
KPart: A Hybrid Cache Sharing-Partitioning

Technique for Commodity Multicores

Nosayba EI-Sayed Anurag Mukkara Po-An Tsai Harshad Kasture

Xiaosong Ma Daniel Sanchez

Cache partitioning in commodity multicores
2

¨ Partitioning the last-level cache among co-running apps

can reduce interference è improve system performance

✔ Recent processors offer hardware

cache-partitioning support!

✖ Two key challenges limit its usability

1. Current hardware implements coarse-grained way-partitioning

è hurts system performance!

2. Lacks hardware monitoring units to collect cache-profiling data

Last-Level Cache

DRAM

A
p

p

1
A

p
p

2

A
p

p

3

A
p

p

4

KPart tackles these limitations, unlocking significant performance on real

hardware (avg gain: 24%, max: 79%), and is publicly available

Limitations of hardware cache partitioning
3

1. Implements coarse-grained way-partitioning è hurts system performance

¨ Real-system example (benchmarks: SPEC-CPU2006, PBBS)

Way0 Way1 Way2 Way3 Way4 Way5 Way6 Way7 Way8 Way9 Way10 Way11

Last-Level Cache (12MB)

Limitations of hardware cache partitioning
3

1. Implements coarse-grained way-partitioning è hurts system performance

¨ Real-system example (benchmarks: SPEC-CPU2006, PBBS)

¨ Baseline: NoPart (All apps share all ways)

Way0 Way1 Way2 Way3 Way4 Way5 Way6 Way7 Way8 Way9 Way10 Way11

Last-Level Cache (12MB)

Limitations of hardware cache partitioning
3

1. Implements coarse-grained way-partitioning è hurts system performance

¨ Real-system example (benchmarks: SPEC-CPU2006, PBBS)

Smallest

partition size
1

M
B

1
M

B

1
M

B

1
M

B

1
M

B

1
M

B

1
M

B

1
M

B

1
M

B

1
M

B

1
M

B

1
M

B

Way0 Way1 Way2 Way3 Way4 Way5 Way6 Way7 Way8 Way9 Way10 Way11

Last-Level Cache (12MB)

Limitations of hardware cache partitioning
3

1. Implements coarse-grained way-partitioning è hurts system performance

¨ Real-system example (benchmarks: SPEC-CPU2006, PBBS)

…

Application

Cache-Profiles

Smallest

partition size
1

M
B

1
M

B

1
M

B

1
M

B

1
M

B

1
M

B

1
M

B

1
M

B

1
M

B

1
M

B

1
M

B

1
M

B

Way0 Way1 Way2 Way3 Way4 Way5 Way6 Way7 Way8 Way9 Way10 Way11

Last-Level Cache (12MB)

¨ Conventional policy: Per-app, utility-based cache part (UCP)

Limitations of hardware cache partitioning
3

1. Implements coarse-grained way-partitioning è hurts system performance

¨ Real-system example (benchmarks: SPEC-CPU2006, PBBS)

…

Application

Cache-Profiles

Smallest

partition size
1

M
B

1
M

B

1
M

B

1
M

B

1
M

B

1
M

B

1
M

B

1
M

B

1
M

B

1
M

B

1
M

B

1
M

B

Way0 Way1 Way2 Way3 Way4 Way5 Way6 Way7 Way8 Way9 Way10 Way11

Last-Level Cache (12MB)

¨ Conventional policy: Per-app, utility-based cache part (UCP)

Limitations of hardware cache partitioning
3

1. Implements coarse-grained way-partitioning è hurts system performance

¨ Real-system example (benchmarks: SPEC-CPU2006, PBBS)

…

Application

Cache-Profiles

Smallest

partition size
1

M
B

1
M

B

1
M

B

1
M

B

1
M

B

1
M

B

1
M

B

1
M

B

1
M

B

1
M

B

1
M

B

1
M

B

Way0 Way1 Way2 Way3 Way4 Way5 Way6 Way7 Way8 Way9 Way10 Way11

Last-Level Cache (12MB)
Conventional policies yield small partitions with few ways:

low associativity è more misses
This example: throughput degrades by 3.8%

¨ Conventional policy: Per-app, utility-based cache part (UCP)

Prior work on cache partitioning
9

¨ Page coloring

¤ No hardware support required

¤ Not compatible with superpages;

costly repartitioning due to

recoloring; heavy OS modifications

¨ Hybrid technique: Set and WAy

Partitioning (SWAP) [HPCA’17]

¤ Combines page coloring and way-

partitioning è fine-grained partitions

¤ Inherits page coloring limitations

¨ Hardware way-partitioning: restrict

insertions into subsets of ways

¤ Available in commodity hardware

¤ Small number of coarsely-grained partitions!

¨ High-performance, fine-grained

hardware partitioners (e.g. Vantage

[ISCA’11], Futility Scaling [MICRO’14])
¤ Support hundreds of partitions

¤ Not available in existing hardware

Prior work on cache partitioning
9

¨ Page coloring

¤ No hardware support required

¤ Not compatible with superpages;

costly repartitioning due to

recoloring; heavy OS modifications

¨ Hybrid technique: Set and WAy

Partitioning (SWAP) [HPCA’17]

¤ Combines page coloring and way-

partitioning è fine-grained partitions

¤ Inherits page coloring limitations

¨ Hardware way-partitioning: restrict

insertions into subsets of ways

¤ Available in commodity hardware

¤ Small number of coarsely-grained partitions!

¨ High-performance, fine-grained

hardware partitioners (e.g. Vantage

[ISCA’11], Futility Scaling [MICRO’14])
¤ Support hundreds of partitions

¤ Not available in existing hardware

KPart performs hybrid cache sharing-partitioning

to make use of coarse-grained partitions 11

Cache-Aware

App Grouping

group 1
group 2
group 3

Avoids significant reduction in

cache associativity

è throughput improves by 17%

Grouping must be

done carefully!

KPart overview: Hybrid cache sharing-partitioning
12

Application

Profiles Pe
r-C

luste
r C

a
che

 Pa
rtitio

n P
la

n

Cluster#1

Cluster#2

Cluster#3

Cache-Sharing Clusters

Group

applications

into

clusters

Assign

cache

partitions

to

clusters

Miss Curves

C
a
ch

e
 M

is
se

s

cache capacity

How?

Collected

online or

offline

Clustering apps based on cache-compatibility:

Distance metric 13

Application

Profiles

Shared LLC Partitioned LLC

C
a
ch

e

M
is

se
s

Cache Capacity

app1 app2

partitioned miss curve
[divide cap using UCP]

combined miss curve
[Mukkara et al., ASPLOS’16]

a
re

a

Area è expected performance degradation when

apps share cache capacity (due to additional misses)

¨ How many additional cache misses are expected when

two apps share cache capacity vs. when it’s partitioned?

¨ Use cache miss curves to estimate:

d
ista
n
c
e

Grouping applications into clusters
14

K=2K=3

A
p

p
lic

a
ti
o
n

M
is

s
C

ur
ve

s

¨ Hierarchical clustering:

¤ Start with the applications as individual clusters

¤ At each step, merge the closest pair of clusters

until only one cluster is left..

How do we find the

best K without

running the mix?

Automatic selection of K in KPart
15

Cluster#1

Cluster#2

Cluster#Kauto

….

Kauto

Performance Estimator

Pe
r-C

luste
r C

a
che

 Pa
rtitio

n P
la

n

...

Estimate throughput

under all possible Ks

Account for

bandwidth contention

Estimate speedup

curves

Return Kauto that

produces best result

How?
Application

Profiles

Cache-partitioning in commodity multicores
16

¨ Partitioning the last-level cache among co-running apps

can reduce interference è improve system performance

✔ Recent processors offer hardware

cache-partitioning support!

✖ Two key challenges limit its usability

1. Implements coarse-grained way-partitioning è hurts system performance!

2. Lacks hardware monitoring units to collect cache-profiling data

Application

Profiles

17

How do we profile applications online at

low overhead and high accuracy?
¨ Prior work mostly simulated hardware monitors that don’t exist in real

systems, or used expensive software-based mem address sampling

Miss Curves

C
a

ch
e
 M

is
se

s

cache capacity

* * *

DynaWay exploits hardware partitioning support to adjust partition

sizes periodically è measure performance (misses, IPC, bandwidth)

We applied optimizations to reduce measurement

points and interval length (see paper)

è less than 1% profiling overhead (8-app workloads)

KPart+DynaWay profiles applications online,

partitions the cache dynamically

Pe
r-C

luste
r Pa

rtitio
n P

la
n

Cluster#1

Cluster#Kauto

KPart

… Invoke DynaWay

Generate online profiles + update periodically

18

KPart+DynaWay profiles applications online,

partitions the cache dynamically

Cluster#1

Cluster#Kauto

KPart

… Invoke DynaWay

Generate online profiles + update periodically

19

Pe
r-C

luste
r Pa

rtitio
n P

la
n

KPart Evaluation

Evaluation methodology
21

¨ Platform: 8-core Intel Broadwell D-1540 processor (12MB LLC)

¨ Benchmarks: SPEC-CPU2006, PBBS

¨ Mixes: 30 different mixes of 8 apps (randomly selected), each app

running at least 10B instr.

¨ Experiments:

KPart on real

system with offline

profiling

KPart on real

system with online

profiling

(using DynaWay)

KPart in simulation

compared against

high-performance

techniques

KPart with mix of

batch and latency-

critical applications

0 20 40 60 80 100

Application Mixes (%)

-20

0

20

40

60

80

P
e
rf

o
rm

a
n
c
e
 g

a
in

 o
v
e
r

N
o
P

a
rt

 (
%

)

Kauto

NoClust

KPart unlocks significant performance on real

hardware 22

NoClust

Kauto

Koracle

¨ Evaluation results on a real system with offline profiling

Avg throughput gain over NoPart(%)

Application Mixes(%)

T
h
ro

u
g
h
p
u
t
g
a
in

(%
)

KPart improves system performance

by 24% on average!

0 5 10 15 20 25

0 20 40 60 80 100

Application Mixes (%)

-20

0

20

40

60

80

P
e
rf

o
rm

a
n
c
e
 g

a
in

 o
v
e
r

N
o
P

a
rt

 (
%

)

Kauto

NoClust

Koracle

0 20 40 60 80 100

Application Mixes (%)

-20

0

20

40

60

80

P
e

rf
o

rm
a

n
c
e

 g
a

in
 o

v
e

r
N

o
P

a
rt

 (
%

)

Koracle

Kauto

K2

K4

K6

NoClust

NoClust hurts

~30% of mixes

Important

to use Kauto
instead of

fixed K

KPart up to 79%

KPart unlocks significant performance on real

hardware 23

¨ Evaluation results on a real system with offline profiling

¨ Case studies of individual mixes:

Mix 1 Mix 2

KPart evaluation with DynaWay’s online profiles
24

KPart+DynaWay

Kauto [Offline profiles]

Koracle [Offline profiles]

Reconfiguration Interval (Cycles)

KPart+DynaWay can

even outperform static

KPart with offline

profiling

(adapts to application

phase changes!)

KPart bridges the gap between current and future

hardware partitioners 25

¨ In simulation: we compared KPart to a high-
performance fine-grained hardware partitioner,
Vantage [ISCA’11]

KPart achieves most of the

gains obtained by fine-

grained partitioning!

N
oC

lu
st

Van
ta

ge

K or
ac

le

KPart helps LC apps when combined with

QoS-oriented techniques 26
¨ KPart focuses on batch apps, but data centers colocate latency-critical (LC) and batch

¨ Prior work uses cache partitioning to provide QoS guarantees for LC apps

¤ but does not improve batch apps throughput

¨ Combining KPart with QoS-oriented technique can

improve both batch throughput and LC latency:

¤ Kpart improves batch throughput which leads to

reduced memory traffic

¤ LC apps benefit from more bandwidth and cache

{latency-critical application}

Core0 Core1 Core2 Core3 Core4 Core5 Core6 Core7

Last-Level Cache (12MB)

batch4batch3batch2batch1

QoS-oriented policy

(e.g., Heracles [ISCA’15])
KPart+DynaWay

Evaluation: On same 8-core system running both LC and batch apps, up to 28%

improvement in batch throughput and up to 7% improvement in LC tail latency

KPart summary

ü KPart unlocks the potential of hardware way-partitioning using a hybrid

sharing-partitioning approach

ü KPart improves throughput significantly (avg: 24%) & bridges the gap
between current and future partitioning techniques

ü DynaWay exploits existing way-partitioning support to perform lightweight
& accurate cache-profiling

ü KPart+DynaWay can be combined with QoS-oriented policies to colocate
latency-critical apps and batch apps effectively

KPart is open-sourced and publicly available at
http://kpart.csail.mit.edu

Thank you! Questions?

ü KPart unlocks the potential of hardware way-partitioning using a hybrid

sharing-partitioning approach

ü KPart improves throughput significantly (avg: 24%) & bridges the gap
between current and future partitioning techniques

ü DynaWay exploits existing way-partitioning support to perform lightweight
& accurate cache-profiling

ü KPart+DynaWay can be combined with QoS-oriented policies to colocate
latency-critical apps and batch apps effectively

KPart is open-sourced and publicly available at
http://kpart.csail.mit.edu

