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There is a (false) dichotomy in parallelization
SPECULATIVE PARALLELIZATION NON-SPECULATIVE PARALLELIZATION

Lower overheads

Parallel irrevocable actions
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Simplifies parallel programming

Uncovers abundant parallelism

Current systems offer all-or-nothing speculation



Goal: Bring non-speculative execution to
systems that support ordered parallelism
Espresso
◦ Expressive task-based execution model
◦ Coordinates concurrent speculative and non-speculative ordered tasks
◦ 256-core speedups up to 2.5x vs. all-speculative

Capsules
◦ Let speculative tasks safely invoke software-managed speculation
◦ Enable important system services:

e.g. memory allocator that improves performance up to 69x
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Espresso in action
THE NEED FOR SPECULATIVE AND NON-SPECULATIVE PARALLELISM
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Example: Dijkstra’s algorithm
Finds shortest path tree on a graph with weighted edges
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Parallelism in Dijkstra’s algorithm?
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Dijkstra as a Swarm program [MICRO’15]
void dijkstraTask(Timestamp dist, Vertex* v) {

if (v->distance == UNSET) {
v->distance = dist;
for (Vertex* n : v->neighbors) {

Timestamp nDist = dist + weight(v, n);
swarm::enqueue(dijkstraTask, nDist, n);

}
}

}
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Swarm microarchitecture [MICRO’15]
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speculatively and out of order

Efficiently supports thousands of tiny speculative tasks
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COORDINATING SPECULATIVE AND NON-SPECULATIVE PARALLELISM
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Espresso supports three task types that control speculation
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MAYSPEC allows programmers 
to exploit the best of speculative 
and non-speculative parallelism
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MAYSPEC allows programmers 
to exploit the best of speculative 
and non-speculative parallelism

2.5x



1

128

256

Sp
ee
du
p

sssp-cage

1

256

512 sssp-usa

1

128

256 cf

1

128

256 triangle

1

64

128

Sp
ee
du
p

genome

1

128

256 kmeans

1

128

256 color

1

256

512 bfs

1

64

128

Sp
ee
du
p

1c 128c 256c

mis

1

128

256

1c 128c 256c

astar

1

128

256

1c 128c 256c

des

1

128

256

Sp
ee
du
p

sssp-cage

1

256

512 sssp-usa

1

128

256 cf

1

128

256 triangle

1

64

128

Sp
ee
du
p

genome

1

128

256 kmeans

1

128

256 color

1

256

512 bfs

1

64

128

Sp
ee
du
p

1c 128c 256c

mis

1

128

256

1c 128c 256c

astar

1

128

256

1c 128c 256c

des

Espresso improves efficiency and programmability

1

128

256

Sp
ee
du
p

sssp-cage

1

256

512 sssp-usa

1

128

256 cf

1

128

256 triangle

1

64

128

Sp
ee
du
p

genome

1

128

256 kmeans

1

128

256 color

1

256

512 bfs

1

64

128

Sp
ee
du
p

1c 128c 256c

mis

1

128

256

1c 128c 256c

astar

1

128

256

1c 128c 256c

des

NONSPEC

Swarm

MAYSPEC

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 15

NONSPEC: 29x gmean

Swarm: 162x

MAYSPEC: 198x
22%

6.9x

MAYSPEC allows programmers 

to exploit the best of speculative 

and non-speculative parallelism

2.5x



Please see the paper for more details!
Microarchitectural details
Interactions between speculative and non-speculative tasks:
◦ How are conflicts detected and resolved?
◦ How do timestamps-as-barriers affect the ordered commit protocol?

Espresso exception model

Additional results analysis
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Capsules
ENABLING SOFTWARE-MANAGED SPECULATION WITH ORDERED PARALLELISM
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Some actions should bypass HW speculation
Discrete event simulation (DES) needs speculation to scale
DES also allocates memory within tasks
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Disable hardware speculation [Moravan, ASPLOS’06]?
Speculative data forwarding creates challenges
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Capsules ensure safety through
OS-like protections
Untracked memory: protected from tasks that lose integrity
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Unversioned, no conflict checks
Only accessible by
◦ non-speculative tasks
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Holds the capsule call vector

Capsules ensure safety through
OS-like protections
Untracked memory: protected from tasks that lose integrity
Vectored call interface: guarantees control-flow integrity in a capsule
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Capsule-based allocator
malloc, etc. are capsule functions

metadata resides in untracked memory

Only gmean 30% slower than ideal
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capalloc retains the scalability of an ideal allocator

Capsule-based allocator
malloc, etc. are capsule functions

metadata resides in untracked memory

Only gmean 30% slower than ideal



Conclusion
Speculative systems should support non-speculative execution to 
improve efficiency, ease programmability, and enable new capabilities

Espresso: an execution model for speculative and non-speculative tasks
◦ Provides shared synchronization mechanisms to all tasks
◦ Lets the system adaptively run tasks speculatively or non-speculatively

Capsules: speculative tasks safely invoke software-managed speculation
◦ Enable important speculation-friendly services like scalable memory allocation
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