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 A memory hierarchy designed from the ground up for object-based programs

 Provides first-class support for objects and pointers in the ISA

 Hides the memory layout from software and takes control over it

Hotpads

Object-based ISA Object operations
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Manages objects

Hotpads manages objects 

instead of cache lines

Hotpads provides architectural 

support for in-hierarchy object 

allocation and recycling
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Hotpads rewrites pointers to 

reduce associative lookups
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and dynamic type checks

 Hardware accelerators for GC [The Lisp Machine,
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Prior work uses standard cache hierarchies
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 Managed as a circular buffer using simple 

bump pointer allocation
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Core issues access to A.

A is copied into L1 pad. 
Hotpads instructions:
ld r0, (r1).value

 All loads/stores follow a single addressing mode: Base+offset

 Bump pointer allocation stores A compactly after other objects

class Node {
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} 
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C-Tags: A,B
Program code:
v = A.next.value;

Hotpads instructions:
derefptr r2, (r1).next
ld r3, (r2).value

 Subsequent dereferences of A.next access the L1 copy of B directly,

without associative lookups

 C-tags let dereferencing other pointers of A and B find their L1 copies

class Node {
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Node next;

} 
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L1 Pad L2 Pad Main MemRegFile

Core allocates new object C.

A
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Program code:
Node C = new Node();

Hotpads instructions:
alloc r3, type=Node

 In-hierarchy allocation reduces data movement and requires no 

backing storage in main memory or larger pads

class Node {
int value;
Node next;

} 
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 When a pad fills up, it triggers a collection-eviction (CE) to free space

 Discards dead objects

 Evicts live, non-recently used objects to the next level in bulk

 C is dead (unreferenced). Other objects are live. Only B is recently used.

L1 pad is now full
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contiguous chunk of free space
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Invariant: Objects at a particular 

level may only point to objects at 

the same or larger levels.

Result: No need to check the L2 pad when 

performing a collection-eviction in the L1 pad. 

 CEs happen concurrently with 

program execution and are 

hierarchical

 Each pad can perform a CE 

independently from larger, 

higher-level pads  Makes CE 

cost proportional to pad size
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 Hotpads unifies the locality principle and the generational hypothesis

 Hotpads acts like a super-generational collector

 Accesses to short-lived objects are cheap and fast

 Most of main-memory data is live

Most objects are collected in 

the L1 pad

90% of object bytes never 

reach main memory 
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 Supporting large objects with subobject fetches

 Object-level pad coherence

 Legacy mode to support flat-address-based programs

 … and more details!
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 A simulator combining ZSim and Maxine JVM

 Modeled system

 4 OOO cores

 3-level cache or pad hierarchy 

 Workloads

 13 Java workloads from Dacapo, SpecJBB, and JgraphT

 JVM modified to use the Hotpads ISA
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1. In-hierarchy allocation reduces 

memory stalls in application code

2. Hardware-based collection-

evictions reduce GC overheads
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Hotpads improves performance and energy 

efficiency over manual memory management
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See paper for more results

 Results for multithreaded workloads

 Detailed analysis of pointer rewriting and CEs

 Comparison with other cache-based techniques

 Enhanced baseline using DRRIP and stream prefetchers

 Cache scrubbing and zeroing [Sartor et al., PACT’14]

 Legacy mode performance on SPECCPU apps
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