KPart: A Hybrid Cache Sharing-Partitioning
Technique for Commodity Multicores

Nosayba ElI-Sayed Anurag Mukkara  Po-An Tsai Harshad Kasture

j

Xiaosong Ma anilanchez

QCRI

m;uga]lug;.;.l;.!:m agoo
tttttttttttttttttttttttttttttt
ii._n_d_x U« Lo do ol

HAMAD BIN KHALIFA UNIVERSITY

pIX
Xhd

i

MITCSAIL




Cache partitioning in commodity multicores .

Partitioning the last-level cache among co-running apps
can reduce interference = improve system performance 2189 1 - B
I quT-LevéI quhe I

Pp— | DRAM |

~ OCTEONTX

¢/ Recent processors offer hardware
cache-partitioning support! — HI o )

% Two key challenges limit its usability
1. Current hardware implements coarse-grained way-partitioning
=>» hurts system performance!
2. Lacks hardware monitoring units to collect cache-profiling data
KPart tackles these limitations, unlocking significant performance on real
hardware (avg gain: 24%, max: 79%), and is publicly available




Limitations of hardware cache partitioning

1. Implements coarse-grained way-partitioning = hurts system performance
Real-system example (benchmarks: SPEC-CPU2006, PBBS)

sphinx3 leslie3d matching hmmer libquantum delaunay leslie3d GemsFDTD

(@@ ) )y )

Core O Corel Core?2 Core 3 Core 4 Core 5 Core 6 Core 7

Way0 Way1l Way2 Way3 Way4d Way5 Waybé6 Way7 Way8 Way9 Way10 Way11

Last-Level Cache (12MB)




Limitations of hardware cache partitioning

1. Implements coarse-grained way-partitioning = hurts system performance
Real-system example (benchmarks: SPEC-CPU2006, PBBS)
Baseline: NoPart (All apps share all ways)

sphinx3 leslie3d matching hmmer libquantum delaunay leslie3d GemsFDTD

(@@ ) )y )

Core O Corel Core?2 Core 3 Core 4 Core 5 Core 6 Core 7
1
ll 1
I 1

1
)
w\/ayO Way1l Way2 Way3 Way4 Way5 Wayé Way7 Way8 Way9 Way10 Way\y’l

Last-Level Cache (12MB)




Limitations of hardware cache partitioning

1. Implements coarse-grained way-partitioning = hurts system performance
Real-system example (benchmarks: SPEC-CPU2006, PBBS)

sphinx3 leslie3d matching hmmer libquantum delaunay leslie3d GemsFDTD

(@@ C)C) )y )

1
Smallest Fore O Corel Core2 Core3 Core4 Core5 Coreb6 Core 7

partition size

Way1l Way2 Way3 Way4 Way5 Wayé Way7 Way8 Way9 Way10 Way11

m m o m m m m m o m
= | = = = = = > = =

~— ~— — — — ~— — «— «— «—

TMB
M

Last-Level Cache (12MB)




Limitations of hardware cache partitioning

1. Implements coarse-grained way-partitioning = hurts system performance
Real-system example (benchmarks: SPEC-CPU2006, PBBS)

Conventional policy: Per-app, utility-based cache part (UCP)

Appliccﬁon sphinx3 leslie3d matching hmmer libquantum delaunay leslie3d GemsFDTD
Cache-Profiles [ ] [ ] [ J [ J [ ] [ ] [ J [ ]
Smallest Fore O" Corel Core2 Core3 Core4 Core5 Core6 Core 7
K i I
L partition size : !
T; | I
i I Wayl Way2 Way3 Way4 Way5 Wayé6 Way7 Way8 Way9 Way10 Way11
— ' oM oM oM m oM 2 2 2l oM oM

= = = p= = > = =

~— ~— — — — ~— — «— «— «—

TMB
M
M

Last-Level Cache (12MB)




Limitations of hardware cache partitioning

1. Implements coarse-grained way-partitioning = hurts system performance
1 Real-system example (benchmarks: SPEC-CPU2006, PBBS)

0 Conventional policy: Per-app, utility-based cache part (UCP)

Appliccﬁon sphinx3 leslie3d matching hmmer libquantum delaunay leslie3d GemsFDTD

Cache-Profiles C@meC ) ) )

Smallest i:ore O" Corel Core2 Core3 Core4 Core5 Core6 Core 7
’K i I
— partition size : 'l
i I

‘E; WayO | Way1 Way2 Way3 Way4 Way5 Wayb Way7 Way8 Way9 Way10 Way11

mmmmmmmmmmm
22222222222

-~ ~ ~ ~ ~ ~ — —

- Last-Level Cache (12MB)




Limitations of hardware cache partitioning

1. Implements coarse-grained way-partitioning = hurts system performance
Real-system example (benchmarks: SPEC-CPU2006, PBBS)

Conventional policy: Per-app, utility-based cache part (UCP)

|
Appliccﬁon sphinx3 leslie3d matching hmmer libquantum delaunay leslie3d GemsFDTD
Cache-Profiles [ ] [ ] [

J () (

. J L JC ] ]
K Smallest Foreol Corel Core2 Core3 Core4d

Core 5 Core 6 Core 7
= partition size

1

Way0 ] Wayl Way2 Way3 Way4 Way5 Way6 Way7 Way8 Way9 Way10 Way11
N m o n | o o) o) o) o) n | o o)
> = = = = = = p= = = =

~ & &

R
d

— — — ~—

-—

Conventional policies yield small partitions with few ways:

low associativity = more misses
This example: throughput degrades by 3.8%



Prior work on cache partitioning

Hardware way-partitioning: restrict
insertions into subsets of ways

Available in commodity hardware

Small number of coarsely-grained partitions!

High-performance, fine-grained
hardware partitioners (e.g. Vantage
[isca'11], Futility Scaling [MICRO14])
Support hundreds of partitions
Not available in existing hardware

Page coloring
No hardware support required

Not compatible with superpages;
costly repartitioning due to
recoloring; heavy OS modifications

Hybrid technique: Set and WAy

Partitioning (SWAP) [HPCA'17]
Combines page coloring and way-
partitioning =» fine-grained partitions
Inherits page coloring limitations



Prior work on cache partitioning

7 Hardware way-partitioning: restrict
insertions into subsets of ways

Available in commodity hardware

Small number of coarsely-grained partition

.

7 High-performance, fine-grained
hardware partitioners (e.g. Vantage
[isca'11], Futility Scaling [MICRO14])

Support hundreds of partitions
Not available in existing hardware

7 Page coloring

No hardware support required

Not compatible with superpages;
costly repartitioning due to
recoloring; heavy OS modifications

7 Hybrid technique: Set and WAy
Partitioning (SWAP) [HPCA'17]

Combines page coloring and way-
partitioning =» fine-grained partitions
Inherits page coloring limitations



KPart performs hybrid cache sharing-partitioning
to make use of coarse-grained partitions

sphinx3 leslie3d matching hmmer libquantum delaunay leslie3d GemsFDTD
Cache-Aware [ ] [ ] [ ] [ J [ ] [ j [ ] [ ]
. Core O Corel Core?2 Core 3 Core4 Core5 Core 6 Core 7
App Grouping " ,/
¢
group 1 P
V4
group 2 P
group 3 -+t @L::;"ﬁj::fj J J }
HHH ::::E::;;%
L/ Last-Level Cache(l o .
,@\
. =
Grouping must be Avoids significant reduction in
done carefully! cache associativity

= throughput improves by 17%




KPart overview: Hybrid cache sharing-partitioning

Ail:loi::::n How? Cache-Sharing Clusters
ow: Cluster#1

“ IS —
- S| AR
;1%- Group = Assign
b % applications cache % %
= info , partitions Emn

Vel clusters to ssi
- 5 clusters N
- > k_) Cluster#3 \L

N

Miss Curves

INZ
AN * \N k\

Collected >

. =N

oniine or - =

offlline %T—h\? W
@) cache capaci

—
N

Un|d UOHILIDG YD) 13isn|D)-19d



Clustering apps based on cache-compatibility:
Distance metric

13

Application
Profiles

92UDJSIP

1 How many additional cache misses are expected when
two apps share cache capacity vs. when it’s partitioned?

Shared LLC Partitioned LLC
g3 |5 B

1 Use cache miss curves to estimate:

combined miss curve
== [Mukkara et al.,, ASPLOS’16] }

(@)
partitioned miss curve 2
[divide cap using UCP]
app

Cache
Misses

app2
Cache quaci’ry

Area = expected performance degradation when
apps share cache capacity (due to additional misses)




Grouping applications into clusters

Hierarchical clustering:
Start with the applications as individual clusters

At each step, merge the closest pair of clusters

. ) K=2
until only one cluster is left.. | | | |

M| —

How do we find the
best K without

running the mix?¢ — /@fo 012 oi4: oie 0.8 1.0

Normalﬁzed Distabce

) slication Miss Curves




Automatic selection of K in KPart

Un|d UOHILIDG Yd0D) 13isn|D)-19d

Application 2 Performance Estimator Cluster# 1
Profiles—— How?
,bf) Estimate throughput
X I ( )
= under all possible Ks 1 Kquto
7 b
= !
L | _l HH
= Account for — : @
/k: Nl |
= bandwidth contention | FH
- . mmi
g— L 1 1 1 1 1 : | | ) @
ol Nor:r){:lized[EJ.iestanc((:.8 " ESth‘”e SpeedUp 0'0 0'2 Non:;ize(:?)litanc:ﬂ " ﬁ\
- curves NN
D Cluster#Kauto
Return K, that
- produces best result




Cache-partitioning in commodity multicores

16

® Two key challenges limit its usability

1. Im_plemen’rs coarse-grqined wox-_pqr’ri’rioning_-) hurts szs’rem_performance!

I 2. Lacks hardware monitoring units to collect cache-profiling data



How do we profile applications online at

low overhead and high accuracy? 17
Application Prior work mostly simulated hardware monitors that don'’t exist in real
Profiles systems, or used expensive software-based mem address sampling

@ DynaWay exploits hardware partitioning support to adjust partition
~ sizes periodically & measure performance (misses, IPC, bandwidth)

‘ T Co-running apps _—l— Co-running apps
> _'—'— {App2, ..., AppN} : {App1, :ppa.
S § I
Slal P O
3|8 pp1 | 3 N
<C ' i i : |
SR SRRl

Miss Curves

Measurement Interval

We applied optimizations to reduce measurement
points and interval length (see paper)

=
3
=
=
=

ache Misses

“cache capaci

=> less than 1% profiling overhead (8-app workloads)



KPart+DynaWay profiles applications online,
partitions the cache dynamically

KPart
ing app: Co-running app:
{ s APPN} {App1, App3,
Cluster#1 — zle Ao . AoEN) | Ao
Sl R
=HE 3
3 fscd
e
T L R A (A S I
eeeeeeeeeeeeeeeeee

e
LT

| | | 1 | | -
00 02 04 06 08 10 ||
Normalized Distance

=
=
4
=

up|d uolli}ipd 19isn|DH-19d

Generate online profiles + update periodically



KPart+DynaWay profiles applications online,
partitions the cache dynamically

19

KPart
i S Co-running app!
@ ; Cluster#1 — = {APP2, ., ADPN) thoo. Ao
I T T T Pots° 2 8 { g 1
! 0 v S|E | i
J : : (D E’ g ; I g : =
|— i . - Sla { o b
: —— 1 3 3 bel | a i
: : ppat ¢ < Aee
: Eml : --l]' Q l § } it {1 i1
K e g ..................
(e D
: -~
] : Cluster#Kauto 1 o
—— : 1T - 1
I 1 1 1 1 1 - —
00 02 04 06 08 10 | =
Normalized Distance o
=]
1 T |2
1 o
<= >

Generate online profiles + update periodically




KPart Evaluation

Broadwell

Hne




Evaluation methodology

21

1 Platform: 8-core Intel Broadwell D-1540 processor (12MB LLC)

- Benchmarks: SPEC-CPU2006, PBBS

1 Mixes: 30 different mixes of 8 apps (randomly selected), each app
running at least 10B instr.

1 Experiments:

KPart on real
system with offline
profiling

KPart on real
system with online
profiling
(using DynaWay)

KPart in simulation

compared against

high-performance
techniques

KPart with mix of
batch and latency-
critical applications




KPart unlocks significant performance on real
_hardware 22

Evaluation results on a real system with offline profiling

80 | | | | | 1
- Koracle | KPart up to 79%)
: : : ! ! ' 2 1 Kauto |  / |
Koracte © . : f ! Important < K2
: g 3 . ; : K4
Kavte = ; : : | to use Kgyo S, 40- R S .
NoCl | : ' ' ' instead of 5 NoClust
oClust . fixedK | B 20 zadeTiio :
I 1 1 I I 1 o
0 5 10 15 20 25 2 S T e e
Avg throughput gain over NoPart(%) I.':_'
200 f—— [ I [ [ -
20 40 60 80 100
. ° 3 ° 0
KPart improves system performance hurts | Application Mixes(%)

by 24% on average! ~30% of mixes



KPart unlocks significant performance on real
_hardware

23

o1 Evaluation results on a real sys’rem W|’rH offline profiling I

80 - 35
§ 70 g 30

a o
o O

20

H
o

1

o

N
o
Peformance gai
o

Peformance gain
w
o

o

10




KPart evaluation with DynaWay'’s online profiles

24

:\3 I | 1 | | | I
:..: 30 i -1
o

2 30 -

OLJ 25 m. m. = ,Q 44444 Qt.;—.p:i:.:.:”i_
> O

g o0 B wy . o ...... 4
S 15 o 5
[4b]

(&

% 10 Lo KPart+DynaWay |7 T T
g 5 | - - Ka to [Offline profiles] | |
.g Koracle [Offline profiles]

[ Wy — ol
0. 1i0B 20B 30B 40B 50B GOB 70B

Reconfiguration Interval (Cycles)

KPart+DynaWay can
even outperform static
KPart with offline
profiling

(adapts to application
phase changes!)



KPart bridges the gap between current and future

_hardware partitioners 25
In simulation: we compared KPart to a high- S e ]
performance fine-grained hardware partitioner, E 20 ______—)___
Vantage [ISCA'11] ‘zj . |

s
s 1058 H
KPart achieves most of the > - B |
gains obtained by fine- §
E o I 1
grained partitioning! S
5 -5 EEEE———— B



KPart helps LC apps when combined with
QoS-oriented techniques

26

KPart focuses on batch apps, but data centers colocate latency-critical (LC) and batch

Prior work uses cache partitioning to provide QoS guarantees for LC apps

but does not improve batch apps throughput {latency-critical application} batch1 batch2 batch3 batch4

| OO OO aanc

. . . . . G:oreO Corel Core2 Core3\ Core4 Core5 Coreé6 Core7
Combining KPart with QoS-oriented technique can | |
improve both batch throughput and LC latency:

\/

Kpart improves batch throughput which leads to e
ast-Level Cache

reduced memory traffic ! Y j

LC apps benefit from more bandwidth and cache QoS-oriented policy  KPart+DynaWay

(o i MHaveerlas TICC AT £1)
Evaluation: On same 8-core system running both LC and batch apps, up to 28%

improvement in batch throughput and up to 7% improvement in LC tail latency



KPart summary

KPart unlocks the potential of hardware way-partitioning using a hybrid
sharing-partitioning approach

KPart improves throughput significantly (avg: 24%) & bridges the gap
between current and future partitioning techniques

DynaWay exploits existing way-partitioning support to perform lightweight
& accurate cache-profiling

KPart+DynaWay can be combined with QoS-oriented policies to colocate
latency-critical apps and batch apps effectively

KPart is open-sourced and publicly available at
http:/ /kpart.csail.mit.edu



Thank you! Questions?

KPart unlocks the potential of hardware way-partitioning using a hybrid
sharing-partitioning approach

KPart improves throughput significantly (avg: 24%) & bridges the gap
between current and future partitioning techniques

DynaWay exploits existing way-partitioning support to perform lightweight
& accurate cache-profiling

KPart+DynaWay can be combined with QoS-oriented policies to colocate
latency-critical apps and batch apps effectively

KPart is open-sourced and publicly available at
http:/ /kpart.csail.mit.edu



