy are able to leverage it and those that prefer

the deep hierarchy are not penalized. Next on the list are the

nearby stacks. In Fig. 1, these are those on the same side of

the processor die. In the example in Fig. 12, an NDP-friendly

application can be scheduled on an NDP core in stacks 1 or 2

55 551 3

55 552

NDP stacks

(cores+DRAM)

Stack without

remaining capacity

Fig. 12: Example data placement preference list. Memory stacks with
free pages are shown in blue and full stacks in red.

TABLE I: CONFIGURATION OF THE SIMULATED SYSTEM.

Cores

16 cores (8 processor die + 4×2 NDP), x86-64, 2.5 GHz
Silvermont-like OOO [40]: 8B-wide ifetch, 2-level bpred
with 512×10-bit BHSRs + 1K×2-bit PHT, 2-way issue,
36-entry IQ, 32-entry ROB, 32-entry LQ/SQ
Haswell-like OOO [29]: 16B-wide ifetch, 2-level bpred
with 1K×18-bit BHSRs + 4K×2-bit PHT, 4-way issue,
60-entry IQ, 192-entry ROB, 72-entry LQ, 42-entry SQ

L1 caches
32 KB, 8-way set-associative, split data and instruction
caches, 3-cycle latency; 15/33 pJ per hit/miss [51]

L2 caches
256 KB private per-core, 8-way set-associative, inclusive,
7-cycle latency; 46/93 pJ per hit/miss [51]

Coherence MESI, 64 B lines, no silent drops; sequential consistency

Last-level

cache

16 MB, 2 MB bank per core, 32-way set-associative,
inclusive, 30-cycle latency, TA-DRRIP [38] replacement;
945/1904 pJ per hit/miss [51]

Stacked
DRAM

4 GB die, HMC 2.0-like organization, 8 vaults per stack,
64-bit data bus, 6-cycle all-to-all crossbar in the logic
layer [36], 2 pJ/bit internal, 8 pJ/bit logic layer [25, 73]

Stack
links

160 GBps bidirectional, 10-cycle latency, including 3.2 ns
for SerDes [43], 2 pJ/bit [43, 55]

3D DRAM
timings

tCK=1.6 ns, tCAS=11.2 ns, tRCD=11.2 ns, tRAS=22.4 ns,
tRP=11.2 ns, tWR=14.4 ns

to have high-bandwidth and low-latency accesses. Finally, if

stacks on one side are exhausted, we allocate pages to stacks

on the opposite side of the chip.

Adopting more sophisticated data placement techniques as in

prior NUMA work [21, 46] could increase AMS’s benefits. For

example, the system could dynamically migrate data to reduce

cross-stack accesses from NDP threads. These techniques are

orthogonal to AMS, so we leave them to future work.

VII. EVALUATION

A. Methodology

Modeled system: We perform microarchitectural, execution-

driven simulation using zsim [58], and model a 16-core system.

The processor die has 8 cores, with private 32 KB L1 and

256 KB L2 caches. All 8 cores share a 16 MB LLC that uses the

TA-DRRIP [38] thread-aware replacement policy. The processor

die is connected to four NDP stacks via SerDes links, as shown

in Fig. 1. Each stack has 4 GB of DRAM and 2 NDP cores with

only private caches. Table I details the system’s configuration.

We consider systems with both homogeneous and heteroge-

neous cores. Our homogeneous-core system (Secs. VII-B to

VII-D) uses 2-wide OOO cores similar to Silvermont [40]. Our

heterogeneous-core system (Sec. VII-E) instead uses 4-wide

OOO cores similar to Haswell [29] in the processor die.

Schedulers: We first compare AMS-Greedy against three

simple schedulers in Sec. VII-B and Sec. VII-C. First, we

use Random scheduling as the baseline to which we compare

other schedulers. This is a better baseline than the WAS (worst

application scheduler) baseline in prior work [37, 69]. Second,

All proc always runs threads on processor-die cores. Third,

All NDP always runs threads on NDP cores.

In Sec. VII-D, we compare AMS-Greedy against AMS-

DP and a more sophisticated scheduler, CRUISE-NDP. We

derive CRUISE-NDP by adapting CRUISE [37] to asymmetric

hierarchies. Each scheduling quantum, CRUISE-NDP classifies

threads as either cache-insensitive, cache-friendly, cache-fitting,

9

0 5 10 15 20 25 30 35 40

Workload

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5
W

e
ig

h
te

d
 s

p
e

e
d

u
p Random

All proc

All NDP

AMS-Gr

(a) Weighted speedup.

0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
a

liz
e

d
m

e
m

o
ry

 a
c
c
e

s
s
e

s

RandomAll proc All NDPAMS-Gr

(b) Memory accesses.

0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
a

liz
e

d
c
ro

s
s
-s

ta
c
k
 t

ra
ff

ic

RandomAll proc All NDPAMS-Gr

3.1x

(c) Cross-stack traffic.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o

rm
.

d
y
n

a
m

ic
 e

n
e

rg
y

Random All proc All NDP AMS-Gr

Private caches

Shared LLC

Memory

Links

(d) Data movement energy.

Fig. 13: Simulation results for different schedulers on 8-app mixes.

or thrashing using the same heuristics as CRUISE (all the

necessary information for CRUISE is gathered using UMONs

too). CRUISE-NDP then maps thrashing threads to NDP

cores, cache-friendly and fitting threads to processor-die cores

(prioritizing friendly over fitting), and finally backfills the

remaining cores with insensitive threads.

We model migration overheads and find remapping every

50 ms causes negligible overheads, similar to PIE’s findings.

Workloads: Our workload setup mirrors prior work [9]. We

simulate mixes of SPEC CPU2006 apps and multithreaded

apps from SPEC OMP2012 and PARSEC [11]. We evaluate

scheduling policies under 50% load (8 cores occupied) and

100% load (16 cores occupied). We use the 18 SPEC CPU2006

apps with ≥5 L2 MPKI (as in Sec. IV) and fast-forward all

apps in each mix for 30 B instructions. We use a fixed-work

methodology and equalize sample lengths to avoid sample

imbalance, similar to FIESTA [32]. Each application is then

simulated for 2 B instructions. Each experiment runs the mix

until all apps execute at least 2 B instructions, and we consider

only the first 2 B instructions of each app to report performance.

For multithreaded apps, since IPC is not a valid measure of

work [5], to perform a fixed amount of work we instrument

each application with heartbeats that report global progress

(e.g., when each timestep or transaction finishes) and run each

application for as many heartbeats as All proc completes in

2 B cycles after the serial region.

Metrics and energy model: We follow prior work in

scheduling techniques and use weighted speedup [63] as our

performance metric. We use McPAT 1.3 [47] to derive the

energy of cores at 22 nm, and CACTI [51] for caches at 22 nm.

We model the energy of 3D-stacked DRAM using numbers

reported in prior work [34, 43, 60]. Dynamic energy for NDP

accesses is about 10 pJ/bit. We assume that each SerDes link

consumes 2 pJ/bit [43, 55].

B. AMS finds the right hierarchy

We first evaluate AMS-Greedy in an undercommitted system

with homogeneous cores (8 apps on 16 Silvermont cores) to

focus on the effect of memory asymmetry. Fig. 13a shows

the distribution of weighted speedups over 40 mixes of 8

randomly chosen memory-intensive SPEC CPU2006 apps. Each

line shows the results for a single scheduler over the Random

baseline. For each scheme, workload mixes (the x-axis) are

sorted according to the improvement achieved.

In each mix, different applications want different hierarchies.

All proc improves only 7 mixes and hurts performance on

the other 33 because it never leverages the NDP capability of

the asymmetric system. On average, its weighted speedup is

8% worse than the Random baseline. All NDP benefits some

applications significantly (e.g., soplex in Fig. 5). However,

it sometimes hurts applications that prefer deep hierarchies

because it never leverages the LLC. On average, All NDP

improves weighted speedup by 9% over the baseline.

AMS-Greedy finds the best hierarchy for each application

and schedules them accordingly. It thus never hurts performance

and improves weighted speedup by up to 37% and by 18% on

average over the Random baseline.

AMS-Greedy achieves significant speedups because it lever-

ages both hierarchies efficiently. Figs. 13b–d give more insight

on this. AMS-Greedy uses the LLC as effectively as All

proc and reduces memory accesses by 26% over the baseline

(Fig. 13b). AMS-Greedy also schedules applications to leverage

the system’s NDP cores when beneficial. It thus eliminates

80% of the cross-stack traffic (Fig. 13c). Overall, AMS-Greedy

reduces dynamic data movement energy by 25% over the

baseline, while All proc increases it by 2% and All NDP

reduces it by 18% (Fig. 13d).

C. AMS adapts to application phases

Next, we show how AMS-Greedy adapts to phase changes

by examining a 4-app mix. In this workload, we include two

applications, astar and xalancbmk, that have distinct memory

behaviors across two long phases, and two other applications,

bzip2 and sphinx3, that have short and fine-grained variations

over time. To observe time-varying behavior, we simulate this

mix for 25 Bcycles.

Fig. 14a shows the traces of scheduling and capacity

allocation decisions of AMS-Greedy for all four apps. The

upper two traces show that AMS-Greedy takes different deci-

sions for astar and xalancbmk before and after 10 Bcycles.

Before 10 Bcycles, astar is mapped on the processor die and

xalancbmk is mapped to an NDP core. After 10 Bcycles, both

change the hierarchy they prefer. The other two apps are more

fluctuating, but prefer the deep hierarchy more often.

To explain this phenomenon, Fig. 14b and Fig. 14c show

the sampled miss curves for astar and xalancbmk at 5

and 15 Bcycles. At 5 Bcycles, astar has a small working

set (the sharp drop around 1 MB), but xalancbmk has a

large working set (14 MB). Therefore, AMS-Greedy fits the

working sets of astar, bzip2, and sphinx3 in the LLC, and

schedules xalancbmk to an NDP core because it prefers the

shallow hierarchy when capacity is limited. At 15 Bcycles,

10

0

4

8

12
a

s
ta

r Allocated capacity (MB) Run on NDP core

0

4

8

12

x
a

la
n

c
b

m
k

0

4

8

12

b
z
ip

2

0 5 10 15 20

Time (Bcycles)

0

4

8

12

s
p

h
in

x
3

(a) AMS’s decisions over time for each application.

0 2 4 6 8 10 12 14 16

Capacity (MB)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
is

s
e
s
 (

M
 t
im

e
s
) astar

xalancbmk

(b) Miss curves at 5 Bcycles.

0 2 4 6 8 10 12 14 16

Capacity (MB)

0.0

0.5

1.0

1.5

2.0

2.5

M
is

s
e
s
 (

M
 t
im

e
s
) astar

xalancbmk

(c) Miss curves at 15 Bcycles.

astar xalancbmk bzip2 sphinx3 weighted speedup

AMS 1.24 1.04 1.08 1.22 1.14

All NDP 1.07 0.79 0.85 0.86 0.89

(d) Per-app speedups relative to All proc.

Fig. 14: Simulation results for the case study.

the memory behavior of astar and xalancbmk essentially

switches. xalancbmk now has a smaller working set than

astar (misses drop around 4 MB). Therefore, AMS schedules

astar to an NDP core and lets xalancbmk share the LLC

with the other two applications.

This experiment shows that AMS adapts to program phases.

Fig. 14d shows AMS’s per-app improvements and weighted

speedup for this mix, which is 14% better than All proc.

D. AMS handles resource contention well

We now compare AMS-Greedy with AMS-DP and CRUI-

SE-NDP (see Sec. VII-A) under different system loads to

understand the quality and robustness of these algorithms. It

also shows how our data placement for asymmetric hierarchies

influences other schedulers.

Fig. 15 shows the weighted speedups over 40 random mixes

of 8 apps (50% core utilization) and 16 apps (100% core

utilization) for two variants of AMS and CRUISE-NDP with

two data placement algorithms: first-touch and asymmetry-

aware. The undercommitted system (Fig. 15a) has little resource

contention among applications. However, CRUISE-NDP with

first-touch, a simple algorithm that always places new pages in

the closest stack, hurts performance for 5 mixes and improves

weighted speedup by only 11%. AMS-Greedy outperforms

CRUISE-NDP by up to 18% and by 7% on average. CRUISE

with our asymmetry-aware data placement performs closer

0 5 10 15 20 25 30 35 40

Workload

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

W
e
ig

h
te

d
 s

p
e
e
d
u
p

(a) 8-app mixes (50% load).

0 5 10 15 20 25 30 35 40

Workload

1.00

1.05

1.10

1.15

1.20

W
e
ig

h
te

d
 s

p
e
e
d
u
p

(b) 16-app mixes (100% load).

Fig. 15: Performance of AMS-Greedy/-DP, and CRUISE-NDP.

to AMS and improves performance by 16%. AMS-Greedy

performs very close to AMS-DP, improving performance by

18% on average. This shows that under 50% load, AMS-Greedy

very often finds the optimal solution that AMS-DP achieves.

When the system is fully loaded (Fig. 15b), resource con-

tention becomes more significant and CRUISE-NDP runs into

more frequent pathologies. CRUISE-NDP improves weighted

speedup by only 6% over the baseline, and the gap between

CRUISE-NDP with either placement and AMS grows. Un-

like CRUISE-NDP, AMS-Greedy still produces high-quality

schedules, improving average performance by 11%. Finally,

AMS-DP is 1% better than AMS-Greedy on average, improving

performance by 12%. This result shows that a classification-

based policy does not robustly handle contended cores in an

asymmetric system. By contrast, AMS-Greedy still performs

almost as well as the AMS-DP upper bound.

E. AMS works well with heterogeneous cores

So far, we have considered systems with homogeneous

processor-die and NDP cores. However, it is often attractive to

use simpler NDP cores than processor-die cores. This causes

asymmetry in both cores and the memory hierarchy. As shown

in Sec. V-B, AMS’s model can be combined with PIE’s model

to handle this scenario.

Fig. 16 shows results for a 16-core system where processor-

die cores are modeled after Haswell (NDP stacks use the

same Silvermont-like cores as before). PIE alone neglects

asymmetric hierarchies, so it cannot estimate the memory stalls

0 5 10 15 20 25 30 35 40

Workload

1.00

1.05

1.10

1.15

1.20

W
e

ig
h

te
d

 s
p

e
e

d
u

p

Random

PIE

AMS-Gr
w/o PIE

AMS-Gr

Fig. 16: Performance of AMS with
PIE on heterogeneous cores.

of different cores accurately.

Thus, PIE improves perfor-

mance by only 4% on aver-

age. AMS-Greedy alone is

oblivious to heterogeneous

cores, so it improves per-

formance by only 5% on

average. AMS-Greedy with

PIE handles both asymmet-

ric cores and memory hier-

archies, and thus improves

performance the most, by 9%

on average and by up to 21%

over Random.

11

TABLE II: MULTITHREADED WORKLOADS AND INPUTS USED.

Suite Benchmark and input

SPECOMP2012 md, bwaves, ilbdc, fma3d, swim, mgrid,
smithwa (ref/train), bt, botsspar (ref)

PARSEC canneal, streamcluster, freqmine (native only)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

P
e
rf

o
rm

a
n
c
e

mgrid-r swim-t bt-r cnnl-s smthw-t strcl-s smthw-r frqmn-n gmean all

2.1x 2.1x

All proc

All NDP

Random

AMS-Greedy

Fig. 17: Performance of representative multithreaded applications
under different schedulers.

F. AMS works well with multithreaded apps

We also evaluate AMS on memory-intensive multithreaded

workloads. Table II details these workloads. Each workload

runs with 8 threads on the same system in Sec. VII-D.

Fig. 17 shows the performance (1
runtime

) of four scheduling

techniques over All proc on 8 representative workloads. The first

three applications (mgrid, swim, and bt) have large working

sets. Therefore, they benefit significantly when using NDP

cores, by up to 2.1× over All proc. AMS-Greedy detects

this preference and correctly schedules them to NDP cores,

matching the performance of All NDP.

The next three applications (canneal, smithwa-train, and

streamcluster) have smaller working sets that fit in the LLC.

In this case, it is better to schedule these applications as All

proc to utilize the LLC, and All NDP hurts performance by

up to 60%. AMS-Greedy again schedules them correctly and

avoids performance degradation.

The last two applications (smithwa-ref and freqmine)

perform very similarly under All proc and All NDP. Nonethe-

less, AMS-Greedy improves them further by scheduling only

some of the 8 threads on the processor die and the rest to NDP

cores. This is because these two workloads have multi-MB

thread-private working sets and only some of them fit in the

LLC. Therefore, AMS spreads threads across processor die

and NDP cores to better use available resources.

Overall, AMS improves gmean performance over All proc

by 22%, while All NDP improves by only 10% and Random

is 1% worse than All proc. These results show that AMS also

handles multithreaded workloads under asymmetric hierarchies.

G. AMS sensitivity study

System parameters: Table III shows the performance improve-

ment of AMS and CRUISE-NDP of 16-core and 32-core (16

cores in the processor die + 4×4 NDP cores) systems. AMS-

Greedy and AMS-DP are similarly effective in this larger

system, and the gap between AMS and CRUISE-NDP remains.

Table IV reports AMS’s speedups under different loads when

varying LLC and stacked DRAM sizes. LLC capacity has a

higher impact when the system is undercommitted. This is

because AMS can map applications to NDP cores with less

contention. When the system is fully loaded, improvements

TABLE III: AMS UNDER VARIOUS SYSTEM SIZES AND LOADS.

16-core system 32-core system

Greedy DP CRUISE Greedy DP CRUISE

50% load 1.18 1.18 1.11 1.19 1.19 1.10
100% load 1.11 1.12 1.06 1.13 1.14 1.06

TABLE IV: AMS UNDER VARIOUS LLC AND MEMORY CAPACITIES.

LLC capacity Per-stack capacity

8 MB 16MB 32MB 2GB 4GB 8GB

50% load 1.20 1.18 1.16 1.18 1.18 1.18
100% load 1.10 1.11 1.11 1.09 1.11 1.11

are roughly the same over different capacities due to limited

scheduling options.

We find that varying capacity in memory stacks does not

change the effectiveness of the algorithm. This is due to two

reasons. First, AMS successfully avoids capacity contention on

memory stacks, and second, our workloads have medium size

footprints (<8 GB) and thus, when preferences are properly

spread, the capacity of a single stack is rarely exhausted.

Algorithm runtime: AMS-Greedy’s runtime overhead scales

well with the system size and number of threads to schedule.

With 100% load in the 16-core and 32-core systems, AMS-

Greedy’s overheads are 1 Mcycle (0.1% of system cycles with

a scheduling quantum of 50 ms) and 3 Mcycles (0.2%).

However, AMS-DP’s overheads increase much more steeply

with system size: each scheduling decision takes 10 Mcycles

(1%) and 300 Mcycles (19%) for 16-core and 32-core systems,

respectively. Thus, AMS-DP is only practical up to 16 cores.

Cache partitioning: Since AMS leverages cache partitioning

when scheduling threads, we extend AMS with Vantage [57]

to also partition the LLC. We find that cache partitioning

improves performance by <1% because AMS already avoids

cache pollution by scheduling threads to NDP cores. We thus

conclude that AMS is effective without partitioning.

VIII. CONCLUSION

Advances in die-stacking technology have enabled systems

with asymmetric memory hierarchies. We have shown that appli-

cations can benefit significantly from these asymmetric systems,

but to realize their full potential, scheduling applications to their

most suitable hierarchy is essential. We have presented AMS,

a scheduling framework that achieves this goal by modeling

application preferences to different hierarchies. AMS schedules

applications to their best hierarchy and is efficient enough to

use online, so it adapts to changing application behavior and

outperforms prior scheduling techniques. AMS thus improves

the performance of an asymmetric system by up to 37% and

by 18% on average.

ACKNOWLEDGMENTS

We sincerely thank Maleen Abeydeera, Joel Emer, Yee Ling

Gan, Hyun Ryong Lee, Mark Jeffrey, Anurag Mukkara, Suvinay

Subramanian, Victor Ying, Guowei Zhang, and the anonymous

reviewers for their helpful feedback. This work was supported

in part by NSF grant CAREER-1452994 and by a grant from

the Qatar Computing Research Institute.

12

REFERENCES

[1] N. Agarwal, D. Nellans, M. O’Connor, S. W. Keckler, and T. F. Wenisch,
“Unlocking bandwidth for GPUs in CC-NUMA systems,” in Proc. of

the 21st IEEE intl. symp. on High Performance Computer Architecture,
2015.

[2] A. Agrawal, J. Torrellas, and S. Idgunji, “Xylem: Enhancing vertical
thermal conduction in 3D processor-memory stacks,” in Proc. of the 50th

annual IEEE/ACM intl. symp. on Microarchitecture, 2017.
[3] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-

in-memory accelerator for parallel graph processing,” in Proc. of the

42nd annual Intl. Symp. on Computer Architecture, 2015.
[4] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “PIM-enabled instructions:

A low-overhead, locality-aware processing-in-memory architecture,” in
Proc. of the 42nd annual Intl. Symp. on Computer Architecture, 2015.

[5] A. Alameldeen and D. Wood, “IPC considered harmful for multiprocessor
workloads,” IEEE Micro, vol. 26, no. 4, 2006.

[6] ARM, “Cortex-A57 Processor,” https://www.arm.com/products/
processors/cortex-a/cortex-a57-processor.php, 2014.

[7] A. Barbalace, A. Iliopoulos, H. Rauchfuss, and G. Brasche, “It’s time to
think about an operating system for near data processing architectures,”
in Proc. of the 16th Workshop on Hot Topics in Operating Systems, 2017.

[8] N. Beckmann and D. Sanchez, “Jigsaw: Scalable software-defined caches,”
in Proc. of the 22nd Intl. Conf. on Parallel Architectures and Compilation

Techniques, 2013.
[9] N. Beckmann, P.-A. Tsai, and D. Sanchez, “Scaling distributed cache

hierarchies through computation and data co-scheduling,” in Proc. of

the 21st IEEE intl. symp. on High Performance Computer Architecture,
2015.

[10] D. P. Bertsekas, Dynamic programming and optimal control. Athena
scientific, 1995, vol. 1, no. 2.

[11] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, January 2011.

[12] B. Black, “Keynote: Die stacking is happening!” in Proc. of the 46th

annual IEEE/ACM intl. symp. on Microarchitecture, 2013.
[13] S. Blagodurov, S. Zhuravlev, M. Dashti, and A. Fedorova, “A case for

NUMA-aware contention management on multicore systems,” in Proc.

USENIX ATC, 2011.
[14] A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu,

R. Thakur, D. Kim, A. Kuusela, A. Knies, P. Ranganathan, and O. Mutlu,
“Google workloads for consumer devices: Mitigating data movement
bottlenecks,” in Proc. of the 23th intl. conf. on Architectural Support for

Programming Languages and Operating Systems, 2018.
[15] A. Boroumand, S. Ghose, B. Lucia, K. Hsieh, K. Malladi, H. Zheng,

and O. Mutlu, “LazyPIM: An efficient cache coherence mechanism for
processing-in-memory,” IEEE Computer Architecture Letters, 2017.

[16] J. Cong and B. Yuan, “Energy-efficient scheduling on heterogeneous
multi-core architectures,” in Proc. of the ACM/IEEE Intl. Symp. on Low

Power Electronics and Design, 2012.
[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to algorithms, 3rd ed. MIT press, 2009.
[18] B. A. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. F. Duato,

“Increasing the effectiveness of directory caches by deactivating coherence
for private memory blocks,” in Proc. of the 38th annual Intl. Symp. on

Computer Architecture, 2011.
[19] W. J. Dally, “Keynote: GPU computing: To exascale and beyond,” in

Proc. of the ACM/IEEE conf. on Supercomputing, 2010.
[20] W. J. Dally, L. Chao, A. Chien, S. Hassoun, W. Horwat, J. Kaplan, P. Song,

B. Totty, and S. Wills, “Architecture of a message-driven processor,” in
Proc. of the 14th annual Intl. Symp. on Computer Architecture, 1987.

[21] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize, B. Lepers,
V. Quema, and M. Roth, “Traffic management: A holistic approach to
memory placement on NUMA systems,” in Proc. of the 18th intl. conf.

on Architectural Support for Programming Languages and Operating

Systems, 2013.
[22] M. Drumond, A. Daglis, N. Mirzadeh, D. Ustiugov, J. Picorel, B. Falsafi,

B. Grot, and D. Pnevmatikatos, “The Mondrian data engine,” in Proc.

of the 44th annual Intl. Symp. on Computer Architecture, 2017.
[23] N. El-Sayed, A. Mukkara, P.-A. Tsai, H. Kasture, X. Ma, and D. Sanchez,

“KPart: A hybrid cache partitioning-sharing technique for commodity
multicores,” in Proc. of the 24rd IEEE intl. symp. on High Performance

Computer Architecture, 2018.
[24] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim, “NDA:

Near-DRAM acceleration architecture leveraging commodity DRAM

devices and standard memory modules,” in Proc. of the 21st IEEE intl.

symp. on High Performance Computer Architecture, 2015.
[25] M. Gao, G. Ayers, and C. Kozyrakis, “Practical near-data processing for

in-memory analytics frameworks,” in Proc. of the 24th Intl. Conf. on

Parallel Architectures and Compilation Techniques, 2015.
[26] M. Gao and C. Kozyrakis, “HRL: Efficient and flexible reconfigurable

logic for near-data processing,” in Proc. of the 22nd IEEE intl. symp. on

High Performance Computer Architecture, 2016.
[27] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “TETRIS:

Scalable and efficient neural network acceleration with 3D memory,” in
Proc. of the 22th intl. conf. on Architectural Support for Programming

Languages and Operating Systems, 2017.
[28] M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper, J. LaCoss,

J. Granacki, J. Brockman, A. Srivastava, W. Athas, V. Freeh, J. Shin,
and J. Park, “Mapping irregular applications to DIVA, a PIM-based
data-intensive architecture,” in Proc. of the ACM/IEEE conf. on Super-

computing, 1999.
[29] P. Hammarlund, A. J. Martinez, A. A. Bajwa, D. L. Hill, E. Hallnor,

H. Jiang, M. Dixon, M. Derr, M. Hunsaker, R. Kumar, R. B. Osborne,
R. Rajwar, R. Singhal, R. D’Sa, R. Chappell, S. Kaushik, S. Chennupaty,
S. Jourdan, S. Gunther, T. Piazza, and T. Burton, “Haswell: The fourth-
generation Intel Core processor,” IEEE Micro, vol. 34, no. 2, 2014.

[30] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reactive
NUCA: Near-optimal block placement and replication in distributed
caches,” in Proc. of the 36th annual Intl. Symp. on Computer Architecture,
2009.

[31] M. D. Hill, S. Adve, L. Ceze, M. J. Irwin, D. Kaeli, M. Martonosi,
J. Torrellas, T. F. Wenisch, D. Wood, and K. Yelick, “21st century
computer architecture,” arXiv preprint arXiv:1609.06756, 2016.

[32] A. Hilton, N. Eswaran, and A. Roth, “FIESTA: A sample-balanced
multi-program workload methodology,” Proc. MoBS, 2009.

[33] B. Hong, G. Kim, J. H. Ahn, Y. Kwon, H. Kim, and J. Kim, “Accelerating
linked-list traversal through near-data processing,” in Proc. of the 26th

Intl. Conf. on Parallel Architectures and Compilation Techniques, 2016.
[34] K. Hsieh, E. Ebrahimi, G. Kim, N. Chatterjee, M. O’Connor, N. Vi-

jaykumar, O. Mutlu, and S. W. Keckler, “Transparent offloading and
mapping (TOM): Enabling programmer-transparent near-data processing
in GPU systems,” in Proc. of the 43rd annual Intl. Symp. on Computer

Architecture, 2016.
[35] K. Hsieh, S. Khan, N. Vijaykumar, K. K. Chang, A. Boroumand, S. Ghose,

and O. Mutlu, “Accelerating pointer chasing in 3D-stacked memory:
Challenges, mechanisms, evaluation,” in Proc. of the 34rd Intl. Conf. on

Computer Design, 2016.
[36] Hybrid Memory Cube Consortium, “Hybrid memory cube specification

2.1,” http://hybridmemorycube.org/, 2017.
[37] A. Jaleel, H. H. Najaf-Abadi, S. Subramaniam, S. C. Steely, and J. Emer,

“CRUISE: Cache replacement and utility-aware scheduling,” in Proc. of

the 17th intl. conf. on Architectural Support for Programming Languages

and Operating Systems, 2012.
[38] A. Jaleel, K. Theobald, S. C. Steely, and J. Emer, “High performance

cache replacement using re-reference interval prediction (RRIP),” in Proc.

of the 37th annual Intl. Symp. on Computer Architecture, 2010.
[39] Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik,

and J. Torrellas, “FlexRAM: Toward an advanced intelligent memory
system,” in Proc. of the 17th Intl. Conf. on Computer Design, 1999.

[40] D. Kanter, “Silvermont, Intel’s low power architecture,” in RealWorldTech,
2013.

[41] H. Kasture and D. Sanchez, “Ubik: Efficient cache sharing with strict
QoS for latency-critical workloads,” in Proc. of the 19th intl. conf.

on Architectural Support for Programming Languages and Operating

Systems, 2014.
[42] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay,

“Neurocube: A programmable digital neuromorphic architecture with
high-density 3D memory,” in Proc. of the 43rd annual Intl. Symp. on

Computer Architecture, 2016.
[43] G. Kim, J. Kim, J. H. Ahn, and J. Kim, “Memory-centric system

interconnect design with hybrid memory cubes,” in Proc. of the 22nd

Intl. Conf. on Parallel Architectures and Compilation Techniques, 2013.
[44] P. M. Kogge, “EXECUBE: A new architecture for scaleable MPPs,” in

Proc. of the Intl. Conf. on Parallel Processing, 1994.
[45] C. E. Kozyrakis, S. Perissakis, D. Patterson, T. Anderson, K. Asanovic,

N. Cardwell, R. Fromm, J. Golbus, B. Gribstad, K. Keeton, R. Thomas,
N. Treuhaft, and K. Yelick, “Scalable processors in the billion-transistor
era: IRAM,” IEEE Computer, vol. 30, no. 9, 1997.

13

https://www.arm.com/products/processors/cortex-a/cortex-a57-processor.php
https://www.arm.com/products/processors/cortex-a/cortex-a57-processor.php
http://hybridmemorycube.org/

[46] B. Lepers, V. Quéma, and A. Fedorova, “Thread and memory placement
on NUMA systems: Asymmetry matters,” in Proc. of the USENIX Annual

Technical Conf., 2015.
[47] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and

N. P. Jouppi, “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proc. of the

42nd annual IEEE/ACM intl. symp. on Microarchitecture, 2009.
[48] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis,

“Heracles: Improving resource efficiency at scale,” in Proc. of the 42nd

annual Intl. Symp. on Computer Architecture, 2015.
[49] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. Soffa, “Bubble-up:

Increasing utilization in modern warehouse scale computers via sensible
co-locations,” in Proc. of the 44th annual IEEE/ACM intl. symp. on

Microarchitecture, 2011.
[50] M. Moreto, F. J. Cazorla, A. Ramirez, R. Sakellariou, and M. Valero,

“FlexDCP: A QoS framework for CMP architectures,” ACM SIGOPS

Operating Systems Review, vol. 43, no. 2, 2009.
[51] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing

NUCA organizations and wiring alternatives for large caches with
CACTI 6.0,” in Proc. of the 40th annual IEEE/ACM intl. symp. on

Microarchitecture, 2007.
[52] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim, “GraphPIM:

Enabling instruction-level PIM offloading in graph computing frame-
works,” in Proc. of the 23rd IEEE intl. symp. on High Performance

Computer Architecture, 2017.
[53] M. Oskin, F. T. Chong, and T. Sherwood, “Active pages: A computation

model for intelligent memory,” in Proc. of the 25th annual Intl. Symp.

on Computer Architecture, 1998.
[54] A. Pattnaik, X. Tang, A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir,

O. Mutlu, and C. R. Das, “Scheduling techniques for GPU architectures
with processing-in-memory capabilities,” in Proc. of the 26th Intl. Conf.

on Parallel Architectures and Compilation Techniques, 2016.
[55] S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan,

A. Buyuktosunoglu, A. Davis, and F. Li, “NDC: Analyzing the impact
of 3D-stacked memory+logic devices on MapReduce workloads,” in
Proc. of the IEEE Intl. Symp. on Performance Analysis of Systems and

Software, 2014.
[56] M. Qureshi and Y. Patt, “Utility-based cache partitioning: A low-overhead,

high-performance, runtime mechanism to partition shared caches,” in
Proc. of the 39th annual IEEE/ACM intl. symp. on Microarchitecture,
2006.

[57] D. Sanchez and C. Kozyrakis, “Vantage: Scalable and efficient fine-grain
cache partitioning,” in Proc. of the 38th annual Intl. Symp. on Computer

Architecture, 2011.
[58] D. Sanchez and C. Kozyrakis, “ZSim: Fast and accurate microarchitec-

tural simulation of thousand-core systems,” in Proc. of the 40th annual

Intl. Symp. on Computer Architecture, 2013.
[59] J. E. Sasinowski and J. K. Strosnider, “A dynamic programming algorithm

for cache memory partitioning for real-time systems,” IEEE Transactions

on Computers, vol. 42, no. 8, 1993.
[60] M. Scrbak, M. Islam, K. M. Kavi, M. Ignatowski, and N. Jayasena,

“Processing-in-memory: Exploring the design space,” in Proc. of the Intl.

Conf. on Architecture of Computing Systems (ARCS), 2015.

[61] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Kyrola, H. V.
Simhadri, and K. Tangwongsan, “Brief announcement: The problem
based benchmark suite,” in Proc. of the 24th ACM Symp. on Parallelism

in Algorithms and Architectures, 2012.
[62] D. Skarlatos, R. Thomas, A. Agrawal, S. Qin, R. C. N. Pilawa-Podgurski,

U. R. Karpuzcu, R. Teodorescu, N. S. Kim, and J. Torrellas, “Snatch:
Opportunistically reassigning power allocation between processor and
memory in 3D stacks,” in Proc. of the 49th annual IEEE/ACM intl. symp.

on Microarchitecture, 2016.
[63] A. Snavely and D. M. Tullsen, “Symbiotic job scheduling for a

simultaneous multithreading processor,” in Proc. of the 9th intl. conf.

on Architectural Support for Programming Languages and Operating

Systems, 2000.
[64] D. Tam, R. Azimi, and M. Stumm, “Thread clustering: Sharing-aware

scheduling on SMP-CMP-SMT multiprocessors,” in Proc. of the EuroSys

Conf., 2007.
[65] D. K. Tam, R. Azimi, L. B. Soares, and M. Stumm, “RapidMRC:

Approximating L2 miss rate curves on commodity systems for online
optimizations,” in Proc. of the 14th intl. conf. on Architectural Support

for Programming Languages and Operating Systems, 2009.
[66] J. Torrellas, “FlexRAM: Toward an advanced intelligent memory system:

A retrospective paper,” in Proc. of the 30th Intl. Conf. on Computer

Design, 2012.
[67] P.-A. Tsai, N. Beckmann, and D. Sanchez, “Jenga: Software-defined

cache hierarchies,” in Proc. of the 44th annual Intl. Symp. on Computer

Architecture, 2017.
[68] P.-A. Tsai, N. Beckmann, and D. Sanchez, “Nexus: A new approach to

replication in distributed shared caches,” in Proc. of the 27th Intl. Conf.

on Parallel Architectures and Compilation Techniques, 2017.
[69] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer,

“Scheduling heterogeneous multi-cores through performance impact
estimation (PIE),” in Proc. of the 39th annual Intl. Symp. on Computer

Architecture, 2012.
[70] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum, “Operating system

support for improving data locality on CC-NUMA compute servers,” in
Proc. of the 7th intl. conf. on Architectural Support for Programming

Languages and Operating Systems, 1996.
[71] E. Vermij, L. Fiorin, R. Jongerius, C. Hagleitner, J. V. Lunteren, and

K. Bertels, “An architecture for integrated near-data processors,” ACM

Transactions on Architecture and Code Optimization, vol. 14, no. 3,
2017.

[72] C. Xie, S. L. Song, and X. Fu, “Processing-in-memory enabled graphics
processors for 3D rendering,” in Proc. of the 23rd IEEE intl. symp. on

High Performance Computer Architecture, 2017.
[73] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu,

and M. Ignatowski, “TOP-PIM: Throughput-oriented programmable
processing in memory,” in Proc. of the 23rd intl. symp. on High-

performance Parallel and Distributed Computing, 2014.
[74] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing shared

resource contention in multicore processors via scheduling,” in Proc. of

the 15th intl. conf. on Architectural Support for Programming Languages

and Operating Systems, 2010.

14

	Introduction
	Background and related work
	PIM and NDP systems
	Cache, NUMA, and heterogeneity-aware thread schedulers

	Baseline asymmetric system
	Memory stacks with NDP cores
	Coherence in NDP private caches

	Motivation
	Asymmetry in access latency and energy
	Effect of asymmetry on application preferences

	AMS: Adaptive scheduling for asymmetric memory systems
	Estimating performance under asymmetric hierarchies
	Handling heterogeneous cores
	AMS-Greedy: Mapping threads via cache partitioning
	Handling multithreaded workloads
	AMS-DP: Mapping threads via dynamic programming
	Discussion

	Data placement for asymmetric hierarchies
	Evaluation
	Methodology
	AMS finds the right hierarchy
	AMS adapts to application phases
	AMS handles resource contention well
	AMS works well with heterogeneous cores
	AMS works well with multithreaded apps
	AMS sensitivity study

	Conclusion
	References

