
PHI: Architectural Support for Synchronization- and
Bandwidth-Efficient Commutative Scatter Updates

Anurag Mukkara
anuragm@csail.mit.edu

MIT CSAIL

Nathan Beckmann
beckmann@cs.cmu.edu

CMU SCS

Daniel Sanchez
sanchez@csail.mit.edu

MIT CSAIL

ABSTRACT

Many applications perform frequent scatter update operations to

large data structures. For example, in push-style graph algorithms,

processing each vertex requires updating the data of all its neigh-

bors. Neighbors are often scattered over the whole graph, so these

scatter updates have poor spatial and temporal locality. In cur-

rent systems, scatter updates suffer high synchronization costs and

high memory traffic. These drawbacks make push-style execution

unattractive, and, when algorithms allow it, programmers gravitate

towards pull-style implementations based on gather reads instead.

We present PHI, a push cache hierarchy that makes scatter up-

dates synchronization- and bandwidth-efficient. PHI adds support

for pushing sparse, commutative updates from cores towards main

memory. PHI adds simple compute logic at each cache level to buffer

and coalesce these commutative updates throughout the hierarchy.

This avoids synchronization, exploits temporal locality, and pro-

duces a load-balanced execution. Moreover, PHI exploits spatial

locality by selectively deferring updates with poor spatial locality,

batching them to achieve sequential main memory transfers.

PHI is the first system to leverage both the temporal and spatial

locality benefits of commutative scatter updates, some of which

do not apply to gather reads. As a result, PHI not only makes

push algorithms efficient, but makes them consistently faster than

pull ones. We evaluate PHI on graph algorithms and other sparse

applications processing large inputs. PHI improves performance by

4.7× on average (and by up to 11×), and reduces memory traffic by

2× (and by up to 5×).

CCS CONCEPTS

·Computer systems organization→Multicore architectures.

KEYWORDS

graph analytics, multicore, caches, locality, specialization

ACM Reference Format:

Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez. 2019. PHI: Archi-

tectural Support for Synchronization- and Bandwidth-Efficient Commuta-

tive Scatter Updates. In The 52nd Annual IEEE/ACM International Sympo-

sium on Microarchitecture (MICRO-52), October 12ś16, 2019, Columbus, OH,

USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/

3352460.3358254

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MICRO-52, October 12ś16, 2019, Columbus, OH, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6938-1/19/10. . . $15.00
https://doi.org/10.1145/3352460.3358254

1 INTRODUCTION

Sparse algorithms such as graph analytics, sparse linear algebra,

and sparse neural networks are an increasingly important workload

domain [22, 30, 53]. Unfortunately, sparse algorithms work poorly

on existing memory systems, as they perform frequent, indirect

memory accesses to small chunks of data scattered over a large

footprint. For example, graph algorithms often process large graphs

with 10-100GB footprints [16, 48], which do not fit on-chip. Graph

algorithms execute few instructions per edge, and processing each

edge requires accessing a small (e.g., 4- or 8-byte) object over the

whole graph, resulting in poor spatial and temporal locality.

Sparse algorithms are very diverse, but they can be broadly clas-

sified into two styles: push-based or pull-based execution. This

nomenclature stems from graph analytics, where most algorithms

proceed in iterations, and on each iteration the data of each ver-

tex is updated based on the data of neighboring vertices. In push

algorithms, source vertices (i.e., those whose values need to be

propagated) are processed one by one, and each vertex propagates

(pushes) its update to all its outgoing neighbors. Thus, in push

algorithms, indirect accesses are scatter updates. By contrast, in pull

algorithms, destination vertices are processed one by one, and each

vertex reads (pulls) updates from its incoming neighbors. Thus, in

pull algorithms, indirect accesses are gather reads.

While some algorithms admit both pull and push implementa-

tions, in many cases the algorithm requires or is asymptotically

more efficient with a push implementation. For example, many

algorithms such as PageRank Delta [36] process a small set of active

vertices each iteration, and only active vertices push updates to

neighbors; BFS is most efficient with a combination of push and

pull iterations [8]; and push (i.e., outer-product) sparse matrix mul-

tiplication has higher locality [46]. Therefore, it is important for

systems to support both styles of execution efficiently.

Unfortunately, in current systems, push algorithms suffer two

major drawbacks over pull ones: higher synchronization costs and

worse memory traffic. These drawbacks both happen because the in-

direct accesses in push algorithms are updates, whereas the indirect

accesses in pull algorithms are reads. In parallel pull algorithms,

different threads update disjoint vertices, and thus updating each

vertex requires no synchronization. By contrast, push algorithms

must support concurrent updates to the same vertex from multiple

threads. Typical implementations use atomic read-modify-writes

and incur significant serialization and cache line ping-ponging.

Additionally, because many scatter updates have no locality, each

such update requires fetching and writing back an entire line from

main memoryÐtwice the traffic required for reads. Given these

drawbacks, the conventional wisdom is that pull algorithms are

inherently more efficient, and hence, when an algorithm admits

push and pull implementations, pull should be used [11, 18, 19, 66].

MICRO-52, October 12ś16, 2019, Columbus, OH, USA Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez

In this paper, we disprove this conventional wisdom. We intro-

duce novel architectural support in the memory hierarchy to make

scatter updates efficient both in terms of synchronization and mem-

ory bandwidth. Surprisingly, we show that push algorithms can be

made more bandwidth-efficient than pull ones because updates can

be reordered in ways that reads cannot, uncovering more oppor-

tunities to exploit locality. This flexibility gives push algorithms a

fundamental advantage over pull ones, and enables small on-chip

hierarchies to incur close to minimal memory traffic.

We leverage the insight that many algorithms perform com-

mutative scatter updates, such as addition or logical operations.

Commutative updates produce the same result regardless of the

order they are applied in, which enables the system to reorder and

coalesce them to improve performance.

Prior work has used commutativity to partially address either

the synchronization or the bandwidth costs of scatter updates, but

has not tackled both, and these techniques also introduce draw-

backs. First, Remote Memory Operations (RMOs) [28, 49], Coup [62],

and CCache [6] add hardware support to reduce synchronization

overheads: RMOs push updates to shared caches, where they are

performed atomically, whereas Coup and CCache enable private

caches to buffer commutative updates. However, these techniques

still incur the main memory traffic blowup of scatter updates, and

also suffer from more on-chip traffic than required.

Second, update batching techniques like MILK [29] and Prop-

agation Blocking [10] first batch updates to cache-fitting graph

slices, then apply each batch. These techniques transform indirect

accesses into efficient streaming accesses, achieving great spatial

locality, but they sacrifice all temporal locality, causing much more

memory traffic than needed. This prior work also performs this

batching in software, which adds significant overheads.

To address these problems we propose PHI, a push cache hierar-

chy that makes commutative scatter updates efficient. PHI achieves

this through three key contributions:

(1) PHI extends caches to buffer and coalesce updates, acting as

large coalescing write buffers. Cores push updates towards main

memory through the cache hierarchy in a unidirectional fashion.

By coalescing updates, PHI exploits temporal locality.

(2) PHI selectively employs update batching when evicting par-

tial updates from the last-level cache: it streams updates to

in-memory batches when there is little spatial locality, and ap-

plies updates in-place when there is significant spatial locality.

By batching updates, PHI exploits spatial locality. Coalescing

and selective batching work together to exploit both temporal

and spatial locality, achieving the benefits of prior techniques

like update batching while avoiding their drawbacks.

(3) PHI performs hierarchical buffering and coalescing: private and

shared caches both buffer and coalesce updates. This approach

avoids synchronization, reduces on-chip traffic, and balances

the load among shared cache banks.

Fig. 1 illustrates the benefits of PHI for the PageRank algorithm

on the uk-2005web graph [15]. We compare PHI with conventional

Push and Pull implementations, and with a push implementation

that uses update batching (UB). Pull not only has lower memory

traffic than Push, but avoids frequent synchronization among cores.

Thus, it improves performance over Push by 3.3×. Although UB

has lower memory traffic than Pull, it is only slightly faster, as the

Push Pull UB PHI
0.0

0.2

0.4

0.6

0.8

1.0

M
e
m

o
ry

 t
ra

ff
ic

3.5x

Push Pull UB PHI
0

1

2

3

4

5

6

7

S
p

e
e

d
u

p
 o

v
e

r
P

u
s
h

Figure 1: Memory traffic and performance of PageRank on

uk-2005. The dotted line indicates compulsory traffic.

memory traffic reduction comes at the cost of extra instructions.

PHI further reducesmemory traffic over UB by coalescing updates in

the cache hierarchy while also avoiding UB’s instruction overheads.

Thus, PHI improves performance over Push by 6.5×. PHI’s memory

traffic is only 3.1× higher than the compulsory traffic, i.e., the traffic

incurred with unbounded caches (the dotted line in Fig. 1).

We evaluate PHI using detailed microarchitectural simulation.

We focus our evaluation on graph algorithms, which are particularly

memory-intensive due to the large footprint of real-world graphs,

but PHI’s benefits apply to other sparse applications that use scatter

updates like sparse linear algebra and in-memory databases [7]. On

a 16-core system, PHI reduces main memory traffic by up to 5×

and by 2× on average over Push. On average, PHI incurs less than

2× the traffic of an ideal memory hierarchy. Consequently, PHI

improves performance by up to 11× and by 4.7× on average. While

we evaluate PHI on a general-purpose multicore, its techniques are

easily applicable to an FPGA or ASIC accelerator.

2 BACKGROUND AND MOTIVATION

2.1 Push versus pull execution

Sparse algorithms are those that operate on sparse data structures,

i.e., structures that efficiently encode collections of mostly zero val-

ues by representing only the nonzero values and their coordinates.

Sparse algorithms perform pull- or push-based indirect accesses on

sparse data structures.

For concreteness, we focus on graph analytics, where the sparse

structure is the adjacency matrix that encodes the edges among

vertices. Graphs are large and highly sparse, and graph algorithms

require little processing per edge, making these algorithms more

memory-intensive than other sparse ones (e.g., sparse tensor oper-

ations [30]). However, the techniques we develop apply to a wide

range of sparse algorithms beyond graphs, as we will see in Sec. 4.

In push-based execution, the graph encodes the outgoing edges

of each vertex, and each processed vertex (source) pushes updates

to its out-neighbors (destinations). In pull-based execution, the

graph format encodes the incoming edges to each vertex, and each

processed vertex (destination) pulls updates from its in-neighbors

(sources).

While many sparse algorithms admit push and pull implementa-

tions, there are often algorithmic reasons that force either approach.

For example, non-all-active graph algorithms [50] maintain a small

set of active vertices, and only these vertices update neighbors on

each iteration. Push versions of non-all-active algorithms are more

work-efficient because they only traverse the outgoing edges of

active vertices, whereas pull versions traverse the incoming edges

of all vertices. Direction-optimizing implementations of BFS [8] and

other algorithms [50] switch between push and pull modes across

PHI: Architectural Support for Synchronization- and Bandwidth-Efficient Commutative Scatter Updates MICRO-52, October 12ś16, 2019, Columbus, OH, USA

iterations to reduce work. And in other sparse algorithms, such as

degree counting, the push version is asymptotically more efficient

(Sec. 4). It is thus important for systems to support both types of

execution efficiently.

Unfortunately, in current systems, push implementations are

hampered by two main drawbacks: synchronization costs and mem-

ory traffic overheads.

First, in a push implementation, multiple source vertices scatter

updates to the same destination vertex concurrently. For example,

in Fig. 2, vertices 0 and 1 both update vertex 2. Thus, typical push

implementations use locks or atomic read-modify-writes, causing

heavy synchronization and cache-line ping-ponging. This does not

happen in pull implementations. For example, in Fig. 2, a single

thread would process vertex 2 by gathering the updates from ver-

tices 0 and 1.

1

0

2

4

3

Figure 2: Example

graph.

Second, when graphs are large and do

not fit in caches, many scatter updates

have no reuse and cause two memory ac-

cesses per update: the line is first fetched

from memory, modified, and later writ-

ten back. For example, suppose that the

graph in Fig. 2 was large and vertices 0

and 1 were processed far away in time,

so that the cache could not retain vertex

2’s cache line between the processing of vertices 0 and 1. In this

case, vertex 2 would be fetched from memory when updated by

vertex 0, written back, then fetched again by vertex 1, and finally

written back. By contrast, pull implementations suffer from poor

reuse on reads, but writes are sequential and thus have great local-

ity. In our example, updating vertex 2 would require reading the

lines for vertices 0 and 1, incurring nearly half the memory traffic.

Given these drawbacks, graph frameworks often prefer pull im-

plementations over push ones [11, 18, 19, 66]. But this choice stems

from architectural limitations, not algorithmic ones: push imple-

mentations are slower due to their mismatch with the pull nature

of existing memory hierarchies. PHI makes push mode efficient by

matching the algorithmic direction of information flow with that

of the memory hierarchy. PHI builds on insights from prior work,

which we review next. Table 1 gives a qualitative comparison with

prior proposals.

Scheme Synchronization Memory traffic

Push Very high Very high
Pull Low High

RMO Medium Very high
Coup Low Very high

Update batching Low Medium

PHI Low Low

Table 1: Comparison of PHI with prior techniques.

2.2 Hardware support for updates

Prior work has observed that updates to shared data are ineffi-

cient in conventional cache hierarchies, and has proposed several

techniques to make them efficient.

Remote memory operations (RMOs) send and perform update

operations at a fixed location. RMOs were first proposed in the

NYU Ultracomputer [17]. The Cray T3D [28], T3E [49], and SGI

Origin [32] implemented RMOs at the memory controllers, while

recent GPUs [56] and the TilePro64 [23] implement RMOs in shared

caches. While RMOs avoid ping-ponging cache lines, they send

every update to a shared, fixed location. This causes global traffic

and hotspots. By contrast, PHI coalesces updates in a hierarchical

fashion to avoid hotspots. This is especially important for graph

analytics, where high-degree vertices cause significant imbalance.

Coup [62], CommTM [61], and CCache [6] perform commutative

updates in a distributed fashion. Coupmodifies the coherence proto-

col to allow multiple private caches to hold update-only permission

to the same cache line. Private caches buffer and coalesce updates,

reducing update traffic. A read triggers a reduction of the private

copies in the shared cache, and the result is the sent to the request-

ing core. Coup supports a limited number of operations, whereas

CommTM and CCache add support for user-defined operations.

While these techniques avoid the synchronization overheads

of scatter updates, they do not improve their locality. Thus, when

the data being updated is too large to fit in the cache, these tech-

niques incur the same high memory traffic as conventional push

algorithms, as discussed in Sec. 2.1.

Like the above techniques, PHI exploits commutativity to buffer

scatter updates in private caches. Unlike the above techniques, PHI

also leverages the fact that scatter updates are applied in bulk to

avoid onerous coherence protocol changes and to reduce on-chip

traffic further.

2.3 Update batching

Prior work has proposed update batching techniques to improve

the spatial locality of push algorithms.1 MILK’s DRAM-conscious

Clustering [29] and Propagation Blocking [10] improve locality

by translating indirect memory references into batches of efficient

sequential main memory accesses. While Propagation Blocking

was designed specifically for the PageRank algorithm, MILK is a

compiler that handles a broad set of commutative operations on

indirectly accessed data.

1 def PageRank(Graph G):
2 # Binning phase
3 for src in range(G.numVertices):
4 update = genUpdate(G.vertex_data[src])
5 for dst in G.outNeighbors[src]:
6 binId = dst / neighborsPerBin
7 bins[binId].append({dst, update})
8
9 # Accumulation phase
10 for bin in bins:
11 for dst, update in bin:
12 G.vertex_data[dst].newScore += update

Listing 1: Push PageRank using update batching.

Listing 1 shows pseudocode for a push version of PageRank2

using update batching (UB). UB splits execution into two phases,

binning and accumulation. In the binning phase, UB accesses the

graph edges sequentially to generate the updates to destination

1Though we adopt graph analytics terminology in this paper, we use the term update
batching instead of the more common Propagation Blocking to avoid confusion with
graph blocking/tiling, a different optimization [55, 60] (Sec. 5).
2There are more efficient PageRank variants that do not process all edges on each
iteration. We later evaluate PageRank Delta, which performs this optimization.

MICRO-52, October 12ś16, 2019, Columbus, OH, USA Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez

vertices and writes them to bins. Each bin holds updates for a cache-

fitting fraction of vertices. In the accumulation phase, the updates

are read bin-by-bin and applied to destination vertices.

UB reduces traffic because it enjoys perfect spatial locality. The

binned updates are very large, so they are spilled to main memory,

but because each bin is written sequentially, scatter updates are

transformed into efficient streaming writes. These updates are then

fetched and applied, but because each bin contains updates for a

cache-fitting fraction of vertices, they enjoy great locality.

Fig. 3 illustrates UB with a small example, where a graph with

16 vertices (8 cache lines) is processed in a 4-line cache. Destina-

tion vertices are divided into two 4-line bins. Each source vertex

generates an update and scatters it to each of its neighbors. In this

example, all updates to vertices 0-7 are collected in the first bin

and those to vertices 8-15 are collected in the second bin. Each bin

holds (destination id, update) pairs in consecutive memory locations

(e.g., (0, A)... in bin 0). Once all the updates are collected in bins,

updates are applied bin by bin. When applying updates from bin 0,

only destination vertices 0-7 are fetched into the cache. Similarly,

when updates from bin 1 are being applied, destination vertices

0-7 are evicted while vertices 8-15 are fetched into the cache. Thus,

each slice of destination vertices is fetched into the cache only once,

incurring the minimal memory traffic.

Source

Vertices

Destination

Vertices
0

8

16

Destination

Ids

Bin	0

0A 11

A0

A 9

5

9B 0 7 B

B D8

5 A 0

Bin	1

.

.

Cache	

fitting	

slice

11

.

.

.

.

Cache	line

C

D

4 6

8 12 3

…….

…….

D3

D12

1.	Binning	Phase 2.	Accumulation	Phase

Figure 3: Example of update batching on a graph with 16

vertices and a 4-line cache that can hold 8 vertices (2 vertices

per cache line).

Because UB does not exploit graph structure, its memory traffic

is easy to analyze. Assume that caches are much smaller than the

processed graph, so that there is negligible opportunity for reuse

across iterations. In this case, there is some compulsory traffic that

every scheme must incur: the source vertices and adjacency ma-

trix must be read from memory at least once, and the destination

vertices must be written to once. A conventional push implemen-

tation achieves this minimum, compulsory traffic on reads, but is

hampered by the large overheads of scatter updates to destination

vertices. By contrast, UB also achieves the minimum amount of

traffic on scatter updates (one read and one writeback per line), but

at the cost of streaming all updates to memory. Consider a graph

with V vertices, E edges, and U bytes per update. Each logged up-

date requires I = loд2 (V)/8 bytes for the vertex id, so all the bins

consume a total of (I +U) · E bytes, and UB incurs an extra traffic

of 2 · (I +U) · E bytes over compulsory to write and read updates.

Fig. 4a shows this tradeoff by analyzing the memory traffic of

PageRank on the uk-2005 graph (same experiment as Fig. 1). Each

bar shows a breakdown of memory accesses to the different data

structures (CSR is the adjacency matrix). In the Push implementa-

tion, scatter updates contribute 92% of memory traffic. In UB, scatter

Push UB PHI
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
e

m
o

ry
 r

e
q

u
e

s
ts

p
e

r
e

d
g

e

(a) Original graph.

Push UB PHI
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
e

m
o

ry
 r

e
q

u
e

s
ts

p
e

r
e

d
g

e

(b) Preprocessed graph.

Updates

Destination
Vertex

Source
Vertex

CSR

Figure 4: Memory traffic breakdown by data structure for

PageRank on (a) the uk-2005 graph, and (b) a preprocessed

version of the same graph.

updates take 29× less trafficÐthe minimum amount. However, 78%

of the traffic is now spent on batched updates. This is 1.9× better

than Push overall, but still a far cry from the compulsory traffic.

UB’s key limitation is its disregard for temporal locality. If a vertex

has thousands of incoming neighbors, spilling all its updates tomain

memory is wastefulÐit is far more efficient to coalesce the updates

to that vertex in the on-chip caches. PHI does just that by applying

UB selectively upon eviction, dramatically reducing batched update

traffic. Fig. 4a shows that PHI’s update traffic is 2.3× smaller in this

case, and overall, memory traffic is 1.8× lower than UB.

2.4 Preprocessing algorithms

Prior work has proposed several preprocessing algorithms to reorder

sparse data structures to improve locality [20, 54, 59, 64, 65, 67].

For example, graph preprocessing techniques reorder vertices in

memory so that closely related vertices are stored nearby. In sparse

linear algebra, these are known as fill-reducing permutations.

Preprocessing algorithms improve locality, but they are expen-

sive, often taking many times longer than the algorithm itself. This

makes preprocessing algorithms impractical for many use cases,

e.g., on single-use graphs or simple algorithms [35, 39]. But if a

graph is reused many times, preprocessing can be beneficial, so

prior work has proposed to use preprocessing selectively [5].

Because PHI leverages temporal and spatial locality, it is comple-

mentary to preprocessing algorithms. Fig. 4b shows this tradeoff,

reporting memory traffic for the same experiment from Fig. 4a, but

where the graph is preprocessed by sorting vertices by incoming

degree [64]. Because UB does not exploit temporal locality, it incurs

the same memory traffic as with the non-preprocessed graph, and

is now worse than Push. By contrast, PHI achieves 2× lower traffic

on this graph, just 36% higher than compulsory traffic.

3 PHI DESIGN

PHI consists of three key techniques:

(1) In-cache update buffering and coalescing extends caches

to act as coalescing write buffers for partial updates. If the cache

receives an update for a non-cached line, it does not fetch the

line. Instead, it buffers the partial update. Moreover, caches

coalesce (i.e., merge) multiple updates to the same cache line.

This technique exploits temporal locality and enables PHI’s other

optimizations.

(2) Selective update batching extends the last-level cache’s evic-

tion process to apply buffered updates adaptively. When a line

with partial updates is evicted, the cache first counts the number

of elements in the line holding updates. If few elements hold

PHI: Architectural Support for Synchronization- and Bandwidth-Efficient Commutative Scatter Updates MICRO-52, October 12ś16, 2019, Columbus, OH, USA

INV 1 6 1 70xF0: 0 4 0 00xF0:Legend Invalid	line Valid	(conventional)	line Buffered-updates	line

Core

Cache

Memory

INV

Core

Cache

Memory

1 6 1 70xF0:

ld 0xF04 add	4 st 0xF04

TimeInitial	state Final	state

(a) In a conventional system, every missing update causes a fetch
from memory.

Core

Cache

Memory

INV

Core

Cache

Memory

0 4 0 00xF0:

update
0xF04,	+4

Core

Cache

Memory

0 6 3 00xF0:

update
0xF04,	+2

update
0xF08,	+3

TimeInitial	state Final	state

(b) In PHI, an update that misses allocates a buffered-updates line without fetching
the line from memory.

Figure 5: Update buffering and coalescing operation in the single-core system.

updates (i.e., there is poor spatial locality), the cache performs

update batching (Sec. 2.3), streaming them to memory sequen-

tially. But to avoid the overheads of update batching, if most

elements hold updates (i.e., there is high spatial locality), the

cache applies the updates in-place, fetching and writing back

the line. This technique achieves high spatial locality in all cases.

(3) Hierarchical buffering and coalescing applies to multi-level

hierarchies. In this scenario, private caches act as buffers for the

shared cache, locally buffering and coalescing updates without

any per-line synchronization or coherence protocol changes.

This technique eliminates synchronization overheads, enables

update parallelism, and produces a load-balanced execution.

We now introduce these techniques progressively using two sce-

narios. First, we consider a single-core system with a single cache,

and introduce the first two techniques, whose goal is to reduce

memory traffic (Sec. 3.1). Then, we extend PHI to a parallel system

with private and shared caches, introducing the third technique,

whose goal is to eliminate synchronization overheads (Sec. 3.2).

3.1 Making scatter updates bandwidth-efficient

Consider the system on the left of Fig. 5a, with a single core and

cache. We first explain PHI in this simplified system to focus on

the memory bandwidth problem. As we saw in Sec. 2, prior work

incurs different kinds of memory traffic overheads. On the one hand,

the conventional push implementation suffers from poor spatial

locality, and each update that misses incurs a fetch and a writeback

to memory, doubling traffic over that of a pull implementation. On

the other hand, update batching achieves perfect spatial locality,

but sacrifices temporal locality, producing large streams of updates

that are spilled to main memory, then read back.

PHI combines the benefits of both approaches while avoiding

their drawbacks. PHI can be seen as an adaptive version of update

batching that exploits the significant temporal and spatial locality

available in updates to drastically reduce the number of updates

batched and streamed to memory.

3.1.1 Execution phases. Like in update batching, in PHI, algorithm

execution is divided into two phases. In the first phase, the core

pushes updates to the memory hierarchy, which has the option of

applying them directly (in-place) or batching them for the second

phase. Batching streams updates in bins, with each bin correspond-

ing to a cache-fitting fraction of vertices. In the second phase, the

core applies the batched updates bin-by-bin to achieve good locality.

We first explain how PHI’s techniques work on the first phase, then

describe the second phase, and finally present PHI’s concrete API.

In-cache update buffering and coalescing: To reap the locality

of scatter updates, the first step is to let the cache buffer updates

without fetching the data being updated from memory, avoiding the

behavior shown in Fig. 5a. In other words, the cache should act as

a very large coalescing write buffer [26] for updates that miss in

the cache. Conventional write buffers alone cannot be used for this

purpose, as they have a small number of entries (8-16) and cannot

capture update reuse, which occurs over a longer timescale.

Tag

array

Data

array

Cache

controller

Reduction
unit

Line	address

Tag	entry
Coherence	

state BU

Buffered-updates	bit

PHI	additions

Figure 6: PHI hard-

ware additions.

Enabling this behavior requires two

simple changes, shown in Fig. 6. First,

each line is extended with a buffered

updates bit that denotes whether the

line holds buffered updates. Second, the

cache controller is extended with a re-

duction unit, a simple ALU that can per-

form the set of supported commutative

operations (e.g., integer and floating-

point additions, min/max, and bitwise

logical operations).

Fig. 5b shows how update buffering

and coalescing works. The core sends

updates to the cache. For each update,

the cache first performs a tag lookup

like in a conventional access. Then, if the access is a miss (e.g., the

first update in Fig. 5b), the cache inserts a new buffered-updates

line that contains the update at the right offset. If the access is a

hit (e.g., the second and third updates in Fig. 5b), the cache uses

the ALU to apply the update to the existing line, coalescing it. Note

that, on a hit, the existing line may or may not be a buffered-updates

lineÐoperation is identical in both cases.

Unlike in conventional write buffers, caches need not trackwhich

elements or words of a line hold updates. Instead, PHI leverages

that every commutative operation has an identity element (e.g., zero

for addition and XOR, all-ones for AND, etc.). Buffered-updates lines

are initialized with identity elements, as shown in Fig. 5b.

Selective update batching: Cache lines with buffered updates

cannot be evicted like normal lines (i.e., they cannot be simply writ-

ten back). On an eviction, PHI either applies the buffered updates

in-place or performs update batching. Fig. 7 illustrates this process.

When a buffered-updates line is evicted, the cache controller

counts the number of elements with updates (by comparing with

the identity element). If this number exceeds a particular threshold,

PHI performs the updates in-place: it fetches the line from memory,

applies the updates using the ALU, and writes it back, as shown

MICRO-52, October 12ś16, 2019, Columbus, OH, USA Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez

INV 0 4 0 00xF0:Legend Invalid	line Buffered-updates	line F00 4 A48 70x10: Line	with	batched	updates

Cache

Memory

Cache

Memory

TimeInitial	state Final	state

4 6 3 00xF0: INVevict	0xF0

(a) A buffered-updates line with high spatial locality is applied in-place.

Cache

Memory Memory

TimeInitial	state Final	state

0 0 7 00xA4:
evict

0xA40 3 0 00xF8:

F00 40x10:

Cache

0 3 0 00xF8:

F00 4 A48 70x10:

INV

Cache
F84 30x11:

INVevict

0xF8

evict

0x10 INV

(b) Two buffered-updates lines without spatial locality are batched.

Figure 7: Selective update batching operation in the single-core system.

in Fig. 7a. If the number of updates is below the threshold, PHI

performs update batching, as shown in Fig. 7b.

Selective batching reduces memory traffic because it avoids the

overheads of update batching for lines with good spatial locality. In

the extreme, consider the overheads of applying update batching

to a line where all the elements have updates. An in-place update

requires reading and writing one line to memory, but update batch-

ing requires tagging each element with its vertex id, so it requires

writing all the elements in the line and their ids to an in-memory

buffer, then reading the elements back. Therefore, in the best case

(i.e., discounting all the potential vertex data misses incurred when

applying the updates in the second phase, as these misses may be

heavily amortized), update batching will incur extra traffic over-

head of (I + U)/U , where I and U are the sizes of the vertex id

and the updated value, respectively (e.g., with 32-bit vertex ids and

64-bit elements, this overhead is 12/8=1.5×). Conversely, update

batching is beneficial when the fraction of elements in the line that

have updates is below U /(I +U). PHI uses this as the threshold to

perform update batching.

PHI extends the cache controller with simple logic to perform

update batching. All the data required for batching (bin pointers

and partially filled bin cache lines) is kept in the cache array, in

normal lines. Fig. 7b shows how this process works on a single bin.

Initially, the cache has two buffered-updates lines with one update

each, both of which map to the same bin, and another line, 0x10,

that holds batched updates for that bin. First, buffered-updates line

0xA4 is evicted, and its single update is logged into the bin. This

modifies the bin’s tail cache line, which is now full with updates.

Then, buffered-updates line 0xF8 is evicted, and its single update

is logged to the bin. This allocates a new line for the bin, 0x11,

which becomes partially filled. After some time, 0x10 is evicted

and written to memory. Note how this process incurs a cache line

write for every two updates, i.e., it has good spatial locality. (In

this example lines are short, so only two updates fit per line; real

systems with longer lines achieve larger savings.)

An alternative to making update batching decisions on a per-line

basis would be to let the programmer turn off update batching when

deemed beneficial (e.g., for small inputs and/or sparser iterations).

However, this static approach would increase programmer burden

and lose some locality benefits, as even for large footprints some

updates can be applied in-place.

Applying batched updates: In the second phase, the updates

batched to memory in the first phase are applied bin-by-bin. PHI

again uses the cache’s reduction unit for the second phase by chang-

ing the cache eviction process slightly.

For each bin, the core fetches the updates from memory using

conventional loads and pushes them to the memory hierarchy.

Similar to the first phase, the cache buffers and coalesces these

updates. Unlike in the first phase, the cache controller does not

perform further update batching on evictions: it always applies the

buffered updates in-place, fetching the original line and writing it

back (i.e., as shown in Fig. 7a). Since each bin holds updates to a

cache-fitting fraction of vertices, in the common case, there is only

one eviction per buffered-updates line in the second phase.

After the second phase finishes, all batched updates have been

applied. However, the cache may still have some buffered-updates

lines. To ensure correct behavior, if a line with buffered updates

receives a read request, the cache automatically applies the buffered

updates in-place: it fetches the line from main memory and merges

the buffered-updates line to produce the final values. This process

is almost the same as the one shown in Fig. 7a for evictions, except

that the line is not written back to memory at the end, but stays in

the cache.

PHI exploits temporal and spatial locality: In summary, PHI’s

combination of coalescing and selective update batching avoids

the pitfalls of conventional update batching (UB). As we saw in

Sec. 2, UB (i) does not exploit temporal locality; and (ii) by stream-

ing updates to memory, it incurs far more traffic than needed on

small graphs, preprocessed graphs, or on algorithms that process a

small, cache-fitting region of the graph per iteration. By contrast,

(i) PHI coalesces updates on-chip to exploit temporal locality, and

exploits spatial locality through update batching when profitable;

and (ii) PHI does not incur traffic for the lines of the graph that the

cache can retain, so smaller or structured graphs enjoy intra- and

inter-iteration reuse, unlike in UB.

3.1.2 Programming interface. Listing 2 illustrates PHI’s API by

showing the single-thread implementation of the PageRank algo-

rithm. This code is similar to that of the UB implementation in

Listing 1, with two phases. We now describe the interface only;

Sec. 3.3 explains our specific implementation of PHI’s primitives.

We show this code for illustration purposes, but do not expect ap-

plication programmers to change their code, as graph processing

frameworks (Sec. 4.1) and sparse compilers [29, 30] can be easily

changed to leverage PHI.

The algorithm begins by configuring PHI through the phi_-

configure() call. This specifies two pieces of information:

(1) The type of commutative operation (e.g., 32-bit addition).

(2) The number of bins and their starting addresses.

PHI: Architectural Support for Synchronization- and Bandwidth-Efficient Commutative Scatter Updates MICRO-52, October 12ś16, 2019, Columbus, OH, USA

Core	0

Private	Cache	0

Shared	Cache

Core	1

Private	Cache	1

update
0xF04,	+4

Time

Core	0

Shared	Cache

Core	1

Private	Cache	1

Private	Cache	0

0 4 0 00xF0:

0 0 3 00xF0:

update
0xF08,	+3

Core	0

Core	1

Private	Cache	1

Private	Cache	0

0 4 0 00xF0:

0 0 3 00xF0:

Core	0

Core	1

Private	Cache	1

Private	Cache	0

0 4 3 00xF0:

1 0 0 00xA0: 1 0 0 00xA0:

0 0 0 20xB5:

update
0xA00,	+1

update
0xB5C,	+2

Figure 8: Hierarchical buffering and coalescing in a multicore system.

1 def PageRank(Graph G):
2 phi_configure(...)
3 phi_enable_batching()
4 for src in range(G.numVertices):
5 update = genUpdate(G.vertex_data[src])
6 for dst in G.outNeighbors[src]:
7 phi_push_update(G.vertex_data[dst], update)
8
9 phi_disable_batching()
10 for bin in bins:
11 for dst, update in bin:
12 phi_push_update(G.vertex_data[dst], update)

Listing 2: Serial PageRank implementation using PHI.

The algorithm then starts the first phase (lines 3ś7). It first calls

phi_enable_batching(), which enables selective update batch-

ing on cache evictions. Then, the algorithm traverses the graph

edges and pushes updates using phi_push_update().

Finally, the algorithm performs the second phase (lines 9ś12).

It calls phi_disable_batching() to disable update batching on

cache evictions. Then, the algorithm fetches the updates that were

batched to memory in the first phase, bin-by-bin, and applies them

using phi_push_update().

3.2 Making parallel scatter updates
synchronization-efficient

……

Core

Private

Cache

Memory

Shared	Cache

Core

Private

Cache

Figure 9: Example

multicore system.

We now extend PHI to parallel sys-

tems. Consider the system in Fig. 9,

where each core has a private cache

and all cores share a banked last-level

cache. PHI’s third technique, hierar-

chical buffering and coalescing, ad-

dresses the synchronization and scala-

bility challenges of scatter updates in

this system.

3.2.1 Mechanisms and execution. PHI leverages private and shared

caches to buffer and coalesce updates at multiple levels of the cache

hierarchy, without synchronization among cache levels and without

changing the coherence protocol. Fig. 8 shows hierarchical buffering

and coalescing in action, in a system with two cores, each with its

own private cache. Each core pushes updates to its private cache.

If the private cache does not have write permission to the line, it

allocates a buffered-updates line to hold the update. For example, in

Fig. 8, both private caches allocate a buffered-updates line for 0xF0,

without any communication with the shared cache. The private

caches can then locally coalesce other updates to the same line, just

like before. When a private cache needs to evict a buffered-updates

line, it simply sends its contents as an update message to the shared

cache bank. The shared cache allocates a buffered-updates line if

needed (as shown in Fig. 8, middle), or coalesces the updates with

existing ones (as shown in Fig. 8, right).

PHI’s parallel operation is nearly identical as before: the algo-

rithm goes through two phases, and selective update batching is

enabled only on the first phase. Only shared cache banks perform se-

lective update batching; on evictions, private caches simply update

the shared cache.

(In-)coherence and flushing: For simplicity, PHI leverages that

scatter updates happen in bulk to avoid changing the coherence

protocol. Buffered-updates lines are not tracked by the coherence

protocol, so private caches may have updates for lines that do not

exist in the shared cache or directory. This approach simplifies the

design, as the coherence protocol does not require any changes,

and avoids coherence traffic, as private caches need not request any

coherence permissions for buffered-updates lines. Note that private

caches are still kept coherent for data beyond buffered updates.

The drawback of this design decision is that, when the algorithm

finishes, updates buffered in private caches must be flushed to ensure

correct behavior. Specifically, at the end of the second phase, all

private caches traverse their tag arrays and flush every buffered-

updates line to its corresponding shared cache bank. This process

can be done in parallel and is fast because private caches are small.

Though adding an explicit flush step to ensure correctness may

seem limiting, note that these algorithms perform updates in bulk,

without any intervening reads. In fact, updated data should not be

read before updates are fully applied even without private caches,

since a line may have batched updates somewhere else in memory.

Consistency: PHI requires some changes to the consistency model.

Commutative updates by different threads are not ordered by syn-

chronization and hence constitute a data race. These data races are

harmful under the data-race-free (DRF) consistency model adopted

in modern languages such as Java and C++.

Fortunately, prior work has already shown how to address this

issue: Sinclair et al. [51] propose the DRFrlx (DRF-relaxed) model,

which extends DRF to provide SC-centric semantics for the common

use cases of relaxed atomics. Specifically, PHI can use the semantics

of commutative relaxed atomic operations in the DRFrlx model. In

DRFrlx, commutative update operations need to be explicitly anno-

tated to use relaxed atomic semantics, and a fence is needed before

any read to updated data. PHI achieves both of these conditions

by (i) performing these updates through a different instruction

(phi_update), and (ii) requiring software to perform an explicit

flush step (called phi_sync, Sec. 3.2.2) after updates are applied

MICRO-52, October 12ś16, 2019, Columbus, OH, USA Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez

and before any reads. Thus, to ensure that data races do not occur,

it is sufficient for the explicit flush step to have full fence semantics

(so that no accesses following the flush can be reordered before all

updates are visible).

Much like weak consistency models offer no guarantees for data

read or written without adequate fences, PHI offers no guarantees

if programs do not follow the above requirements, e.g., if a read

to updated data is performed before phi_sync, or if the program

mixes conventional atomics with phi_updates. Thus, PHI requires

some discipline from programmers.

Beyond these changes to incorporate relaxed-atomic semantics,

PHI does not affect the consistency model for other loads and stores

that do not touch updated data.

Comparison with prior work: PHI’s hierarchical buffering and

coalescing shares some of the same objectives as Coup, CommTM,

and CCache, which perform commutative updates in multiple pri-

vate caches and reduce synchronization (Sec. 2.2). However, PHI’s

implementation is simpler than these techniques. These prior tech-

niques modify the coherence protocol, adding complexity, and need

private caches to request and acquire update-only permissions to

the line before applying any updates locally, adding traffic, serial-

ization, and shared cache pollution when there is little reuse.

However, these prior techniques are more general than PHI,

as they transparently satisfy reads to data receiving commutative

updates: the coherence protocol is used to gather and merge all

partial updates in response to a read. PHI does not do this, requiring

an explicit flush step instead. We deem this is a good tradeoff, as

the bulk scatter updates that PHI targets do not need this behavior

as explained above.

While PHI moves complexity from the coherence protocol to

software, only the framework code needs to interact with PHI,

not the programmer. This is similar to how, with relaxed memory

models, software libraries are in charge of fences in practice, and

programmers mainly use higher-level primitives.

PHI avoids synchronization and achieves load balance:Over-

all, hierarchical buffering and coalescing design gives three key

benefits. First, it increases the coalescing throughput of the system,

since multiple private caches can coalesce updates to the same line

in parallel. Moreover, this happens without any synchronization

between caches.

Second, most cache accesses happen at smaller, energy-efficient

lower cache levels due to hierarchical reuse patterns of real-world

inputs. Without hierarchical coalescing, each update would require

accessing a large cache.

Third, hierarchical coalescing balances traffic across shared cache

banks, because private caches are especially effective at coalescing

frequent updates to the same data. This is important for graph

analytics, where graphs often have very few vertices that account

for a large fraction of edges. Without hierarchical coalescing, these

high-degree vertices can create uneven traffic among banks, as we

will see in Sec. 4.4. With hierarchical coalescing, these frequent

updates are all coalesced in private caches, avoiding imbalance.

3.2.2 Programming interface. We add small extensions to PHI’s

serialAPI described in Sec. 3.1.2. First, we extend phi_configure()

to specify bin information for each shared cache bank, so shared

banks can batch updates without synchronization. Second, we add a

phi_sync() primitive to flush buffered-updates lines from private

caches at the end of the second phase.

The parallel PHI implementation is very similar to the serial one

from Listing 2. We exploit the trivial parallelism available in both

phases by changing the for loops in lines 4 and 11 into parallel

for loops; and phi_sync() is called at the end to ensure no updates

remain in private caches.

3.3 PHI implementation details

ISA: PHI adds only one instruction, push_update. push_update

is similar to a store; it has two source operands that specify the

address and value of the update. Configuration through phi_-

configure(), phi_enable_batching() etc., is infrequent and

happens using memory-mapped registers (e.g., the same way a DMA

engine is configured).

Virtual memory and index computation: Updated data occu-

pies a contiguous range of virtual memory, but caches are physically

addressed. This introduces some subtleties for update batching. For

simplicity, when batching updates, we would like to derive each

update’s index (e.g., vertex id) and bin from its cache line address.

Our implementation achieves this by allocating update data in a

contiguous physical memory region. (OSes already support allo-

cating contiguous physical memory, e.g., for DMA buffers [41].)

This way, computing an update’s index requires subtracting the re-

gion’s starting physical address from the update’s physical address.

This approach needs some care when paging out update data:

the OS must disable update batching before paging it out. A more

complex alternative would be to add reverse TLBs to LLC banks,

then compute indexes using virtual addresses.

Update batching: To perform update batching, the shared cache

tracks two types of information for each bin: a pointer to the next

address where updates will be written and a partially filled cache

line at that address. Both are stored in normal, cacheable memory.

Because selective update batching is done at the last-level cache,

it uses physical addresses to avoid having an in-cache TLB. Each

bin is initially given a contiguous chunk of physical memory (e.g.,

256KB per bin). Bins need not be contiguous: when the cache ex-

hausts a bin, it raises an interrupt to request another chunk (and

disables batching in the interim). Coalescing makes these interrupts

extremely rare.

When the last-level cache has multiple banks, each bank per-

forms batching autonomously. To avoid communication among

cache banks, we ensure that both the pointers and the bin cache

lines accessed by any given bank are mapped to the bank itself.

Since most systems interleave cache lines across banks, this simply

results in a striped layout. Specifically, in a system with B banks,

the bin pointers array is B times larger, and each bank uses one out

of B cache lines for pointers. Then, each bank fills only the 1/B lines

of the bin that map to itself. Each time the current line for the bin is

exhausted, the bank bumps the pointer by B cache lines. This strip-

ing results in completely local operation, and thanks to coalescing,

banks fill bins at about the same rate, achieving near-perfect space

utilization.

Overhead analysis: PHI hardware adds small costs. The main

overhead is the per-line buffered updates bit. With 64-byte lines,

PHI: Architectural Support for Synchronization- and Bandwidth-Efficient Commutative Scatter Updates MICRO-52, October 12ś16, 2019, Columbus, OH, USA

Cores 16 cores, x86-64 ISA, 2.2 GHz, Haswell-like OOO [47]

L1 caches 32 KB per core, 8-way set-associative, split D/I, 3-cycle latency

L2 cache 256 KB, core-private, 8-way set-associative, 6-cycle latency

L3 cache
32MB, shared, 16 banks, 16-way hashed set-associative,

inclusive, 24-cycle bank latency, DRRIP replacement

Global NoC
4×4 mesh, 128-bit flits and links, X-Y routing, 1-cycle

pipelined routers, 1-cycle links

Coherence MESI, 64 B lines, in-cache directory, no silent drops

Memory 4 controllers, FR-FCFS, DDR4 1600 (12.8 GB/s per controller)

Table 2: Configuration of the simulated system.

this costs 0.17% additional storage in caches (e.g., 64KB for the

32MB LLC we use).

The reduction unit is small because it uses simple operations.

We implement RTL for a reduction unit with 64-bit floating-point

and integer additions and logical operations. We synthesize it using

yosys [57] and the FreePDK45 [24] cell library, with a 1GHz target

frequency (higher ones are possible). Each reduction unit takes

0.09mm2 (i.e., about 0.008mm2 in 14 nm). In our 16-core system,

reduction units take about 0.06% of chip area.

4 EVALUATION

4.1 Methodology

We now present our evaluation methodology, including the simu-

lated system, applications and datasets we use.

Simulation infrastructure: We perform microarchitectural, ex-

ecution-driven simulation using zsim [47]. We simulate a 16-core

system with parameters given in Table 2. The system uses out-of-

order cores modeled after and validated against Intel Haswell cores.

Each core has private L1 and L2 caches, and all cores share a banked

32MB last-level cache. The system has 4 memory controllers, like

Haswell-EP systems [21]. We use McPAT [33] to derive the energy

of chip components at 22 nm, and Micron DDR3L datasheets [37] to

compute main memory energy.

Applications:We evaluate PHI on six sparse applications, listed

in Table 3. All applications use objects that are much smaller than

a cache line (64 B).

First, we use four graph algorithms from thewidely used Ligra [50]

framework. These include both all-active and non-all-active algo-

rithms. All-active algorithms are ones inwhich each vertex and edge

is processed in each iteration. PageRank computes the relative im-

portance of vertices in a graph, and was originally used to rank web-

pages [45]. PageRank Delta is a variant of PageRank in which ver-

tices are active in an iteration only if they have accumulated enough

change in their PageRank score [36]. Connected Components divides

a graph’s vertices into disjoint subsets (or components) such that

there is no path between vertices belonging to different subsets [13].

Update Reduction All-

Application Size Operator Active?

PageRank (PR) 8 B double add Yes

PageRank Delta (PRD) 8 B double add No

Conn. Components (CC) 4 B integer min No

Radii Estimation (RE) 8 B bitwise or No

Degree Counting (DC) 4 B integer add Yes

SpMV (SP) 8 B double add Yes

Table 3: Applications.

Radii Estimation

is a heuristic al-

gorithm to esti-

mate the radius

of each vertex by

performing mul-

tiple parallel BFS’s

from a small sam-

ple of vertices [34].

To avoid framework overheads, we tune the original Ligra code [50],

incorporating several optimizations in the scheduling code like

careful loop unrolling that yield significant speedups: our imple-

mentations outperform Ligra by up to 2.5×. We then change the

framework’s code to use PHI. Note that these optimizations affect

only the baseline Push and Pull implementations and are agnostic

to PHI.

Our approach lets us start with an optimized software baseline,

which is important since it affects qualitative tradeoffs. In particu-

lar, well-optimized implementations are more memory-bound and

saturate bandwidth more quickly.

Degree Counting computes the incoming degree for each vertex

from an unordered list of graph edges and is often used in graph

construction [9]. Whereas the other algorithms admit Pull and Push

implementations, Degree Counting requires push-style execution.

Finally, Sparse Matrix-Vector Multiplication (SpMV) is an impor-

tant sparse linear algebra primitive. The sparse matrix is stored

in compressed sparse row (CSR) format. In the Pull version, the

matrix is scanned row by row and values are gathered from the

corresponding elements in the input vector. In the Push version,

the matrix is scanned column by column and each column scatters

partial sums to the result vector.

For update batching, we use the optimized implementation ob-

tained from the authors of Propagation Blocking [10]. We modify

the simulator to model non-temporal stores, which are crucial to

reduce memory traffic of update batching.

Graph Vertices Edges Source

(M) (M)

arb 22 640 arabic-2005 [15]

ukl 39 936 uk-2005 [15]

twi 41 1468 Twitter followers [31]

sk 51 1949 sk-2005 [15]

web 118 1020 webbase-2001 [15]

nlp 27 760 nlpkkt240 [15]

Table 4: Real-world datasets.

Datasets: We evaluate

the four graph algorithms

and Degree Counting on

five large web and so-

cial graphs shown in Ta-

ble 4. For SpMV, we use

a sparse matrix represen-

tative of structured opti-

mization problems.

With the object sizes

listed in Table 3, the ver-

tex data footprint is much larger than the last-level cache. We

represent graphs in memory in CSR format.

Graph algorithms are generally executed for several iterations

until a convergence condition is reached. To avoid long simulation

times, we use iteration sampling: we perform detailed simulation

only for every 5th iteration and fast-forward through the other

iterations (after skipping initialization). This yields accurate re-

sults since the execution characteristics of all algorithms change

slowly over consecutive iterations. Even with iteration sampling,

we simulate over 100 billion instructions for the largest graph.

4.2 PHI improves runtime, traffic, and energy

Performance: Fig. 10 summarizes the performance of different

schemes. Each bar shows the speedup over the Push implemen-

tation (higher is better). Each group of bars reports results for a

single application; the right-most group shows the gmean across

applications. Most applications use multiple inputs, so each bar

shows the gmean speedup across inputs (we will analyze per-input

results later).

MICRO-52, October 12ś16, 2019, Columbus, OH, USA Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez

Push Pull UB Push-RMO PHI

PR PRD CC RE DC SP Mean
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

S
p

e
e

d
u

p
 o

v
e

r
P

u
s
h 57 5 8 7 4.7

Figure 10: PHI achieves substantial speedups.

We compare PHI with conventional Push and Pull implementa-

tions, update batching (UB), and Push-RMO, a variant of Push that

uses hardware support to perform remote memory operations at

LLC banks. DC does not have a Pull version.

PHI improves performance significantly and is the fastest scheme

across all applications. PHI improves performance over Push by

4.7× on average and by up to 8.3× (DC). Moreover, no other scheme

uniformly dominates the others across applications, and most have

poor performance on some cases.

PHI substantially outperforms Push-RMO, the second-best scheme,

thanks to its lower memory traffic. While Push-RMO has the same

memory traffic as Push, it avoids synchronization overheads and

achieves a 2.6× gmean speedup. On average, Pull and UB improve

performance by 67% and 23%, respectively. Although we do not

compare with Coup [62], we expect it would achieve the same per-

formance as Push-RMO because Push-RMO is limited by memory

bandwidth, not on-chip traffic or synchronization.

PHI’s speedups are larger for all-active applications like PR and

DC, since they are much more memory-bound. PRD is non-all-active

but has many iterations where most of the graph is active. Thus, it

has similarly high speedups.

Non-all-active applications CC and RE process a small fraction of

the graph on each iteration, so Push achieves a moderately high

cache hit ratio. For these applications, Pull and UB perform extra

work, which causes poor performance even though they have no

synchronization overheads.

For SP, the input has a regular structure with good locality and

Push already achieves relatively low memory traffic. Pull, Push-

RMO, and PHI improve performance by avoiding synchronization.

By contrast, UB performs extra work and hurts performance slightly.

Memory traffic: Fig. 11 shows the average memory traffic across

inputs for all applications (lower is better). Push-RMO’s traffic is

identical to Push, so it is not shown.

PHI substantially reduces memory traffic for all applications

except SP, by up to 4× for DC and 2× on average. PHI achieves

the lowest memory traffic among all schemes by exploiting both

temporal and spatial locality.

For all-active algorithms like PR and DC, Push and Pull achieve

similar memory traffic while UB reduces memory traffic consider-

ably, by up to 2× for DC.

For CC and RE, Pull and UB both increase memory traffic. First,

Pull processes each incoming edge of all vertices rather than the

outgoing edges of only the active vertices as in Push. Thus, Pull

accesses more edge data which increases memory traffic. Second,

Push Pull UB PHI

PR PRD CC RE DC SP Mean
0.0

0.5

1.0

1.5

2.0

M
e
m

o
ry

 t
ra

ff
ic

n
o
rm

a
liz

e
d
 t
o
 P

u
s
h 5.5

Figure 11: PHI reduces memory traffic significantly.

S L U Φ

PR

S L U Φ

PRD

S L U Φ

CC

S L U Φ

RE

S L U Φ

DC

S L U Φ

SP

0.0

0.5

1.0

1.5

2.0

2.5

N
o
rm

a
liz

e
d

e
n
e
rg

y

Static Core Cache Memory

Figure 12: Energy breakdown normalized to Push. S:Push,

L:Pull, U:UB, Φ:PHI.

baseline Push already has good hit ratio and the extra update traffic

of UB is not a good tradeoff.

Finally, SP’s input is a structured matrix, so Push, Pull, and PHI

achieve good locality and similar traffic. But UB’s traffic is 5.5×

worse, because UB does not take advantage of structure and streams

many updates to memory.

Energy: Fig. 12 shows the energy breakdown for various schemes.

For the software-only schemes (Push, Pull, UB), most of the energy

comes from core and main memory, and the fraction of energy from

cores depends on how compute-bound the application is.

PHI reduces core energy over Push because it offloads both

update processing and update batching to specialized hardware,

reducing instruction count on general-purpose cores significantly.

PHI reduces core energy by up to 3.1× (on SP). In contrast, UB in-

creases core energy over Push as it adds instructions to log updates

to memory. PHI’s reduction in memory traffic causes proportional

reductions in memory energy. Overall, PHI reduces energy by up

to 3× (on SP).

4.3 PHI performs best across inputs

Beyond its raw performance benefits, PHI stands out for its consis-

tency: whereas other techniques have weak spots, PHI uniformly

performs best. We have seen this across applications; we now show

PHI’s consistency extends to inputs.

Memory traffic breakdown: Fig. 13 shows the main memory

traffic breakdown of PageRank for each graph input. All schemes

are normalized to Push. Both Push and Pull cause random, irregular

accesses to neighbor vertices, which contribute a large fraction

of the overall main memory traffic. For graphs with symmetric

structure (twi, web), Push has higher overall traffic than Pull due

to extra writeback traffic. For some non-symmetric graphs like sk,

the graph’s structure causes better locality for Push.

PHI: Architectural Support for Synchronization- and Bandwidth-Efficient Commutative Scatter Updates MICRO-52, October 12ś16, 2019, Columbus, OH, USA

Push Pull UB Push-RMO PHI

arb ukl twi sk web
0.0

0.5

1.0

1.5

2.0

M
e

m
o

ry
 t

ra
ff

ic
n

o
rm

a
liz

e
d

 t
o

 P
u

s
h

arb ukl twi sk web
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

arb ukl twi sk web
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

arb ukl twi sk web
0.0

0.5

1.0

1.5

2.0

2.5

3.0

arb ukl twi sk web
0.0

0.2

0.4

0.6

0.8

1.0

arb ukl twi sk web
0

2

4

6

8

10

12

S
p

e
e

d
u

p
 o

v
e

r
P

u
s
h

(a) PR

arb ukl twi sk web
0
1
2
3
4
5
6
7
8

(b) PRD

arb ukl twi sk web
0.0

0.5

1.0

1.5

2.0

2.5

(c) CC

arb ukl twi sk web
0.0

0.5

1.0

1.5

2.0

2.5

(d) RE

arb ukl twi sk web
0

2

4

6

8

10

12

(e) DC

Figure 14: Per-input memory traffic (top) and performance (bottom) of the five graph applications, normalized to Push.

S L UΦ

arb
S L UΦ

ukl
S L UΦ

twi
S L UΦ

sk
S L UΦ

web
S L UΦ

avg

0.0

0.5

1.0

1.5

M
e
m

o
ry

tr
a
ffi

c
n
o
rm

a
liz

e
d

to
P

u
s
h

CSR
Source
Vertex

Destination
Vertex Updates

Figure 13: Breakdown of main memory traffic of PageRank

by data structure. S:Push, L:Pull, U:UB, Φ:PHI.

UB incurs almost a constant amount of memory traffic irrespec-

tive of the graph structure. A large fraction of UB’s memory traffic

is caused by logging updates to main memory. As explained in

Sec. 3.1, PHI exploits the locality caused by the graph’s structure by

coalescing updates in the cache hierarchy and reduces update traffic.

Fig. 13 shows that these benefits hold across all graphs: while the

best scheme among Push, Pull, or UB changes across graphs, PHI

consistently outperforms other schemes. Due to selective update

batching, PHI increases destination vertex traffic slightly in return

for lower update traffic. Moreover, PHI’s memory traffic is only 2×

the compulsory traffic.

Performance across inputs: Fig. 14 shows the per-input memory

traffic and performance for the four graph applications and DC.

These graphs shows that the per-input results we have seen extend

across applications: PHI achieves the highest performance and the

lowest traffic on all inputs and applications, whereas others work

poorly on some inputs. PHI improves performance by up to 11× (PR

and DC on sk) and reduces traffic by up to 5× (DC on ukl and twi).

Performance across graph sizes and connectivities: To further

analyze the effect of graph features on performance, we run PageR-

ank on a wide range of synthetic R-MAT [12] graphs. R-MAT graphs

mimic the properties of real-world social network graphs.

Fig. 15 shows the memory traffic and performance on R-MAT [12]

graphs of different sizes and a fixed average degree of 16. PHI

Push Pull UB PHI

1 2 4 8 16 32 64

Million vertices

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

M
e
m

o
ry

 r
e
q
u
e
s
ts

p
e
r

e
d
g
e

(a) Memory traffic

1 2 4 8 16 32 64

Million vertices

0
10
20
30
40
50
60
70
80

E
d
g
e
s
 p

e
r

k
ilo

c
y
c
le

(b) Performance

Figure 15: R-MAT graphs with different vertex counts and a

fixed average degree.

consistently incurs the lowest memory traffic across all sizes. In

small graphs, Pull and Push achieve good locality, whereas UB is

the worst due to its high update traffic. As the graph grows in size,

UB becomes desirable over Push and Pull, and Push has the highest

traffic, which increases at twice the rate as Pull’s.

For both Pull and PHI, performance correlates well with memory

traffic. For Push and UB, performance changes only slightly across

graphs since they are bottlenecked by synchronization and cores

respectively.

We also studied memory traffic by fixing the vertex count and

varying the average degree from 4 to 32. PHI works best across all

average degrees.

4.4 Sensitivity studies

Impact of preprocessing: Fig. 16 shows how graph preprocessing

changes memory traffic and performance. We show results with

non-preprocessed graphs (None), an inexpensive (DegreeSort [64])

and an expensive (GOrder [54]) preprocessing algorithm. Prepro-

cessing improves temporal locality and reduces memory traffic of

all schemes except UB. Moreover, PHI with preprocessing gets very

close to the compulsory traffic, indicated by the dotted line.

In terms of performance, Push is bottlenecked by synchroniza-

tion so preprocessing barely helps. Pull and PHI show consistent per-

formance improvements with preprocessing. Preprocessing hurts

MICRO-52, October 12ś16, 2019, Columbus, OH, USA Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez

Push Pull UB PHI

None DegreeSort GOrder
0.0

0.2

0.4

0.6

0.8

1.0

M
e

m
o

ry
 r

e
q

u
e

s
ts

p
e

r
e

d
g

e

(a) Memory traffic.

None DegreeSort GOrder
0

2

4

6

8

10

12

S
p

e
e

d
u

p
 o

v
e

r
P

u
s
h

(b) Performance.

Figure 16: Impact of preprocessing. The dotted line indicates

compulsory traffic.

8 16 32 64 128
0.0

0.5

1.0

1.5

2.0

M
e
m

o
ry

 r
e
q
u
e
s
ts

p
e
r

e
d
g
e

Push

Pull

UB

PHI

(a) Size (MB).

Push Pull UB PHI
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
e

m
o

ry
 r

e
q

u
e

s
ts

p
e

r
e

d
g

e

LRU DRRIP

(b) Replacement policy.

Figure 17: Sensitivity to LLC configuration.

UB’s performance since it causes load imbalance (few bins account

for a large fraction of edges).

Cache size: Fig. 17a shows the average memory traffic for each

scheme at various cache sizes. PHI consistently outperforms other

schemes at all cache sizes. With just a 8MB cache, PHI achieves

the same traffic as Push with a 128MB cache. Moreover, whereas

UB barely exploits caches beyond 16MB, PHI continues to reduce

misses throughout the range.

Cache replacement policy: Fig. 17b compares memory traffic

with the LRU and DRRIP [25] replacement policies (other experi-

ments use DRRIP). A high-performance policy like DRRIP better

exploits temporal locality in the update stream. Thus, PHI with

DRRIP coalesces more updates in the cache hierarchy and reduces

memory traffic over PHI with LRU. Other schemes benefit similarly

from a better replacement policy.

Hierarchical coalescing: We measure imbalance in traffic to LLC

banks on graphs preprocessed with degree-sorting. Without hierar-

chical coalescing, there is up to 2.1× imbalance across banks, while

with hierarchical coalescing, the imbalance is limited to 20% and is

often negligible.

5 ADDITIONAL RELATEDWORK

Accelerators for sparse algorithms: Recent work has proposed

specialized accelerators for graph processing for both FPGAs [14,

42, 43] and ASICs [2, 20, 40, 44, 52, 63]. While we evaluated PHI on

a general-purpose multicore, its techniques are general and can be

applied to accelerators too.

Graphicionado [20] employs graph tiling (also called blocking or

slicing) to reduce memory traffic. Tiling is effective for graphs that

are moderately (about 10×) larger than on-chip storage, but increas-

ing the number of tiles adds work, and tiling eventually becomes

unattractive [10, 39]. To avoid this, Graphicionado needs a large

eDRAM that can fit a substantial part of the graph. Unlike tiling,

update batching does not perform more work on larger graphs [10].

Thus, PHI does not lose efficiency with graph size and approaches

the compulsory memory traffic with small on-chip caches.

GraFBoost [27] is a Flash-based accelerator for external (i.e.,

out-of-core) graph analytics. Similar to update batching, it logs

updates to Flash before applying them in DRAM. It uses hardware-

accelerated external sorting with interleaved reduction functions to

reduce I/O traffic. PHI uses caches to perform coalescing, reducing

traffic without sorting.

OMEGA [1] proposes a hybrid cache subsystem where a scratch-

pad holds the most popular vertices (identified by degree-sorting

the graph) and a conventional cache hierarchy serves requests

for other data structures. A specialized unit near each scratchpad

performs atomic updates on vertex data.

HATS [38] adds a specialized hardware unit near each core to

perform locality-aware graph traversals. HATS and PHI are comple-

mentary: HATS improves locality similar to preprocessing, and as

we have seen PHI benefits from preprocessing.

Indirect prefetchers: Conventional stream or strided prefetchers

are ineffective on the indirect memory accesses of sparse algorithms.

Prior work [3, 4, 58] has proposed indirect prefetchers to handle

such accesses. While these designs improve performance by hiding

memory access latency, they quickly saturate memory bandwidth

and become bandwidth-bound. By contrast, PHI reduces memory

traffic, making better use of limited off-chip bandwidth. Moreover,

PHI works well with stream prefetchers and, since updates do not

fetch data, would not benefit from indirect prefetchers.

6 CONCLUSION

We have presented PHI, a push cache hierarchy that adds support

for pushing commutative updates from cores towards mainmemory.

PHI adds simple logic at each cache bank to buffer and coalesce up-

dates throughout the hierarchy, performs selective update batching

to exploit spatial locality, and avoids synchronization overheads.

PHI is the first system to exploit the temporal and spatial locality

benefits of commutative scatter updates, On a set of demanding

algorithms, PHI improves performance by 4.7× gmean and by up

to 11×. Moreover, PHI consistently outperforms pull algorithms,

showing for the first time that push algorithms have inherent lo-

cality advantages that can be exploited with the proper hardware

support.

ACKNOWLEDGMENTS

We thank Maleen Abeydeera, Joel Emer, Mark Jeffrey, Hyun Ryong

Lee, Po-An Tsai, Victor Ying, Guowei Zhang, and the anonymous

reviewers for their feedback. This work was supported in part by

DARPA SDH under contract HR0011-18-3-0007, NSF grants CAREER-

1452994 and CAREER-1845986, and a Google Faculty Research Award.

This research was, in part, funded by the U.S. Government. The

views and conclusions contained in this document are those of the

authors and should not be interpreted as representing the official

policies, either expressed or implied, of the U.S. Government.

PHI: Architectural Support for Synchronization- and Bandwidth-Efficient Commutative Scatter Updates MICRO-52, October 12ś16, 2019, Columbus, OH, USA

REFERENCES
[1] Abraham Addisie, Hiwot Kassa, Opeoluwa Matthews, and Valeria Bertacco. 2018.

Heterogeneous Memory Subsystem for Natural Graph Analytics. In Proceedings
of the IEEE International Symposium on Workload Characterization (IISWC).

[2] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi.
2015. A scalable processing-in-memory accelerator for parallel graph process-
ing. In Proceedings of the 42nd annual International Symposium on Computer
Architecture (ISCA-42).

[3] Sam Ainsworth and Timothy M Jones. 2016. Graph Prefetching Using Data Struc-
ture Knowledge. In Proceedings of the International Conference on Supercomputing
(ICS’16).

[4] Sam Ainsworth and Timothy M Jones. 2018. An event-triggered programmable
prefetcher for irregular workloads. In Proceedings of the 23rd international confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-XXIII).

[5] Vignesh Balaji and Brandon Lucia. 2018. When is Graph Reordering an Optimiza-
tion? Studying the Effect of Lightweight Graph Reordering Across Applications
and Input Graphs. In Proceedings of the IEEE International Symposium onWorkload
Characterization (IISWC).

[6] Vignesh Balaji, Dhruva Tirumala, and Brandon Lucia. 2017. Flexible Support for
Fast Parallel Commutative Updates. arXiv preprint arXiv:1709.09491 (2017).

[7] Çağrı Balkesen, Jens Teubner, Gustavo Alonso, and M Tamer Özsu. 2014. Main-
memory hash joins on modern processor architectures. IEEE Transactions on
Knowledge and Data Engineering 27, 7 (2014).

[8] Scott Beamer, Krste Asanović, and David Patterson. 2012. Direction-optimizing
breadth-first search. In Proceedings of the ACM/IEEE conference on Supercomputing
(SC12).

[9] Scott Beamer, Krste Asanović, and David Patterson. 2015. The GAP benchmark
suite. arXiv:1508.03619 [cs.DC] (2015).

[10] Scott Beamer, Krste Asanovic, and David Patterson. 2017. Reducing Pagerank
communication via Propagation Blocking. In Proceedings of the 31st IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS).

[11] Maciej Besta, Michał Podstawski, Linus Groner, Edgar Solomonik, and Torsten
Hoefler. 2017. To push or to pull: On reducing communication and synchroniza-
tion in graph computations. In Proceedings of the 26th International Symposium
on High-Performance Parallel and Distributed Computing.

[12] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A
recursive model for graph mining. In Proceedings of the 2004 SIAM International
Conference on Data Mining.

[13] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2009.
Introduction to algorithms (3rd ed.). MIT press.

[14] Guohao Dai, Yuze Chi, YuWang, and Huazhong Yang. 2016. FPGP: Graph Process-
ing Framework on FPGAÐA Case Study of Breadth-First Search. In Proceedings
of the 24th ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA-24).

[15] Timothy A Davis and Yifan Hu. 2011. The University of Florida sparse matrix
collection. ACM TOMS 38, 1 (2011).

[16] Laxman Dhulipala, Guy Blelloch, and Julian Shun. 2017. Julienne: A framework
for parallel graph algorithms using work-efficient bucketing. In Proceedings of
the 29th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).

[17] Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal, Kevin P. McAuliffe, Larry
Rudolph, and Marc Snir. 1983. The NYU Ultracomputer? Designing an MIMD
Shared Memory Parallel Computer. IEEE Transactions on computers 2 (1983).

[18] Samuel Grossman and Christos Kozyrakis. 2019. A New Frontier for Pull-Based
Graph Processing. arXiv preprint arXiv:1903.07754 (2019).

[19] Samuel Grossman, Heiner Litz, and Christos Kozyrakis. 2018. Making pull-based
graph processing performant. In Proceedings of the ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP).

[20] Tae Jun Ham, Lisa Wu, Narayanan Sundaram, Nadathur Satish, and Margaret
Martonosi. 2016. Graphicionado: A high-performance and energy-efficient accel-
erator for graph analytics. In Proceedings of the 49th annual IEEE/ACM interna-
tional symposium on Microarchitecture (MICRO-49).

[21] Per Hammarlund, Alberto J. Martinez, Atiq A. Bajwa, David L. Hill, Erik Hall-
nor, Hong Jiang, Martin Dixon, Michael Derr, Mikal Hunsaker, Rajesh Kumar,
Randy B. Osborne, Ravi Rajwar, Ronak Singhal, Reynold D’Sa, Robert Chappell,
Shiv Kaushik, Srinivas Chennupaty, Stephan Jourdan, Steve Gunther, Tom Piazza,
and Ted Burton. 2014. Haswell: The fourth-generation intel core processor. IEEE
Micro 34, 2 (2014).

[22] SongHan, Huizi Mao, andWilliam J Dally. 2016. Deep Compression: Compressing
Deep Neural Network with Pruning, Trained Quantization and Huffman Coding.
In 4th International Conference on Learning Representations (ICLR-4).

[23] Henry Hoffmann, David Wentzlaff, and Anant Agarwal. 2010. Remote store pro-
gramming. In Proceedings of the 5th international conference on High Performance
Embedded Architectures and Compilers (HiPEAC).

[24] Nangate Inc. 2008. TheNanGate 45nmOpenCell Library. http://www.nangate.
com/?page_id=2325.

[25] Aamer Jaleel, Kevin B Theobald, Simon C Steely Jr, and Joel Emer. 2010. High
performance cache replacement using re-reference interval prediction (RRIP). In
Proceedings of the 37th annual International Symposium on Computer Architecture
(ISCA-37).

[26] Norman P. Jouppi. 1993. Cache Write Policies and Performance. In Proceedings
of the 20th annual International Symposium on Computer Architecture (ISCA-20).

[27] Sang-Woo Jun, AndyWright, Sizhuo Zhang, Shuotao Xu, and Arvind. 2018. GraF-
Boost: Using accelerated flash storage for external graph analytics. In Proceedings
of the 45th annual International Symposium on Computer Architecture (ISCA-45).

[28] Richard E Kessler and James L Schwarzmeier. 1993. CRAY T3D: A new dimension
for Cray Research. In Digest of Papers. COMPCON Spring.

[29] Vladimir Kiriansky, Yunming Zhang, and Saman Amarasinghe. 2016. Optimizing
indirect memory references with milk. In Proceedings of the 25th International
Conference on Parallel Architectures and Compilation Techniques (PACT-25).

[30] Fredrik Kjolstad, Stephen Chou, David Lugato, Shoaib Kamil, and Saman Amaras-
inghe. 2017. The Tensor Algebra Compiler. In Proceedings of the ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA).

[31] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is
Twitter, a social network or a news media?. In Proceedings of the 19th International
Conference on World Wide Web (WWW-19).

[32] James Laudon and Daniel Lenoski. 1997. The SGI Origin: a ccNUMA highly
scalable server. In Proceedings of the 24th annual International Symposium on
Computer Architecture (ISCA-24).

[33] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen, and
Norman P Jouppi. 2009. McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures. In Proceedings of the 42nd
annual IEEE/ACM international symposium on Microarchitecture (MICRO-42).

[34] Clémence Magnien, Matthieu Latapy, and Michel Habib. 2009. Fast computation
of empirically tight bounds for the diameter of massive graphs. JEA 13 (2009).

[35] Jasmina Malicevic, Baptiste Joseph Eustache Lepers, and Willy Zwaenepoel. 2017.
Everything you always wanted to know about multicore graph processing but
were afraid to ask. In Proceedings of the USENIX Annual Technical Conference
(USENIX ATC).

[36] FrankMcSherry. 2005. A uniform approach to accelerated PageRank computation.
In Proceedings of the 14th International Conference onWorldWideWeb (WWW-14).

[37] Micron. 2013. 1.35V DDR3L power calculator (4Gb x16 chips).
[38] Anurag Mukkara, Nathan Beckmann, Maleen Abeydeera, Xiaosong Ma, and

Daniel Sanchez. 2018. Exploiting Locality in Graph Analytics through Hardware-
Accelerated Traversal Scheduling. In Proceedings of the 51st annual IEEE/ACM
international symposium on Microarchitecture (MICRO-51).

[39] Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez. 2017. Cache-Guided
Scheduling: Exploiting caches to maximize locality in graph processing. In
AGP’17.

[40] Lifeng Nai, Ramyad Hadidi, Jaewoong Sim, Hyojong Kim, Pranith Kumar, and
Hyesoon Kim. 2017. GraphPIM: Enabling Instruction-Level PIM Offloading in
Graph Computing Frameworks. In Proceedings of the 23rd IEEE international
symposium on High Performance Computer Architecture (HPCA-23).

[41] Michal Nazarewicz. 2012. A deep dive into CMA. LWN, https://lwn.net/
Articles/486301/.

[42] Eriko Nurvitadhi, Gabriel Weisz, YuWang, Skand Hurkat, Marie Nguyen, James C
Hoe, José F Martínez, and Carlos Guestrin. 2014. GraphGen: An FPGA framework
for vertex-centric graph computation. In Proceedings of the 22nd IEEE International
Symposium on Field-Programmable Custom Computing Machines (FCCM-22).

[43] Tayo Oguntebi and Kunle Olukotun. 2016. GraphOps: A dataflow library for
graph analytics acceleration. In Proceedings of the 24th ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA-24).

[44] Muhammet Mustafa Ozdal, Serif Yesil, Taemin Kim, Andrey Ayupov, John Greth,
Steven Burns, and Ozcan Ozturk. 2016. Energy efficient architecture for graph
analytics accelerators. In Proceedings of the 43rd annual International Symposium
on Computer Architecture (ISCA-43).

[45] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[46] Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amarnath, Siy-
ing Feng, Chaitali Chakrabarti, Hun-Seok Kim, David Blaauw, Trevor Mudge,
and Ronald Dreslinski. 2018. OuterSPACE: An Outer Product based Sparse
Matrix Multiplication Accelerator. In Proceedings of the 24th IEEE international
symposium on High Performance Computer Architecture (HPCA-24).

[47] Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and accurate microar-
chitectural simulation of thousand-core systems. In Proceedings of the 40th annual
International Symposium on Computer Architecture (ISCA-40).

[48] Nadathur Satish, Narayanan Sundaram, Md Mostofa Ali Patwary, Jiwon Seo,
Jongsoo Park, M Amber Hassaan, Shubho Sengupta, Zhaoming Yin, and Pradeep
Dubey. 2014. Navigating the maze of graph analytics frameworks using massive
graph datasets. In Proceedings of the 2014 ACM SIGMOD international conference
on management of data (SIGMOD).

MICRO-52, October 12ś16, 2019, Columbus, OH, USA Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez

[49] Steven L Scott. 1996. Synchronization and communication in the T3E multipro-
cessor. In Proceedings of the 7th international conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS-VII).

[50] Julian Shun and Guy E Blelloch. 2013. Ligra: A lightweight graph processing
framework for shared memory. In Proceedings of the ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP).

[51] Matthew D Sinclair, Johnathan Alsop, and Sarita V Adve. 2017. Chasing away
rats: Semantics and evaluation for relaxed atomics on heterogeneous systems. In
Proceedings of the 44th annual International Symposium on Computer Architecture
(ISCA-44).

[52] Linghao Song, Youwei Zhuo, Xuehai Qian, Hai Li, and Yiran Chen. 2018. GraphR:
Accelerating graph processing using ReRAM. In Proceedings of the 24th IEEE
international symposium on High Performance Computer Architecture (HPCA-24).

[53] Narayanan Sundaram, Nadathur Satish, Md Mostofa Ali Patwary, Subramanya R
Dulloor, Michael J Anderson, Satya Gautam Vadlamudi, Dipankar Das, and
Pradeep Dubey. 2015. GraphMat: High performance graph analytics made pro-
ductive. Proceedings of the VLDB Endowment (2015).

[54] Hao Wei, Jeffrey Xu Yu, Can Lu, and Xuemin Lin. 2016. Speedup graph process-
ing by graph ordering. In Proceedings of the 2016 ACM SIGMOD international
conference on management of data (SIGMOD).

[55] Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick,
and James Demmel. 2007. Optimization of sparse matrix-vector multiplication
on emerging multicore platforms. In Proceedings of the ACM/IEEE conference on
Supercomputing (SC07).

[56] Craig M Wittenbrink, Emmett Kilgariff, and Arjun Prabhu. 2011. Fermi GF100
GPU architecture. IEEE Micro 31, 2 (2011).

[57] Clifford Wolf, Johann Glaser, and Johannes Kepler. 2013. Yosys-a free Verilog
synthesis suite. In Proceedings of the 21st Austrian Workshop on Microelectronics
(Austrochip).

[58] Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, and Srinivas Devadas. 2015.
IMP: Indirect Memory Prefetcher. In Proceedings of the 48th annual IEEE/ACM

international symposium on Microarchitecture (MICRO-48).
[59] Pingpeng Yuan, Changfeng Xie, Ling Liu, and Hai Jin. 2016. PathGraph: A path

centric graph processing system. IEEE TPDS (2016).
[60] Albert-Jan Nicholas Yzelman and Dirk Roose. 2014. High-level strategies for

parallel shared-memory sparse matrix-vector multiplication. IEEE TPDS (2014).
[61] Guowei Zhang, Virginia Chiu, and Daniel Sanchez. 2016. Exploiting seman-

tic commutativity in hardware speculation. In Proceedings of the 49th annual
IEEE/ACM international symposium on Microarchitecture (MICRO-49).

[62] Guowei Zhang, Webb Horn, and Daniel Sanchez. 2015. Exploiting commutativity
to reduce the cost of updates to shared data in cache-coherent systems. In Proceed-
ings of the 48th annual IEEE/ACM international symposium on Microarchitecture
(MICRO-48).

[63] Mingxing Zhang, Youwei Zhuo, Chao Wang, Mingyu Gao, Yongwei Wu, Kang
Chen, Christos Kozyrakis, and Xuehai Qian. 2018. GraphP: Reducing communica-
tion for PIM-based graph processing with efficient data partition. In Proceedings of
the 24th IEEE international symposium on High Performance Computer Architecture
(HPCA-24).

[64] Yunming Zhang, Vladimir Kiriansky, Charith Mendis, Matei Zaharia, and Saman
Amarasinghe. 2017. Making caches work for graph analytics. IEEE BigData
(2017).

[65] Yu Zhang, Xiaofei Liao, Hai Jin, Lin Gu, and Bing Bing Zhou. 2018. FBSGraph:
Accelerating asynchronous graph processing via forward and backward sweeping.
IEEE TKDE (2018).

[66] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun,
and Saman Amarasinghe. 2018. Graphit: A high-performance graph dsl. In
Proceedings of the ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA).

[67] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph: Large-scale
graph processing on a single machine using 2-level hierarchical partitioning. In
Proceedings of the USENIX Annual Technical Conference (USENIX ATC).

	Abstract
	Introduction
	Background and Motivation
	Push versus pull execution
	Hardware support for updates
	Update batching
	Preprocessing algorithms

	PHI Design
	Making scatter updates bandwidth-efficient
	Making parallel scatter updates synchronization-efficient
	PHI implementation details

	Evaluation
	Methodology
	PHI improves runtime, traffic, and energy
	PHI performs best across inputs
	Sensitivity studies

	Additional Related Work
	Conclusion
	References

