
Harmonizing Speculative and
Non-Speculative Execution in
Architectures for Ordered Parallelism
MARK C. JEFFREY, VICTOR A. YING,
SUVINAY SUBRAMANIAN, HYUN RYONG LEE,
JOEL EMER, DANIEL SANCHEZ

MICRO 2018

There is a (false) dichotomy in parallelization
SPECULATIVE PARALLELIZATION NON-SPECULATIVE PARALLELIZATION

Lower overheads

Parallel irrevocable actions

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 2

Simplifies parallel programming

Uncovers abundant parallelism

Current systems offer all-or-nothing speculation

Goal: Bring non-speculative execution to
systems that support ordered parallelism
Espresso
◦ Expressive task-based execution model
◦ Coordinates concurrent speculative and non-speculative ordered tasks
◦ 256-core speedups up to 2.5x vs. all-speculative

Capsules
◦ Let speculative tasks safely invoke software-managed speculation
◦ Enable important system services:

e.g. memory allocator that improves performance up to 69x

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 3

Espresso in action
THE NEED FOR SPECULATIVE AND NON-SPECULATIVE PARALLELISM

4HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM

Example: Dijkstra’s algorithm
Finds shortest path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 5

Input graph

0 1 2 3 4 5 6 7 8

Example: Dijkstra’s algorithm
Finds shortest path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

Order = Distance from source node

Task graph

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 5

Input graph

0 1 2 3 4 5 6 7 8

Example: Dijkstra’s algorithm
Finds shortest path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

Order = Distance from source node

ATask graph

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 5

Input graph

0 1 2 3 4 5 6 7 8

Example: Dijkstra’s algorithm
Finds shortest path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

Order = Distance from source node

ATask graph

First to visit vertex

Vertex already visited

To be processed

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 5

Input graph

0 1 2 3 4 5 6 7 8

Example: Dijkstra’s algorithm
Finds shortest path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

Order = Distance from source node

ATask graph

First to visit vertex

Vertex already visited

To be processed

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 5

Input graph

0 1 2 3 4 5 6 7 8

Example: Dijkstra’s algorithm
Finds shortest path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

0

Order = Distance from source node

ATask graph

First to visit vertex

Vertex already visited

To be processed

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 5

Input graph

0 1 2 3 4 5 6 7 8

Example: Dijkstra’s algorithm
Finds shortest path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

0

Order = Distance from source node

A C

B

Task graph

First to visit vertex

Vertex already visited

To be processed

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 5

Input graph

0 1 2 3 4 5 6 7 8

Example: Dijkstra’s algorithm
Finds shortest path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

0

Order = Distance from source node

A C

B

Task graph

First to visit vertex

Vertex already visited

To be processed

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 5

Input graph

0 1 2 3 4 5 6 7 8

Example: Dijkstra’s algorithm
Finds shortest path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

C

2
0

Order = Distance from source node

A C

B

Task graph

2

First to visit vertex

Vertex already visited

To be processed

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 5

Input graph

0 1 2 3 4 5 6 7 8

Example: Dijkstra’s algorithm
Finds shortest path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

C

2
0

Order = Distance from source node

A C

B

BTask graph DE

2

First to visit vertex

Vertex already visited

To be processed

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 5

Input graph

0 1 2 3 4 5 6 7 8

Example: Dijkstra’s algorithm
Finds shortest path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

C

2
0

Order = Distance from source node

A C

B

BTask graph DE

2

First to visit vertex

Vertex already visited

To be processed

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 5

Input graph

0 1 2 3 4 5 6 7 8

Example: Dijkstra’s algorithm
Finds shortest path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

B

C

3

2
0

Order = Distance from source node

A C

B

BTask graph DE

2

3

First to visit vertex

Vertex already visited

To be processed

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 5

Input graph

0 1 2 3 4 5 6 7 8

Example: Dijkstra’s algorithm
Finds shortest path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

B

C

3

2
0

Order = Distance from source node

A C

B

B

D

Task graph DE

2

3

First to visit vertex

Vertex already visited

To be processed

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 5

Input graph

0 1 2 3 4 5 6 7 8

Example: Dijkstra’s algorithm
Finds shortest path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

B

C

3

2
0

Order = Distance from source node

A C

B

B

D

Task graph DE

2

3

First to visit vertex

Vertex already visited

To be processed

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 5

Input graph

0 1 2 3 4 5 6 7 8

Example: Dijkstra’s algorithm
Finds shortest path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

B

C

3

2
0

Order = Distance from source node

A C

B

B

D

Task graph DE

2

3

First to visit vertex

Vertex already visited

To be processed

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 5

Input graph

0 1 2 3 4 5 6 7 8

Example: Dijkstra’s algorithm
Finds shortest path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

B

C

D1
3

2
0

Order = Distance from source node

A C

B D

Task graph DE

2

3 4

First to visit vertex

Vertex already visited

To be processed

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 5

Input graph

B

0 1 2 3 4 5 6 7 8

Example: Dijkstra’s algorithm
Finds shortest path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

B

C

D1
3

2
0

Order = Distance from source node

A C

B D

Task graph DE

E

2

3 4

First to visit vertex

Vertex already visited

To be processed

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 5

Input graph

B

0 1 2 3 4 5 6 7 8

Example: Dijkstra’s algorithm
Finds shortest path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

B

C

D1
3

2
0

Order = Distance from source node

A C

B D

Task graph DE

E

2

3 4

First to visit vertex

Vertex already visited

To be processed

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 5

Input graph

B

0 1 2 3 4 5 6 7 8

Example: Dijkstra’s algorithm
Finds shortest path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

B

C

D1
3

2
0

Order = Distance from source node

A C

B D

Task graph DE

E

2

3 4

E3
5

First to visit vertex

Vertex already visited

To be processed

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 5

Input graph

B

0 1 2 3 4 5 6 7 8

Example: Dijkstra’s algorithm
Finds shortest path tree on a graph with weighted edges

A

B

C

D

E

3

2
2 4

1

3

3

source

A

B

C

D1
3

2
0

Order = Distance from source node

A C

B D

Task graph DE

E

2

3 4

E3
5

First to visit vertex

Vertex already visited

To be processed

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 5

Input graph

B

Parallelism in Dijkstra’s algorithm?

Order = Distance from source node

A C

B

B

D

DE

E

Task graph

0 1 2 3 4 5 6 7 8

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 6

Parallelism in Dijkstra’s algorithm?

Order = Distance from source node

A C

B

B

D

DE

E

Task graph

0 1 2 3 4 5 6 7 8

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 6

Parallelism in Dijkstra’s algorithm?

Order = Distance from source node

A C

B

B

D

DE

E

Task graph

0 1 2 3 4 5 6 7 8

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 6

Parallelism in Dijkstra’s algorithm?

Order = Distance from source node

A C

B

B

D

DE

E

Task graph

0 1 2 3 4 5 6 7 8

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 6

Parallelism in Dijkstra’s algorithm?

Order = Distance from source node

A C

B

B

D

DE

E

Task graph

0 1 2 3 4 5 6 7 8

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 6

Parallelism in Dijkstra’s algorithm?

Order = Distance from source node

A C

B

B

D

DE

E

Task graph

0 1 2 3 4 5 6 7 8

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 6

Parallelism in Dijkstra’s algorithm?

Order = Distance from source node

A C

B

B

D

DE

E

Task graph

0 1 2 3 4 5 6 7 8

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 6

Parallelism in Dijkstra’s algorithm?

Order = Distance from source node

A C

B

B

D

DE

E

Task graph

0 1 2 3 4 5 6 7 8

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 6

1

256

512

Sp
ee
du
p

1c 128c 256c

Parallelism in Dijkstra’s algorithm?

Order = Distance from source node

A C

B

B

D

DE

E

Task graph

0 1 2 3 4 5 6 7 8

Dijkstra on USA-E

Non-speculative

Dijkstra
performance

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 6

1

256

512

Sp
ee
du
p

1c 128c 256c

Parallelism in Dijkstra’s algorithm?

Order = Distance from source node

A C

B

B

D

DE

E

Task graph

0 1 2 3 4 5 6 7 8

Dijkstra on USA-E

Non-speculative

Dijkstra
performance

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 6

1

256

512

Sp
ee
du
p

1c 128c 256c

Parallelism in Dijkstra’s algorithm?

Order = Distance from source node

A C

B

B

D

DE

E

Task graph

0 1 2 3 4 5 6 7 8

Dijkstra on USA-E

Non-speculative

Dijkstra
performance

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 6

Data dependences

1

256

512

Sp
ee
du
p

1c 128c 256c

Parallelism in Dijkstra’s algorithm?

Order = Distance from source node

A C

B

B

D

DE

E

Task graph

0 1 2 3 4 5 6 7 8

Dijkstra on USA-E

Non-speculative

Dijkstra
performance

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 6

Data dependences

Valid
out-of-order
schedule

A C

B

B

D

D

E

E

Time

Dijkstra as a Swarm program [MICRO’15]
void dijkstraTask(Timestamp dist, Vertex* v) {

if (v->distance == UNSET) {
v->distance = dist;
for (Vertex* n : v->neighbors) {

Timestamp nDist = dist + weight(v, n);
swarm::enqueue(dijkstraTask, nDist, n);

}
}

}

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 7

Dijkstra as a Swarm program [MICRO’15]
void dijkstraTask(Timestamp dist, Vertex* v) {

if (v->distance == UNSET) {
v->distance = dist;
for (Vertex* n : v->neighbors) {

Timestamp nDist = dist + weight(v, n);
swarm::enqueue(dijkstraTask, nDist, n);

}
}

}

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 7

Dijkstra as a Swarm program [MICRO’15]
void dijkstraTask(Timestamp dist, Vertex* v) {

if (v->distance == UNSET) {
v->distance = dist;
for (Vertex* n : v->neighbors) {

Timestamp nDist = dist + weight(v, n);
swarm::enqueue(dijkstraTask, nDist, n);

}
}

}

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 7

Dijkstra as a Swarm program [MICRO’15]
void dijkstraTask(Timestamp dist, Vertex* v) {

if (v->distance == UNSET) {
v->distance = dist;
for (Vertex* n : v->neighbors) {

Timestamp nDist = dist + weight(v, n);
swarm::enqueue(dijkstraTask, nDist, n);

}
}

}
Timestamp

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 7

Function Pointer Arguments

Dijkstra as a Swarm program [MICRO’15]
void dijkstraTask(Timestamp dist, Vertex* v) {

if (v->distance == UNSET) {
v->distance = dist;
for (Vertex* n : v->neighbors) {

Timestamp nDist = dist + weight(v, n);
swarm::enqueue(dijkstraTask, nDist, n);

}
}

}
swarm::enqueue(dijkstraTask, 0, sourceVertex);
swarm::run();

Timestamp

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 7

Function Pointer Arguments

Dijkstra as a Swarm program [MICRO’15]
void dijkstraTask(Timestamp dist, Vertex* v) {

if (v->distance == UNSET) {
v->distance = dist;
for (Vertex* n : v->neighbors) {

Timestamp nDist = dist + weight(v, n);
swarm::enqueue(dijkstraTask, nDist, n);

}
}

}
swarm::enqueue(dijkstraTask, 0, sourceVertex);
swarm::run();

Implicit Parallelism

No explicit
synchronizationTimestamp

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 7

Function Pointer Arguments

Conveys new work to hardware as soon as possible

Swarm microarchitecture [MICRO’15]

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 8

Large hardware task queues

Scalable ordered speculation

Scalable ordered commits

64-tile, 256-core chip Tile organization

Core Core Core Core

L1I/D L1I/D L1I/D L1I/D

L2

L3 sliceRouter

Task unit
Mem / IO

M
em

/
IO

Mem / IO

M
em

/ IO

Tile

Swarm executes all tasks
speculatively and out of order

Efficiently supports thousands of tiny speculative tasks

Dijkstra’s algorithm has speculative parallelism

Order = Distance from source node

A C

B

B

D

DE

E

0 1 2 3 4 5 6 7 8

Non-speculative

1

256

512

Sp
ee
du
p

1c 128c 256c

Dijkstra on USA-E

Task graph

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 9

Dijkstra
performance

Dijkstra’s algorithm has speculative parallelism

Order = Distance from source node

A C

B

B

D

DE

E

0 1 2 3 4 5 6 7 8

Non-speculative

All-speculative
[MICRO’15]

1

256

512

Sp
ee
du
p

1c 128c 256c1

256

512

Sp
ee
du
p

1c 128c 256c

Dijkstra on USA-E

Task graph

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 9

Dijkstra
performance

Dijkstra’s algorithm has speculative parallelism

Order = Distance from source node

A C

B

B

D

DE

E

0 1 2 3 4 5 6 7 8

Non-speculative

All-speculative
[MICRO’15]

A C

B

B

D

D

E

E

Time
1

256

512

Sp
ee
du
p

1c 128c 256c1

256

512

Sp
ee
du
p

1c 128c 256c

Dijkstra on USA-E

Task graph

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 9

Dijkstra
performance

Dijkstra’s algorithm has speculative parallelism

Order = Distance from source node

A C

B D

E

0 1 2 3 4 5 6 7 8

Non-speculative

All-speculative
[MICRO’15]

1

256

512

Sp
ee
du
p

1c 128c 256c1

256

512

Sp
ee
du
p

1c 128c 256c

Dijkstra on USA-E

Task graph

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 9

Dijkstra
performance

Dijkstra’s algorithm has speculative parallelism

Order = Distance from source node

A C

B D

E

0 1 2 3 4 5 6 7 8

Non-speculative

All-speculative
[MICRO’15]

1

256

512

Sp
ee
du
p

1c 128c 256c1

256

512

Sp
ee
du
p

1c 128c 256c

Dijkstra on USA-E

Task graph

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 9

Dijkstra
performance

Dijkstra’s algorithm has speculative parallelism

Order = Distance from source node

A C

B D

E

0 1 2 3 4 5 6 7 8

Non-speculative

All-speculative
[MICRO’15]

1

128

256

Sp
ee
du
p

1c 128c 256c1

256

512

Sp
ee
du
p

1c 128c 256c1

256

512

Sp
ee
du
p

1c 128c 256c

Dijkstra on cage14Dijkstra on USA-E

Task graph

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 9

Dijkstra
performance

Dijkstra’s algorithm has speculative parallelism

Order = Distance from source node

A C

B D

E

0 1 2 3 4 5 6 7 8

Non-speculative

All-speculative
[MICRO’15]

1

128

256

Sp
ee
du
p

1c 128c 256c1

256

512

Sp
ee
du
p

1c 128c 256c1

256

512

Sp
ee
du
p

1c 128c 256c

Dijkstra on cage14Dijkstra on USA-E

Task graph

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 9

Dijkstra
performance

Dijkstra’s algorithm has speculative parallelism

Order = Distance from source node

A C

B D

E

0 1 2 3 4 5 6 7 8

Non-speculative

All-speculative
[MICRO’15]

1

128

256

Sp
ee
du
p

1c 128c 256c1

256

512

Sp
ee
du
p

1c 128c 256c1

256

512

Sp
ee
du
p

1c 128c 256c

Dijkstra on cage14Dijkstra on USA-E

Task graph

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 9

Dijkstra
performance

Dijkstra’s algorithm has speculative parallelism

Order = Distance from source node

A C

B D

E

0 1 2 3 4 5 6 7 8

Non-speculative

All-speculative
[MICRO’15]

1

128

256

Sp
ee
du
p

1c 128c 256c1

256

512

Sp
ee
du
p

1c 128c 256c1

256

512

Sp
ee
du
p

1c 128c 256c

Dijkstra on cage14Dijkstra on USA-E

Task graph

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 9

Dijkstra
performance

Dijkstra’s algorithm has speculative parallelism

Order = Distance from source node

A C

B D

E

0 1 2 3 4 5 6 7 8

Non-speculative

All-speculative
[MICRO’15]

1

128

256

Sp
ee
du
p

1c 128c 256c1

256

512

Sp
ee
du
p

1c 128c 256c1

256

512

Sp
ee
du
p

1c 128c 256c

Dijkstra on cage14Dijkstra on USA-E

Task graph

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 9

Dijkstra
performance

Dijkstra’s algorithm has speculative parallelism

Order = Distance from source node

A C

B D

E

0 1 2 3 4 5 6 7 8

Non-speculative

All-speculative
[MICRO’15]

1

128

256

Sp
ee
du
p

1c 128c 256c1

256

512

Sp
ee
du
p

1c 128c 256c1

256

512

Sp
ee
du
p

1c 128c 256c

Dijkstra on cage14Dijkstra on USA-E

Task graph

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 9

Dijkstra
performance

Dijkstra’s algorithm has speculative parallelism

Order = Distance from source node

A C

B D

E

0 1 2 3 4 5 6 7 8

Non-speculative

All-speculative
[MICRO’15]

1

128

256

Sp
ee
du
p

1c 128c 256c1

128

256

Sp
ee
du
p

1c 128c 256c1

256

512

Sp
ee
du
p

1c 128c 256c1

256

512

Sp
ee
du
p

1c 128c 256c

Dijkstra on cage14Dijkstra on USA-E

Task graph

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 9

Dijkstra
performance

20%

Dijkstra’s algorithm has speculative parallelism

Order = Distance from source node

A C

B

B

D

DE

E

0 1 2 3 4 5 6 7 8

Non-speculative

All-speculative
[MICRO’15]

1

128

256

Sp
ee
du
p

1c 128c 256c1

128

256

Sp
ee
du
p

1c 128c 256c1

256

512

Sp
ee
du
p

1c 128c 256c1

256

512

Sp
ee
du
p

1c 128c 256c

Dijkstra on cage14Dijkstra on USA-E

Task graph

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 9

Dijkstra
performance

All-or-nothing speculation unduly burdens programmers

20%

Dijkstra’s algorithm needs a hybrid strategy

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 10

Dijkstra’s algorithm needs a hybrid strategy

Order = Distance from source node

Task graph

0 1 2 3 4 5 6 7

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 10

To be processed

Finished

Dijkstra’s algorithm needs a hybrid strategy

Order = Distance from source node

Task graph

0 1 2 3 4 5 6 7

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 10

To be processed

Finished

Running non-speculatively

Dijkstra’s algorithm needs a hybrid strategy

Order = Distance from source node

Task graph

0 1 2 3 4 5 6 7

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 10

To be processed

Finished

Run tasks non-speculatively when possible

Running non-speculatively

Dijkstra’s algorithm needs a hybrid strategy

Order = Distance from source node

Task graph

0 1 2 3 4 5 6 7

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 10

Running speculatively

To be processed

Finished

Run tasks non-speculatively when possible
Keep cores busy with speculative ordered parallelism

Running non-speculatively

Dijkstra’s algorithm needs a hybrid strategy

Order = Distance from source node

Task graph

0 1 2 3 4 5 6 7

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 10

Running speculatively

To be processed

Finished

Run tasks non-speculatively when possible
Keep cores busy with speculative ordered parallelism

Running non-speculatively

Dijkstra’s algorithm needs a hybrid strategy

Order = Distance from source node

Task graph

0 1 2 3 4 5 6 7

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 10

Running speculatively

To be processed

Finished

Run tasks non-speculatively when possible
Keep cores busy with speculative ordered parallelism

Running non-speculatively

Dijkstra’s algorithm needs a hybrid strategy

Order = Distance from source node

Task graph

0 1 2 3 4 5 6 7

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 10

Running speculatively

To be processed

Finished

Run tasks non-speculatively when possible
Keep cores busy with speculative ordered parallelism

Running non-speculatively

Dijkstra’s algorithm needs a hybrid strategy

Order = Distance from source node

Task graph

0 1 2 3 4 5 6 7

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 10

Running speculatively

To be processed

Finished

Run tasks non-speculatively when possible
Keep cores busy with speculative ordered parallelism

Running non-speculatively

Dijkstra’s algorithm needs a hybrid strategy

Order = Distance from source node

Task graph

0 1 2 3 4 5 6 7

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 10

Running speculatively

To be processed

Finished

Run tasks non-speculatively when possible
Keep cores busy with speculative ordered parallelism

Each task must be runnable in either mode

Running non-speculatively

Dijkstra’s algorithm needs a hybrid strategy

Order = Distance from source node

Task graph

0 1 2 3 4 5 6 7

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 10

Running speculatively

To be processed

Finished

Run tasks non-speculatively when possible
Keep cores busy with speculative ordered parallelism

Each task must be runnable in either mode
Tasks in both modes must coordinate on shared data

1

256

512

Sp
ee
du
p

1c 128c 256c1

256

512

Sp
ee
du
p

1c 128c 256c

Dijkstra on USA

1

128

256

Sp
ee
du
p

1c 128c 256c1

128

256

Sp
ee
du
p

1c 128c 256c

Espresso reaps the benefits of
non-speculative and speculative parallelism

Dijkstra on cage14

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM

Non-speculative

All-speculative

Espresso

11

Espresso avoids pathologies and scales best

Espresso
COORDINATING SPECULATIVE AND NON-SPECULATIVE PARALLELISM

12HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM

Programs consist of tasks that run speculatively or non-speculatively
Espresso execution model

Non-Spec. Spec.

Timestamp barrier ordered
commits

Locale mutex reduce
conflicts

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 13

Programs consist of tasks that run speculatively or non-speculatively
void dijkstraTask(Timestamp dist, Vertex* v) {

if (v->distance == UNSET) {
v->distance = dist;
for (Vertex* n : v->neighbors)

espresso::create(
dijkstraTask,
dist + weight(v, n),
n->id,
n);

}
}

Espresso execution model

Non-Spec. Spec.

Timestamp barrier ordered
commits

Locale mutex reduce
conflicts

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 13

Programs consist of tasks that run speculatively or non-speculatively
void dijkstraTask(Timestamp dist, Vertex* v) {

if (v->distance == UNSET) {
v->distance = dist;
for (Vertex* n : v->neighbors)

espresso::create(
dijkstraTask,
dist + weight(v, n),
n->id,
n);

}
}

Espresso execution model

Non-Spec. Spec.

Timestamp barrier ordered
commits

Locale mutex reduce
conflicts

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 13

Programs consist of tasks that run speculatively or non-speculatively
void dijkstraTask(Timestamp dist, Vertex* v) {

if (v->distance == UNSET) {
v->distance = dist;
for (Vertex* n : v->neighbors)

espresso::create(
dijkstraTask,
dist + weight(v, n),
n->id,
n);

}
}

Espresso execution model

Arguments

Function
pointer

Non-Spec. Spec.

Timestamp barrier ordered
commits

Locale mutex reduce
conflicts

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 13

Programs consist of tasks that run speculatively or non-speculatively
void dijkstraTask(Timestamp dist, Vertex* v) {

if (v->distance == UNSET) {
v->distance = dist;
for (Vertex* n : v->neighbors)

espresso::create(
dijkstraTask,
dist + weight(v, n),
n->id,
n);

}
}

Espresso execution model

Arguments

Function
pointer

Non-Spec. Spec.

Timestamp barrier ordered
commits

Locale mutex reduce
conflicts

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 13

Programs consist of tasks that run speculatively or non-speculatively
void dijkstraTask(Timestamp dist, Vertex* v) {

if (v->distance == UNSET) {
v->distance = dist;
for (Vertex* n : v->neighbors)

espresso::create(
dijkstraTask,
dist + weight(v, n),
n->id,
n);

}
}

Espresso execution model

Arguments

Function
pointer

Non-Spec. Spec.

Timestamp barrier ordered
commits

Locale mutex reduce
conflicts

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 13

Programs consist of tasks that run speculatively or non-speculatively
void dijkstraTask(Timestamp dist, Vertex* v) {

if (v->distance == UNSET) {
v->distance = dist;
for (Vertex* n : v->neighbors)

espresso::create(
dijkstraTask,
dist + weight(v, n),
n->id,
n);

}
}

Espresso execution model

Arguments

Function
pointer

Non-Spec. Spec.

Timestamp barrier ordered
commits

Locale mutex reduce
conflicts

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 13

Programs consist of tasks that run speculatively or non-speculatively
void dijkstraTask(Timestamp dist, Vertex* v) {

if (v->distance == UNSET) {
v->distance = dist;
for (Vertex* n : v->neighbors)

espresso::create(
dijkstraTask,
dist + weight(v, n),
n->id,
n);

}
}

Espresso execution model

Arguments

Function
pointer

Non-Spec. Spec.

Timestamp barrier ordered
commits

Locale mutex reduce
conflicts

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 13

Programs consist of tasks that run speculatively or non-speculatively
void dijkstraTask(Timestamp dist, Vertex* v) {

if (v->distance == UNSET) {
v->distance = dist;
for (Vertex* n : v->neighbors)

espresso::create(
dijkstraTask,
dist + weight(v, n),
n->id,
n);

}
}

Espresso execution model

Arguments

Function
pointer

Non-Spec. Spec.

Timestamp barrier ordered
commits

Locale mutex reduce
conflicts

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 13

Tasks in either mode can coordinate access to shared data

Espresso supports three task types that control speculation
void dijkstraTask(Timestamp dist, Vertex* v) {

if (v->distance == UNSET) {
v->distance = dist;
for (Vertex* n : v->neighbors)

espresso::create< type >(
dijkstraTask,
dist + weight(v, n),
n->id,
n);

}
}

Espresso task dispatch

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 14

Espresso supports three task types that control speculation
void dijkstraTask(Timestamp dist, Vertex* v) {

if (v->distance == UNSET) {
v->distance = dist;
for (Vertex* n : v->neighbors)

espresso::create< type >(
dijkstraTask,
dist + weight(v, n),
n->id,
n);

}
}

Espresso task dispatch

Dispatch Candidates

Tile

7

9

10

…

Core

Core

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 14

Espresso supports three task types that control speculation
void dijkstraTask(Timestamp dist, Vertex* v) {

if (v->distance == UNSET) {
v->distance = dist;
for (Vertex* n : v->neighbors)

espresso::create< type >(
dijkstraTask,
dist + weight(v, n),
n->id,
n);

}
}

Espresso task dispatch

SPEC Dispatch Candidates

Tile

7

9

10

…

Core

Core

7 SPEC

9 SPEC

10 SPEC

…

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 14

Espresso supports three task types that control speculation
void dijkstraTask(Timestamp dist, Vertex* v) {

if (v->distance == UNSET) {
v->distance = dist;
for (Vertex* n : v->neighbors)

espresso::create< type >(
dijkstraTask,
dist + weight(v, n),
n->id,
n);

}
}

Espresso task dispatch

SPEC Dispatch Candidates

Tile

7

9

10

…

Core

Core

7 SPEC

9 SPEC

10 SPEC

…

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 14

Espresso supports three task types that control speculation
void dijkstraTask(Timestamp dist, Vertex* v) {

if (v->distance == UNSET) {
v->distance = dist;
for (Vertex* n : v->neighbors)

espresso::create< type >(
dijkstraTask,
dist + weight(v, n),
n->id,
n);

}
}

Espresso task dispatch

SPEC Dispatch Candidates

Tile

7

9

10

…

Core

Core

7 SPEC

9 SPEC

10 SPEC

…

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 14

Espresso supports three task types that control speculation
void dijkstraTask(Timestamp dist, Vertex* v) {

if (v->distance == UNSET) {

v->distance = dist;

for (Vertex* n : v->neighbors)

espresso::create< type >(
dijkstraTask,

dist + weight(v, n),

n->id,

n);

}

}

Espresso task dispatch

SPECNONSPEC
Dispatch Candidates

Tile

7

9

10

…

Core

Core

7 SPEC

9 SPEC

10 SPEC

…

7 NONSPEC

9 SPEC

10 NONSPEC

…

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 14

Espresso supports three task types that control speculation
void dijkstraTask(Timestamp dist, Vertex* v) {

if (v->distance == UNSET) {

v->distance = dist;

for (Vertex* n : v->neighbors)

espresso::create< type >(
dijkstraTask,

dist + weight(v, n),

n->id,

n);

}

}

Espresso task dispatch

SPECNONSPEC
Dispatch Candidates

Tile

7

9

10

… Core

7 SPEC

9 SPEC

10 SPEC

…

7 NONSPEC

9 SPEC

10 NONSPEC

…

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 14

Core

Espresso supports three task types that control speculation
void dijkstraTask(Timestamp dist, Vertex* v) {

if (v->distance == UNSET) {

v->distance = dist;

for (Vertex* n : v->neighbors)

espresso::create< type >(
dijkstraTask,

dist + weight(v, n),

n->id,

n);

}

}

Espresso task dispatch

SPECNONSPEC
Dispatch Candidates

Tile

7

9

10

… Core

7 SPEC

9 SPEC

10 SPEC

…

7 NONSPEC

9 SPEC

10 NONSPEC

…

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 14

Core

Espresso supports three task types that control speculation
void dijkstraTask(Timestamp dist, Vertex* v) {

if (v->distance == UNSET) {
v->distance = dist;
for (Vertex* n : v->neighbors)

espresso::create< type >(
dijkstraTask,
dist + weight(v, n),
n->id,
n);

}
}

Espresso task dispatch

SPECNONSPECMAYSPEC Dispatch Candidates

Tile

7

9

10

… Core

7 SPEC

9 SPEC

10 SPEC

…

7 NONSPEC

9 SPEC

10 NONSPEC

…

7 MAYSPEC

9 SPEC

10 NONSPEC

…

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 14

Core

Espresso supports three task types that control speculation
void dijkstraTask(Timestamp dist, Vertex* v) {

if (v->distance == UNSET) {
v->distance = dist;
for (Vertex* n : v->neighbors)

espresso::create< type >(
dijkstraTask,
dist + weight(v, n),
n->id,
n);

}
}

Espresso task dispatch

SPECNONSPECMAYSPEC Dispatch Candidates

Tile

7

9

10

… Core

7 SPEC

9 SPEC

10 SPEC

…

7 NONSPEC

9 SPEC

10 NONSPEC

…

7 MAYSPEC

9 SPEC

10 NONSPEC

…

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 14

Core

Espresso supports three task types that control speculation
void dijkstraTask(Timestamp dist, Vertex* v) {

if (v->distance == UNSET) {
v->distance = dist;
for (Vertex* n : v->neighbors)

espresso::create< type >(
dijkstraTask,
dist + weight(v, n),
n->id,
n);

}
}

Espresso task dispatch

SPECNONSPECMAYSPEC Dispatch Candidates

Tile

7

9

10

…

Core

Core

7 SPEC

9 SPEC

10 SPEC

…

7 NONSPEC

9 SPEC

10 NONSPEC

…

7 MAYSPEC

9 SPEC

10 NONSPEC

…

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 14

Espresso supports three task types that control speculation
void dijkstraTask(Timestamp dist, Vertex* v) {

if (v->distance == UNSET) {
v->distance = dist;
for (Vertex* n : v->neighbors)

espresso::create< type >(
dijkstraTask,
dist + weight(v, n),
n->id,
n);

}
}

Espresso task dispatch

SPECNONSPECMAYSPEC Dispatch Candidates

Tile

7

9

10

…

Core

Core

7 SPEC

9 SPEC

10 SPEC

…

7 NONSPEC

9 SPEC

10 NONSPEC

…

7 MAYSPEC

9 SPEC

10 NONSPEC

…

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 14

Espresso supports three task types that control speculation
void dijkstraTask(Timestamp dist, Vertex* v) {

if (v->distance == UNSET) {
v->distance = dist;
for (Vertex* n : v->neighbors)

espresso::create< type >(
dijkstraTask,
dist + weight(v, n),
n->id,
n);

}
}

Espresso task dispatch

SPECNONSPECMAYSPEC Dispatch Candidates

Tile

7

9

10

…

Core

Core

7 SPEC

9 SPEC

10 SPEC

…

7 NONSPEC

9 SPEC

10 NONSPEC

…

7 MAYSPEC

9 SPEC

10 NONSPEC

…

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 14

MAYSPEC lets the system decide whether to speculate

1

128

256

Sp
ee
du
p

sssp-cage

1

256

512 sssp-usa

1

128

256 cf

1

128

256 triangle

1

64

128

Sp
ee
du
p

genome

1

128

256 kmeans

1

128

256 color

1

256

512 bfs

1

64

128

Sp
ee
du
p

1c 128c 256c

mis

1

128

256

1c 128c 256c

astar

1

128

256

1c 128c 256c

des

1

128

256

Sp
ee
du
p

sssp-cage

1

256

512 sssp-usa

1

128

256 cf

1

128

256 triangle

1

64

128

Sp
ee
du
p

genome

1

128

256 kmeans

1

128

256 color

1

256

512 bfs

1

64

128

Sp
ee
du
p

1c 128c 256c

mis

1

128

256

1c 128c 256c

astar

1

128

256

1c 128c 256c

des

Espresso improves efficiency and programmability

1

128

256

Sp
ee
du
p

sssp-cage

1

256

512 sssp-usa

1

128

256 cf

1

128

256 triangle

1

64

128

Sp
ee
du
p

genome

1

128

256 kmeans

1

128

256 color

1

256

512 bfs

1

64

128

Sp
ee
du
p

1c 128c 256c

mis

1

128

256

1c 128c 256c

astar

1

128

256

1c 128c 256c

des

NONSPEC

Swarm

MAYSPEC

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 15

MAYSPEC allows programmers
to exploit the best of speculative
and non-speculative parallelism

1

128

256

Sp
ee
du
p

sssp-cage

1

256

512 sssp-usa

1

128

256 cf

1

128

256 triangle

1

64

128

Sp
ee
du
p

genome

1

128

256 kmeans

1

128

256 color

1

256

512 bfs

1

64

128

Sp
ee
du
p

1c 128c 256c

mis

1

128

256

1c 128c 256c

astar

1

128

256

1c 128c 256c

des

1

128

256

Sp
ee
du
p

sssp-cage

1

256

512 sssp-usa

1

128

256 cf

1

128

256 triangle

1

64

128

Sp
ee
du
p

genome

1

128

256 kmeans

1

128

256 color

1

256

512 bfs

1

64

128

Sp
ee
du
p

1c 128c 256c

mis

1

128

256

1c 128c 256c

astar

1

128

256

1c 128c 256c

des

Espresso improves efficiency and programmability

1

128

256

Sp
ee
du
p

sssp-cage

1

256

512 sssp-usa

1

128

256 cf

1

128

256 triangle

1

64

128

Sp
ee
du
p

genome

1

128

256 kmeans

1

128

256 color

1

256

512 bfs

1

64

128

Sp
ee
du
p

1c 128c 256c

mis

1

128

256

1c 128c 256c

astar

1

128

256

1c 128c 256c

des

NONSPEC

Swarm

MAYSPEC

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 15

MAYSPEC allows programmers
to exploit the best of speculative
and non-speculative parallelism

2.5x

1

128

256

Sp
ee
du
p

sssp-cage

1

256

512 sssp-usa

1

128

256 cf

1

128

256 triangle

1

64

128

Sp
ee
du
p

genome

1

128

256 kmeans

1

128

256 color

1

256

512 bfs

1

64

128

Sp
ee
du
p

1c 128c 256c

mis

1

128

256

1c 128c 256c

astar

1

128

256

1c 128c 256c

des

1

128

256

Sp
ee
du
p

sssp-cage

1

256

512 sssp-usa

1

128

256 cf

1

128

256 triangle

1

64

128

Sp
ee
du
p

genome

1

128

256 kmeans

1

128

256 color

1

256

512 bfs

1

64

128

Sp
ee
du
p

1c 128c 256c

mis

1

128

256

1c 128c 256c

astar

1

128

256

1c 128c 256c

des

Espresso improves efficiency and programmability

1

128

256

Sp
ee
du
p

sssp-cage

1

256

512 sssp-usa

1

128

256 cf

1

128

256 triangle

1

64

128

Sp
ee
du
p

genome

1

128

256 kmeans

1

128

256 color

1

256

512 bfs

1

64

128

Sp
ee
du
p

1c 128c 256c

mis

1

128

256

1c 128c 256c

astar

1

128

256

1c 128c 256c

des

NONSPEC

Swarm

MAYSPEC

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 15

NONSPEC: 29x gmean

Swarm: 162x

MAYSPEC: 198x
22%

6.9x

MAYSPEC allows programmers

to exploit the best of speculative

and non-speculative parallelism

2.5x

Please see the paper for more details!
Microarchitectural details
Interactions between speculative and non-speculative tasks:
◦ How are conflicts detected and resolved?
◦ How do timestamps-as-barriers affect the ordered commit protocol?

Espresso exception model

Additional results analysis

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 16

Capsules
ENABLING SOFTWARE-MANAGED SPECULATION WITH ORDERED PARALLELISM

17HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM

Some actions should bypass HW speculation
Discrete event simulation (DES) needs speculation to scale
DES also allocates memory within tasks

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 18

Some actions should bypass HW speculation
Discrete event simulation (DES) needs speculation to scale
DES also allocates memory within tasks

Memory

Core
DA

Core

Read & Write

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 18

A
B

C
D

Some actions should bypass HW speculation
Discrete event simulation (DES) needs speculation to scale
DES also allocates memory within tasks

Memory

Core
DA

Core

Read & Write

1

128

256

Sp
ee
du
p

1c 128c 256c

DES

Ideal allocator

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 18

A
B

C
D

Some actions should bypass HW speculation
Discrete event simulation (DES) needs speculation to scale
DES also allocates memory within tasks

Memory

Free list

Core
DA

Core

Read & Write

1

128

256

Sp
ee
du
p

1c 128c 256c

DES

Ideal allocator

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 18

A
B

C
D

Some actions should bypass HW speculation
Discrete event simulation (DES) needs speculation to scale
DES also allocates memory within tasks

Memory

Free list

Core
DA

Core

Read & Write

1

128

256

Sp
ee
du
p

1c 128c 256c

DES

Ideal allocator

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 18

A
B

C
D

Some actions should bypass HW speculation
Discrete event simulation (DES) needs speculation to scale
DES also allocates memory within tasks

Memory

Free list

Core
DA

Core

Read & Write

1

128

256

Sp
ee
du
p

1c 128c 256c

DES

Ideal allocator

Dependences on allocator metadata cause aborts
among otherwise independent tasks

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 18

A
B

C
D

Some actions should bypass HW speculation
Discrete event simulation (DES) needs speculation to scale
DES also allocates memory within tasks

Memory

Free list

Core
DA

Core

Read & Write

1

128

256

Sp
ee
du
p

1c 128c 256c

DES

Ideal allocator

Dependences on allocator metadata cause aborts
among otherwise independent tasks

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 18

A
B

C
D

Some actions should bypass HW speculation
Discrete event simulation (DES) needs speculation to scale
DES also allocates memory within tasks

Memory

Free list

Core
DA

Core

Read & Write

1

128

256

Sp
ee
du
p

1c 128c 256c

DES

Ideal allocator

Dependences on allocator metadata cause aborts
among otherwise independent tasks

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 18

A
B

C
D

Some actions should bypass HW speculation
Discrete event simulation (DES) needs speculation to scale
DES also allocates memory within tasks

Memory

Free list

Core
DA

Core

Read & Write

1

128

256

Sp
ee
du
p

1c 128c 256c1

128

256

Sp
ee
du
p

1c 128c 256c

DES

TCMalloc

Ideal allocator

Dependences on allocator metadata cause aborts
among otherwise independent tasks

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 18

A
B

C
D

Disable hardware speculation [Moravan, ASPLOS’06]?
Speculative data forwarding creates challenges

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 19

Speculative tasks can access data written by earlier, uncommitted tasks

Disable hardware speculation [Moravan, ASPLOS’06]?
Speculative data forwarding creates challenges

Critical for ordered parallelism

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 19

Speculative tasks can access data written by earlier, uncommitted tasks

1

128

256

Sp
ee
du
p

1c 128c 256c

DES

No forwarding

With forwarding

5x

Disable hardware speculation [Moravan, ASPLOS’06]?
Speculative data forwarding creates challenges

Critical for ordered parallelism Can cause tasks to lose integrity !

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 19

Speculative tasks can access data written by earlier, uncommitted tasks

1

128

256

Sp
ee
du
p

1c 128c 256c

DES

No forwarding

With forwarding

5x

Disable hardware speculation [Moravan, ASPLOS’06]?
Speculative data forwarding creates challenges

Critical for ordered parallelism Can cause tasks to lose integrity !

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 19

Speculative tasks can access data written by earlier, uncommitted tasks

1

128

256

Sp
ee
du
p

1c 128c 256c

DES

No forwarding

With forwarding

5x

Memory

Free list

Core
DA

Core

A
B

C
D

Disable hardware speculation [Moravan, ASPLOS’06]?
Speculative data forwarding creates challenges

Critical for ordered parallelism Can cause tasks to lose integrity !

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 19

Speculative tasks can access data written by earlier, uncommitted tasks

1

128

256

Sp
ee
du
p

1c 128c 256c

DES

No forwarding

With forwarding

5x

Memory

Free list

Core
DA

Core

A
B

C
D

Disable hardware speculation [Moravan, ASPLOS’06]?
Speculative data forwarding creates challenges

Critical for ordered parallelism Can cause tasks to lose integrity !

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 19

Speculative tasks can access data written by earlier, uncommitted tasks

1

128

256

Sp
ee
du
p

1c 128c 256c

DES

No forwarding

With forwarding

5x

Memory

Free list

Core
DA

Core

A
B

C
D

Unchecked

Disable hardware speculation [Moravan, ASPLOS’06]?
Speculative data forwarding creates challenges

Critical for ordered parallelism Can cause tasks to lose integrity !

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 19

Speculative tasks can access data written by earlier, uncommitted tasks

1

128

256

Sp
ee
du
p

1c 128c 256c

DES

No forwarding

With forwarding

5x

Memory

Free list

Core
DA

Core

A
B

C
D

Disable hardware speculation [Moravan, ASPLOS’06]?
Speculative data forwarding creates challenges

Critical for ordered parallelism Can cause tasks to lose integrity !

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 19

Speculative tasks can access data written by earlier, uncommitted tasks

1

128

256

Sp
ee
du
p

1c 128c 256c

DES

No forwarding

With forwarding

5x

Memory

Free list

Core
DA

Core

A
B

C
D

!

Disable hardware speculation [Moravan, ASPLOS’06]?
Speculative data forwarding creates challenges

Critical for ordered parallelism Can cause tasks to lose integrity !

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 19

Speculative tasks can access data written by earlier, uncommitted tasks

1

128

256

Sp
ee
du
p

1c 128c 256c

DES

No forwarding

With forwarding

5x

Memory

Free list

Core
DA

Core

A
B

C
D

!

Disable hardware speculation [Moravan, ASPLOS’06]?
Speculative data forwarding creates challenges

Critical for ordered parallelism Can cause tasks to lose integrity !

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 19

Speculative tasks can access data written by earlier, uncommitted tasks

1

128

256

Sp
ee
du
p

1c 128c 256c

DES

No forwarding

With forwarding

5x

Memory

Free list

Core
DA

Core

A
B

C
D

!

Disable hardware speculation [Moravan, ASPLOS’06]?
Speculative data forwarding creates challenges

Critical for ordered parallelism Can cause tasks to lose integrity !

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 19

Speculative tasks can access data written by earlier, uncommitted tasks

1

128

256

Sp
ee
du
p

1c 128c 256c

DES

No forwarding

With forwarding

5x

Memory

Free list

Core
DA

Core

A
B

C
D

Unchecked

!

Disable hardware speculation [Moravan, ASPLOS’06]?
Speculative data forwarding creates challenges

Critical for ordered parallelism Can cause tasks to lose integrity !

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 19

Speculative tasks can access data written by earlier, uncommitted tasks

1

128

256

Sp
ee
du
p

1c 128c 256c

DES

No forwarding

With forwarding

5x

Memory

Free list

Core
DA

Core

A
B

C
D

Unchecked

!Simply disabling hardware speculation
is unsafe with speculative forwarding

Capsules ensure safety through
OS-like protections
Untracked memory: protected from tasks that lose integrity

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 20

D

Capsules ensure safety through
OS-like protections
Untracked memory: protected from tasks that lose integrity

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 20

Tracked memory

Core
A

Core

A
B

C
D

D

Capsules ensure safety through
OS-like protections
Untracked memory: protected from tasks that lose integrity

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 20

Tracked memory

Core
A

Core

A
B

C
D

D

Capsules ensure safety through
OS-like protections
Untracked memory: protected from tasks that lose integrity

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 20

Tracked memory

Free list

Untracked memory

Core
A

Core

A
B

C
D

D

Unversioned, no conflict checks
Only accessible by
◦ non-speculative tasks
◦ speculative capsules

Capsules ensure safety through
OS-like protections
Untracked memory: protected from tasks that lose integrity

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 20

Tracked memory

Free list

Untracked memory

Core
A

Core

A
B

C
D

Unchecked

D

Unversioned, no conflict checks
Only accessible by
◦ non-speculative tasks
◦ speculative capsules

Capsules ensure safety through
OS-like protections
Untracked memory: protected from tasks that lose integrity

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 20

Tracked memory

Free list

Untracked memory

Core
A

Core

A
B

C
D

!

Unchecked

D

Unversioned, no conflict checks
Only accessible by
◦ non-speculative tasks
◦ speculative capsules

Capsules ensure safety through
OS-like protections
Untracked memory: protected from tasks that lose integrity

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 20

Tracked memory

Free list

Untracked memory

Core
A

Core

A
B

C
D

!

Unchecked

D

Unversioned, no conflict checks
Only accessible by
◦ non-speculative tasks
◦ speculative capsules

Capsules ensure safety through
OS-like protections
Untracked memory: protected from tasks that lose integrity

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 20

Tracked memory

Free list

Untracked memory

Core
A

Core

A
B

C
D

D

Unversioned, no conflict checks
Only accessible by
◦ non-speculative tasks
◦ speculative capsules

Capsules ensure safety through
OS-like protections
Untracked memory: protected from tasks that lose integrity
Vectored call interface: guarantees control-flow integrity in a capsule

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 20

Tracked memory

Free list

Untracked memory

Core
A

Core

A
B

C
D

D

Unversioned, no conflict checks
Only accessible by
◦ non-speculative tasks
◦ speculative capsules

Holds the capsule call vector

Capsules ensure safety through
OS-like protections
Untracked memory: protected from tasks that lose integrity
Vectored call interface: guarantees control-flow integrity in a capsule

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 20

Tracked memory

Free list

Untracked memory
&malloc &calloc …

Core
A

Core

A
B

C
D

1

64

128

Sp
ee
du
p

genome

1

128

256 des

1

256

512

Sp
ee
du
p

1c 128c 256c

nocsim

1

64

128

1c 128c 256c

silo

Capsules enable important system services

1

64

128

Sp
ee
du
p

genome

1

128

256 des

1

256

512

Sp
ee
du
p

1c 128c 256c

nocsim

1

64

128

1c 128c 256c

silo
1

64

128

Sp
ee
du
p

genome

1

128

256 des

1

256

512

Sp
ee
du
p

1c 128c 256c

nocsim

1

64

128

1c 128c 256c

silo
TCMalloc

Ideal allocator
capalloc

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 21

Capsule-based allocator
malloc, etc. are capsule functions

metadata resides in untracked memory

Only gmean 30% slower than ideal

1

64

128

Sp
ee
du
p

genome

1

128

256 des

1

256

512

Sp
ee
du
p

1c 128c 256c

nocsim

1

64

128

1c 128c 256c

silo

Capsules enable important system services

1

64

128

Sp
ee
du
p

genome

1

128

256 des

1

256

512

Sp
ee
du
p

1c 128c 256c

nocsim

1

64

128

1c 128c 256c

silo
1

64

128

Sp
ee
du
p

genome

1

128

256 des

1

256

512

Sp
ee
du
p

1c 128c 256c

nocsim

1

64

128

1c 128c 256c

silo
TCMalloc

Ideal allocator
capalloc

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 21

capalloc retains the scalability of an ideal allocator

Capsule-based allocator
malloc, etc. are capsule functions

metadata resides in untracked memory

Only gmean 30% slower than ideal

Conclusion
Speculative systems should support non-speculative execution to
improve efficiency, ease programmability, and enable new capabilities

Espresso: an execution model for speculative and non-speculative tasks
◦ Provides shared synchronization mechanisms to all tasks
◦ Lets the system adaptively run tasks speculatively or non-speculatively

Capsules: speculative tasks safely invoke software-managed speculation
◦ Enable important speculation-friendly services like scalable memory allocation

HARMONIZING SPECULATIVE AND NON-SPECULATIVE EXECUTION IN ARCHITECTURES FOR ORDERED PARALLELISM 22

