
Rethinking the Memory Hierarchy for 

Modern Languages

Po-An Tsai, Yee Ling Gan, and Daniel Sanchez



Memory systems expose an inexpressive interface

2



Memory systems expose an inexpressive interface

2

Memory hierarchy

Arbitrary loads 

and stores

Flat address 

space

Program



Memory systems expose an inexpressive interface

2

Memory hierarchy

Arbitrary loads 

and stores

Flat address 

space

Program

Obj. A

Obj. B

Programmers think of objects and pointers 

among objects

0x0000

0xFFFF



Modern languages expose an object-based memory model

3

Memory hierarchy

Loads and stores 

to objects

Flat address 

space

Runtime/Compiler

Program

Object-based 

model
Object accesses

 Strictly hiding the flat address space provides many benefits:

 Memory safety prevents memory corruption bugs

 Automatic memory management (garbage collection) simplifies programming

Obj. A

Obj. B

0x0000

0xFFFF



The inexpressive flat address space is inefficient

4

Memory hierarchy

Flat address 

space

Runtime/Compiler

Program

Object-based 

model



The inexpressive flat address space is inefficient

4

Memory hierarchy

Flat address 

space

Runtime/Compiler

Program

Object-based 

model

Semantic gap between 

programs and the 

memory hierarchy



The inexpressive flat address space is inefficient

4

Memory hierarchy

Flat address 

space

Runtime/Compiler

Program

Object-based 

model

Semantic gap between 

programs and the 

memory hierarchy

Main Mem.

Core
L1

$

L2

$

Obj. A Obj

B Obj. C

0x0000

0xFFFF



The inexpressive flat address space is inefficient

4

Mismatch between 

objects and cache lines

Memory hierarchy

Flat address 

space

Runtime/Compiler

Program

Object-based 

model

Semantic gap between 

programs and the 

memory hierarchy

Main Mem.

Core
L1

$

L2

$

Obj. A Obj

B Obj. C

0x0000

0xFFFF



The inexpressive flat address space is inefficient

4

Mismatch between 

objects and cache lines

Costly associative 

lookups

Memory hierarchy

Flat address 

space

Runtime/Compiler

Program

Object-based 

model

Semantic gap between 

programs and the 

memory hierarchy

Main Mem.

Core
L1

$

L2

$

Obj. A Obj

B Obj. C

0x0000

0xFFFF



Hotpads: An object-based memory hierarchy

5



Hotpads: An object-based memory hierarchy

5

 A memory hierarchy designed from the ground up for object-based programs

 Provides first-class support for objects and pointers in the ISA

 Hides the memory layout from software and takes control over it



Hotpads: An object-based memory hierarchy

5

 A memory hierarchy designed from the ground up for object-based programs

 Provides first-class support for objects and pointers in the ISA

 Hides the memory layout from software and takes control over it

Hotpads

Object-based ISA Object operations

Program

Manages objects



Hotpads: An object-based memory hierarchy

5

 A memory hierarchy designed from the ground up for object-based programs

 Provides first-class support for objects and pointers in the ISA

 Hides the memory layout from software and takes control over it

Hotpads

Object-based ISA Object operations

Program

Manages objects

Core L1

pad

L2

pad

L3

pad



Hotpads: An object-based memory hierarchy

5

 A memory hierarchy designed from the ground up for object-based programs

 Provides first-class support for objects and pointers in the ISA

 Hides the memory layout from software and takes control over it

Hotpads

Object-based ISA Object operations

Program

Manages objects

Hotpads manages objects 

instead of cache lines

Core L1

pad

L2

pad

L3

pad



Hotpads: An object-based memory hierarchy

5

 A memory hierarchy designed from the ground up for object-based programs

 Provides first-class support for objects and pointers in the ISA

 Hides the memory layout from software and takes control over it

Hotpads

Object-based ISA Object operations

Program

Manages objects

Hotpads manages objects 

instead of cache lines

Core L1

pad

L2

pad

L3

pad

Hotpads rewrites pointers to 

reduce associative lookups



Hotpads: An object-based memory hierarchy

5

 A memory hierarchy designed from the ground up for object-based programs

 Provides first-class support for objects and pointers in the ISA

 Hides the memory layout from software and takes control over it

Hotpads

Object-based ISA Object operations

Program

Manages objects

Hotpads manages objects 

instead of cache lines

Hotpads provides architectural 

support for in-hierarchy object 

allocation and recycling

Core L1

pad

L2

pad

L3

pad

Hotpads rewrites pointers to 

reduce associative lookups



Prior architectural support for object-based programs

6



Prior architectural support for object-based programs

6

 Object-oriented/typed systems [iAPX432, Dally ISCA’85, CHERI ISCA’14, Kim et al. ASPLOS’17] 

focus on core microarchitecture design

 Accelerate virtual calls, object references

and dynamic type checks

Core

L1

$

L2

$

Type check unit

vFunction unit



Prior architectural support for object-based programs

6

 Object-oriented/typed systems [iAPX432, Dally ISCA’85, CHERI ISCA’14, Kim et al. ASPLOS’17] 

focus on core microarchitecture design

 Accelerate virtual calls, object references

and dynamic type checks

 Hardware accelerators for GC [The Lisp Machine,

Joao et al. ISCA’09, Maas et al. ISCA’18]

Core

L1

$

L2

$

Type check unit

vFunction unit

Core

L1

$

L2

$

GC unit



Prior architectural support for object-based programs

6

 Object-oriented/typed systems [iAPX432, Dally ISCA’85, CHERI ISCA’14, Kim et al. ASPLOS’17] 

focus on core microarchitecture design

 Accelerate virtual calls, object references

and dynamic type checks

 Hardware accelerators for GC [The Lisp Machine,

Joao et al. ISCA’09, Maas et al. ISCA’18]

Core

L1

$

L2

$

Type check unit

vFunction unit

Core

L1

$

L2

$

GC unit

Prior work uses standard cache hierarchies



Prior architectural support for object-based programs

6

 Object-oriented/typed systems [iAPX432, Dally ISCA’85, CHERI ISCA’14, Kim et al. ASPLOS’17] 

focus on core microarchitecture design

 Accelerate virtual calls, object references

and dynamic type checks

 Hardware accelerators for GC [The Lisp Machine,

Joao et al. ISCA’09, Maas et al. ISCA’18]

Core

L1

$

L2

$

Type check unit

vFunction unit

Core

L1

$

L2

$

GC unit

We focus on redesigning the memory hierarchy

Prior work uses standard cache hierarchies



Hotpads overview

7



Hotpads overview

7

Core L1

pad

L2

pad

L3

pad



Hotpads overview

7

 Data array

 Managed as a circular buffer using simple 

bump pointer allocation

 Stores variable-sized objects compactly

Core L1

pad

L2

pad

L3

pad

Objects

Data Array

Free space



Hotpads overview

7

 Data array

 Managed as a circular buffer using simple 

bump pointer allocation

 Stores variable-sized objects compactly

Core L1

pad

L2

pad

L3

pad

Objects

Data Array

Free space

Obj. A



Hotpads overview

7

 Data array

 Managed as a circular buffer using simple 

bump pointer allocation

 Stores variable-sized objects compactly

Core L1

pad

L2

pad

L3

pad

Objects

Data Array

Free space

Obj. A

Obj. B



Hotpads overview

7

 Data array

 Managed as a circular buffer using simple 

bump pointer allocation

 Stores variable-sized objects compactly

 C-Tags

 Decoupled tag store used only for a fraction 

of accesses

Core L1

pad

L2

pad

L3

pad

C-Tags

Objects

Data Array

Free space

Obj. A

Obj. B



Hotpads overview

7

 Data array

 Managed as a circular buffer using simple 

bump pointer allocation

 Stores variable-sized objects compactly

 C-Tags

 Decoupled tag store used only for a fraction 

of accesses

 Metadata

 Pointer? valid? dirty? recently-used?

Core L1

pad

L2

pad

L3

pad

C-Tags

M
e
ta

d
a

ta

(w
o
rd

/o
b
je

ct
)

Objects

Data Array

Free space

Obj. A

Obj. B



Hotpads example

8



Hotpads example

8

class Node {
int value;
Node next;

} 



Hotpads example

8

class Node {
int value;
Node next;

} 

L1 Pad L2 Pad Main Mem

A
Objects

B

r0
r1
r2
r3

RegFile

Free

space

Initial state.



Hotpads moves object implicitly

9

Program code:
int v = A.value;

L1 Pad L2 Pad Main MemRegFile

A

B

r0
r1
r2
r3

A

Core issues access to A.

A is copied into L1 pad. 
Hotpads instructions:
ld r0, (r1).value

class Node {
int value;
Node next;

} 



Hotpads moves object implicitly

9

Program code:
int v = A.value;

L1 Pad L2 Pad Main MemRegFile

A

B

r0
r1
r2
r3

A

Core issues access to A.

A is copied into L1 pad. 
Hotpads instructions:
ld r0, (r1).value

 All loads/stores follow a single addressing mode: Base+offset

class Node {
int value;
Node next;

} 



Hotpads moves object implicitly

9

Program code:
int v = A.value;

L1 Pad L2 Pad Main MemRegFile

A

B

r0
r1
r2
r3

A

Core issues access to A.

A is copied into L1 pad. 
Hotpads instructions:
ld r0, (r1).value

 All loads/stores follow a single addressing mode: Base+offset

 Bump pointer allocation stores A compactly after other objects

class Node {
int value;
Node next;

} 



Hotpads rewrites pointers to avoid associative lookups

10

L1 Pad L2 Pad Main MemRegFile

A

B

r0
r1
r2
r3

A

Core issues access to A.

A is copied into L1 pad. 

r1 is rewritten to A’s L1 pad address.

Program code:
int v = A.value;

class Node {
int value;
Node next;

} 

Hotpads instructions:
ld r0, (r1).value



Hotpads rewrites pointers to avoid associative lookups

10

 Subsequent dereferences of r1 access A’s L1 copy directly,

without associative lookups (like a scratchpad)

L1 Pad L2 Pad Main MemRegFile

A

B

r0
r1
r2
r3

A

Core issues access to A.

A is copied into L1 pad. 

r1 is rewritten to A’s L1 pad address.

Program code:
int v = A.value;

class Node {
int value;
Node next;

} 

Hotpads instructions:
ld r0, (r1).value



Hotpads rewrites pointers to avoid associative lookups

10

 Subsequent dereferences of r1 access A’s L1 copy directly,

without associative lookups (like a scratchpad)

 Hotpads rewrites pointers safely because it hides the memory layout from software

L1 Pad L2 Pad Main MemRegFile

A

B

r0
r1
r2
r3

A

Core issues access to A.

A is copied into L1 pad. 

r1 is rewritten to A’s L1 pad address.

Program code:
int v = A.value;

class Node {
int value;
Node next;

} 

Hotpads instructions:
ld r0, (r1).value



Pointer rewriting applies to L1 pad data as well

11

L1 Pad L2 Pad Main MemRegFile

B copied into L1.

A’s pointer is rewritten.

A

B

r0
r1
r2
r3

A

Program code:
v = A.next.value;

Hotpads instructions:
derefptr r2, (r1).next
ld r3, (r2).value

class Node {
int value;
Node next;

} 



Pointer rewriting applies to L1 pad data as well

11

L1 Pad L2 Pad Main MemRegFile

B copied into L1.

A’s pointer is rewritten.

A

B

r0
r1
r2
r3

A
B

Program code:
v = A.next.value;

Hotpads instructions:
derefptr r2, (r1).next
ld r3, (r2).value

class Node {
int value;
Node next;

} 



Pointer rewriting applies to L1 pad data as well

11

L1 Pad L2 Pad Main MemRegFile

B copied into L1.

A’s pointer is rewritten.

A

B

r0
r1
r2
r3

A
B

Program code:
v = A.next.value;

Hotpads instructions:
derefptr r2, (r1).next
ld r3, (r2).value

class Node {
int value;
Node next;

} 



Pointer rewriting applies to L1 pad data as well

11

L1 Pad L2 Pad Main MemRegFile

B copied into L1.

A’s pointer is rewritten.

A

B

r0
r1
r2
r3

A
B

Program code:
v = A.next.value;

Hotpads instructions:
derefptr r2, (r1).next
ld r3, (r2).value

 Subsequent dereferences of A.next access the L1 copy of B directly,

without associative lookups

class Node {
int value;
Node next;

} 



Pointer rewriting applies to L1 pad data as well

11

L1 Pad L2 Pad Main MemRegFile

B copied into L1.

A’s pointer is rewritten.

A

B

r0
r1
r2
r3

A
B

C-Tags: A,B
Program code:
v = A.next.value;

Hotpads instructions:
derefptr r2, (r1).next
ld r3, (r2).value

 Subsequent dereferences of A.next access the L1 copy of B directly,

without associative lookups

 C-tags let dereferencing other pointers of A and B find their L1 copies

class Node {
int value;
Node next;

} 



Hotpads supports in-hierarchy object allocation

12

L1 Pad L2 Pad Main MemRegFile

Core allocates new object C.

A

B

r0
r1
r2
r3

A
B
C

Program code:
Node C = new Node();

Hotpads instructions:
alloc r3, type=Node

class Node {
int value;
Node next;

} 



Hotpads supports in-hierarchy object allocation

12

L1 Pad L2 Pad Main MemRegFile

Core allocates new object C.

A

B

r0
r1
r2
r3

A
B
C

Program code:
Node C = new Node();

Hotpads instructions:
alloc r3, type=Node

 In-hierarchy allocation reduces data movement and requires no 

backing storage in main memory or larger pads

class Node {
int value;
Node next;

} 



Hotpads unifies garbage collection and object evictions

13

L1 Pad L2 Pad Main MemRegFile

A

B (stale)

A
B
C
D



Hotpads unifies garbage collection and object evictions

13

L1 Pad L2 Pad Main MemRegFile

A

B (stale)

A
B
C
D

L1 pad is now full



Hotpads unifies garbage collection and object evictions

13

L1 Pad L2 Pad Main MemRegFile

A

B (stale)

A
B
C
D

 When a pad fills up, it triggers a collection-eviction (CE) to free space

 Discards dead objects

 Evicts live, non-recently used objects to the next level in bulk

L1 pad is now full



Hotpads unifies garbage collection and object evictions

13

L1 Pad L2 Pad Main MemRegFile

A

B (stale)

A
B
C
D

 When a pad fills up, it triggers a collection-eviction (CE) to free space

 Discards dead objects

 Evicts live, non-recently used objects to the next level in bulk

 C is dead (unreferenced). Other objects are live. Only B is recently used.

L1 pad is now full



Hotpads unifies garbage collection and object evictions

14

L1 Pad L2 Pad Main MemRegFile

L1 collection-eviction (CE) collects dead C and 

evicts live A & D to L2. It leaves a large 

contiguous chunk of free space

A

B (stale)

B

D

Free

space



Hotpads unifies garbage collection and object evictions

14

L1 Pad L2 Pad Main MemRegFile

L1 collection-eviction (CE) collects dead C and 

evicts live A & D to L2. It leaves a large 

contiguous chunk of free space

A

B (stale)

B

D

Free

space

 CEs happen concurrently with 

program execution and are 

hierarchical



Hotpads unifies garbage collection and object evictions

14

L1 Pad L2 Pad Main MemRegFile

L1 collection-eviction (CE) collects dead C and 

evicts live A & D to L2. It leaves a large 

contiguous chunk of free space

A

B (stale)

B

D

Free

space

 CEs happen concurrently with 

program execution and are 

hierarchical

 Each pad can perform a CE 

independently from larger, 

higher-level pads  Makes CE 

cost proportional to pad size



Hotpads unifies garbage collection and object evictions

14

L1 Pad L2 Pad Main MemRegFile

L1 collection-eviction (CE) collects dead C and 

evicts live A & D to L2. It leaves a large 

contiguous chunk of free space

A

B (stale)

B

D

Free

space

Invariant: Objects at a particular 

level may only point to objects at 

the same or larger levels.

 CEs happen concurrently with 

program execution and are 

hierarchical

 Each pad can perform a CE 

independently from larger, 

higher-level pads  Makes CE 

cost proportional to pad size



Hotpads unifies garbage collection and object evictions

14

L1 Pad L2 Pad Main MemRegFile

L1 collection-eviction (CE) collects dead C and 

evicts live A & D to L2. It leaves a large 

contiguous chunk of free space

A

B (stale)

B

D

Free

space

Invariant: Objects at a particular 

level may only point to objects at 

the same or larger levels.

Result: No need to check the L2 pad when 

performing a collection-eviction in the L1 pad. 

 CEs happen concurrently with 

program execution and are 

hierarchical

 Each pad can perform a CE 

independently from larger, 

higher-level pads  Makes CE 

cost proportional to pad size



Collection-evictions reduce data movement

15



Collection-evictions reduce data movement

15

 Hotpads unifies the locality principle and the generational hypothesis



Collection-evictions reduce data movement

15

 Hotpads unifies the locality principle and the generational hypothesis

 Hotpads acts like a super-generational collector

 Accesses to short-lived objects are cheap and fast

 Most of main-memory data is live



Collection-evictions reduce data movement

15

 Hotpads unifies the locality principle and the generational hypothesis

 Hotpads acts like a super-generational collector

 Accesses to short-lived objects are cheap and fast

 Most of main-memory data is live



Collection-evictions reduce data movement

15

 Hotpads unifies the locality principle and the generational hypothesis

 Hotpads acts like a super-generational collector

 Accesses to short-lived objects are cheap and fast

 Most of main-memory data is live

Most objects are collected in 

the L1 pad



Collection-evictions reduce data movement

15

 Hotpads unifies the locality principle and the generational hypothesis

 Hotpads acts like a super-generational collector

 Accesses to short-lived objects are cheap and fast

 Most of main-memory data is live

Most objects are collected in 

the L1 pad

90% of object bytes never 

reach main memory 



See paper for additional features

16



See paper for additional features

 Supporting large objects with subobject fetches

16



See paper for additional features

 Supporting large objects with subobject fetches

 Object-level pad coherence

16



See paper for additional features

 Supporting large objects with subobject fetches

 Object-level pad coherence

 Legacy mode to support flat-address-based programs

16



See paper for additional features

 Supporting large objects with subobject fetches

 Object-level pad coherence

 Legacy mode to support flat-address-based programs

 … and more details!

16



Evaluation

17



Evaluation

 We simulate Hotpads using MaxSim [Rodchenko et al., ISPASS’17]

 A simulator combining ZSim and Maxine JVM

17



Evaluation

 We simulate Hotpads using MaxSim [Rodchenko et al., ISPASS’17]

 A simulator combining ZSim and Maxine JVM

 Modeled system

 4 OOO cores

 3-level cache or pad hierarchy 

17

Core L1

Shared L3

Core

L2

L1 L2

…
…



Evaluation

 We simulate Hotpads using MaxSim [Rodchenko et al., ISPASS’17]

 A simulator combining ZSim and Maxine JVM

 Modeled system

 4 OOO cores

 3-level cache or pad hierarchy 

 Workloads

 13 Java workloads from Dacapo, SpecJBB, and JgraphT

 JVM modified to use the Hotpads ISA

17

Core L1

Shared L3

Core

L2

L1 L2

…
…



Hotpads outperforms conventional hierarchies

18



Hotpads outperforms conventional hierarchies

18



Hotpads outperforms conventional hierarchies

18

34% 

improvement



Hotpads outperforms conventional hierarchies

18

34% 

improvement

1. In-hierarchy allocation reduces 

memory stalls in application code



Hotpads outperforms conventional hierarchies

18

34% 

improvement

1. In-hierarchy allocation reduces 

memory stalls in application code

2. Hardware-based collection-

evictions reduce GC overheads



Hotpads reduces dynamic memory hierarchy energy

19



Hotpads reduces dynamic memory hierarchy energy

19



Hotpads reduces dynamic memory hierarchy energy

19

2.6x

reduction



Hotpads reduces dynamic memory hierarchy energy

19

2.6x

reduction

1. Pointer rewriting and 

direct accesses reduce L1 

energy by 2.3x



Hotpads reduces dynamic memory hierarchy energy

19

2. Hierarchical collection-evictions 

reduce memory and GC energy

2.6x

reduction

1. Pointer rewriting and 

direct accesses reduce L1 

energy by 2.3x



Hotpads also provides benefits on compiled code

20



 We study an allocation-heavy, binary-tree benchmark written in C

 Compare Hotpads with tcmalloc, a state-of-the-art memory allocator

Hotpads also provides benefits on compiled code

20



 We study an allocation-heavy, binary-tree benchmark written in C

 Compare Hotpads with tcmalloc, a state-of-the-art memory allocator

Hotpads also provides benefits on compiled code

20

Hotpads improves performance and energy 

efficiency over manual memory management



 We study an allocation-heavy, binary-tree benchmark written in C

 Compare Hotpads with tcmalloc, a state-of-the-art memory allocator

Hotpads also provides benefits on compiled code

20

Hotpads improves performance and energy 

efficiency over manual memory management

2.7x

reduction 3.6x

reduction



See paper for more results

 Results for multithreaded workloads

 Detailed analysis of pointer rewriting and CEs

 Comparison with other cache-based techniques

 Enhanced baseline using DRRIP and stream prefetchers

 Cache scrubbing and zeroing [Sartor et al., PACT’14]

 Legacy mode performance on SPECCPU apps

21



An object-based memory hierarchy provides tremendous benefits

22



An object-based memory hierarchy provides tremendous benefits

22

 Modern programs operate on objects, not cache lines



An object-based memory hierarchy provides tremendous benefits

22

 Modern programs operate on objects, not cache lines

 Hotpads is an object-based memory hierarchy that supports objects in the ISA 

and hides the memory layout



An object-based memory hierarchy provides tremendous benefits

22

 Modern programs operate on objects, not cache lines

 Hotpads is an object-based memory hierarchy that supports objects in the ISA and 

hides the memory layout

 Hotpads outperforms conventional cache hierarchies because it:

 Moves objects rather than cache lines

 Avoids most associative lookups with pointer rewriting

 Provides hardware support for in-hierarchy allocation and unified collection-eviction



An object-based memory hierarchy provides tremendous benefits

22

 Modern programs operate on objects, not cache lines

 Hotpads is an object-based memory hierarchy that supports objects in the ISA and 

hides the memory layout

 Hotpads outperforms conventional cache hierarchies because it:

 Moves objects rather than cache lines

 Avoids most associative lookups with pointer rewriting

 Provides hardware support for in-hierarchy allocation and unified collection-eviction

 Hotpads also unlocks new memory hierarchy optimizations



Thanks! Questions?

23

 Modern programs operate on objects, not cache lines

 Hotpads is an object-based memory hierarchy that supports objects in the ISA 
and hides the memory layout

 Hotpads outperforms conventional cache hierarchies because it:

 Moves objects rather than cache lines

 Avoids most associative lookups with pointer rewriting

 Provides hardware support for in-hierarchy allocation and unified collection-eviction

 Hotpads also unlocks new memory hierarchy optimizations


