
Compress Objects, Not Cache Lines:
An Object-Based Compressed Memory Hierarchy

Po-An Tsai
MIT CSAIL

poantsai@csail.mit.edu

Daniel Sanchez
MIT CSAIL

sanchez@csail.mit.edu

Abstract

Existing cache and main memory compression techniques

compress data in small fixed-size blocks, typically cache lines.

Moreover, they use simple compression algorithms that focus

on exploiting redundancy within a block. These techniques

work well for scientific programs that are dominated by ar-

rays. However, they are ineffective on object-based programs

because objects do not fall neatly into fixed-size blocks and

have a more irregular layout.

We present the first compressed memory hierarchy de-

signed for object-based applications. We observe that (i)

objects, not cache lines, are the natural unit of compres-

sion for these programs, as they traverse and operate on

object pointers; and (ii) though redundancy within each ob-

ject is limited, redundancy across objects of the same type

is plentiful. We exploit these insights through Zippads, an

object-based compressed memory hierarchy, and COCO, a

cross-object-compression algorithm. Building on a recent

object-based memory hierarchy, Zippads transparently com-

presses variable-sized objects and stores them compactly.

As a result, Zippads consistently outperforms a state-of-the-

art compressed memory hierarchy: on a mix of array- and

object-dominated workloads, Zippads achieves 1.63× higher

compression ratio and improves performance by 17%.

CCSConcepts ·Computer systems organization→Pro-

cessors and memory architectures.

Keywords cache; memory; object-based; compression.

ACM Reference Format:

Po-An Tsai and Daniel Sanchez. 2019. Compress Objects, Not Cache

Lines: An Object-Based CompressedMemory Hierarchy. In Proceed-

ings of 2019 Architectural Support for Programming Languages and

Operating Systems (ASPLOS’19).ACM, New York, NY, USA, 14 pages.

http://dx.doi.org/10.1145/3297858.3304006

ASPLOS’19, April 13ś17, 2019, Providence, RI, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

This is the author’s version of the work. It is posted here for your personal

use. Not for redistribution. The definitive Version of Record was published

in Proceedings of 2019 Architectural Support for Programming Languages and

Operating Systems (ASPLOS’19), http://dx.doi.org/10.1145/3297858.3304006.

1 Introduction

Compression has become an attractive technique to improve

the performance and efficiency of modern memory hierar-

chies. Ideally, compressing data at a level of the memory hier-

archy (e.g., main memory or the last-level cache) brings two

key benefits. First, it increases the effective capacity of that

level (e.g., reducing page faults or cache misses). Second, it re-

duces bandwidth demand to that level, as each access fetches

a smaller amount of compressed data. Because accesses to

off-chip memory or large on-chip caches are slow and ex-

pensive, the benefits of compression justify its overheads.

Therefore, prior work has proposed compressed main mem-

ory [17, 25, 34, 51] and cache [1, 22, 30, 41, 42] architectures,

as well as specialized compression algorithms [4, 5, 24, 35].

Unfortunately, hardware memory hierarchy compression

techniques must contend with a key challenge: supporting

random, fine-grained memory accesses. Whereas classic com-

pression techniques work best on large blocks of data, many

programs access small amounts of data (words or cache lines)

at a time, so compressing data in large chunks would be in-

efficient. The need for random accesses introduces three

interrelated problems. First, it limits memory hierarchy com-

pression techniques to use small blocks, on the order of a

cache line (64ś128 B). Second, because the startup latency

of decompressing and compressing a block cannot be amor-

tized across large blocks, it limits these techniques to use

simple compression algorithms optimized for latency rather

than throughput. Third, compressed blocks have variable size,

requiring an extra level of indirection to translate uncom-

pressed addresses into compressed blocks. Depending on the

implementation, this extra level of indirection either requires

significant metadata (e.g., extra cache or TLB state) or causes

internal fragmentation. These problems limit compression

ratio and thus the overall value of the techniques.

Prior work has addressed these issues within the context

of cache hierarchies, and thus focuses on compressing cache

lines. For example, compression algorithms like BDI [35]

and BPC [24] achieve low latency by exploiting redundancy

within words of a cache line, and compressed main-memory

organizations like LCP [34] achieve low access latency at the

expense of lower compression ratios by forcing most cache

lines in a page to have the same compressed size. These

approaches work well on array-based applications, such as

scientific workloads, where most data follows a regular lay-

out and uses homogeneous data types.

By contrast, existing compressed hierarchy techniques are

ineffective on object-based applications, i.e., those where most

data is stored in objects. These applications do not have a

regular memory layout: each object has fields of different

types and compressibilities; objects of different types are

interleaved in memory; and objects are not aligned to the

fixed-size cache lines that compression techniques workwith.

For these reasons, the evaluations of these techniques show

small improvements on object-heavy applications.

We present the first object-based compressed memory hi-

erarchy. We leverage two key insights. First, we observe that

objects, not cache lines, are the natural unit of compression

for object-based programs. Objects are small, typically on the

order of a cache line. And object-based applications follow a

disciplined access pattern: they always access data within

an object and dereference object pointers to access other

objects. Therefore, compressing variable-size objects instead

of fixed-size cache lines and pointing directly to compressed

objects can avoid the extra level of indirection and layout

issues of existing compressed main memories. Second, we

observe that there is significant redundancy (i.e., common-

ality or value locality [40]) across objects of the same type.

Exploiting this redundancy, which current algorithms do not

leverage, can enable high compression ratios.

We present two contributions that leverage the above

insights to compress object-based applications effectively:

· Zippads is a novel compressed object-based memory hi-

erarchy. Zippads transfers objects (rather than cache lines)

across levels and transparently compresses them when

appropriate. Unlike prior designs, Zippads does not add a

level of translation between compressed and uncompressed

addresses. Instead, Zippads directly rewrites pointers to ob-

jects as it moves objects across hierarchy levels. To achieve

this, Zippads builds on Hotpads [19, 52], a recent object-

based memory hierarchy. Though they are not our focus,

Zippads also works well on array-based applications.

· Cross-object-compression (COCO) is a novel compres-

sion algorithm that exploits redundancy across objects

cheaply. COCO chooses a small number of base objects, and

stores only the bytes that differ from an object’s base. While

Zippads can use other compression algorithms (e.g., BDI),

using COCO increases compression ratio substantially.

We evaluate these techniques in simulation and prototype

COCO in RTL. Our evaluation shows that, across a mix of

array-based and object-based workloads, these techniques

substantially outperform a combination of a state-of-the-

art compressed last-level cache and compressed main mem-

ory [33]: Zippads alone increases compression ratio by 1.37×

on average and by up to 1.54×, and Zippads+COCO increases

compression ratio by 1.63× on average and by up to 2×. As

a result, Zippads+COCO reduces main memory traffic by

56% and improves performance by 17% on average, while

incurring only 3.2% storage overhead.

2 Background and motivation

We first review related work in compressed memory hier-

archies, then illustrate the challenges and opportunities of

compressed hierarchies in object-based programs.

2.1 Related work in compressed hierarchies

Much prior work has focused on compressed memory hier-

archies to reduce data movement. While compression is too

onerous to be used in small private caches, it is sensible to im-

plement in main memory and the large last-level cache (LLC).

Prior techniques thus can be broadly classified into three do-

mains: (i) compression algorithms, (ii) compressed memory

architectures, and (iii) compressed cache architectures.

Compression algorithms aim to reduce the number of

bits required to represent a data chunk (e.g., a cache line).

Since decompression latency adds delay to the critical path

of a memory access, unlike general compression algorithms,

memory hierarchy compression favors simpler algorithms

that achieve low decompression latency and area overhead,

even if they achieve a lower compression ratio. Moreover,

since programs issue fine-grained memory accesses, prior

hardware-based compression techniques focus on compress-

ing cache lines, matching the natural data transfer granular-

ity of the LLC and main memory.

Frequent pattern compression (FPC) [2] recognizes re-

peated patterns or small-value integers and uses a static

encoding to compress every 32-bit data chunk in a cache

line. Base-Delta-Immediate (BDI) [35] observes that values

in a cache line usually have a small dynamic range, so BDI

compresses a cache line by representing it with a base value

and per-word deltas. SC2 [5] uses Huffman coding to com-

press cache lines, and recomputes the dictionary infrequently,

leveraging the observation that frequent values change rarely.

Because recomputing the dictionary requires recompress-

ing all the data, SC2 is suitable for caches but less attractive

for main memory. FP-H [4] is tailored to compress floating-

point values. HyComp [4] combines multiple compression

algorithms in a single system and dynamically selects the

appropriate algorithm. Bit-Plane Compression (BPC) [24]

targets homogeneous arrays in GPGPUs and improves com-

pression ratio over BDI by compressing the deltas better.

These techniques add few cycles to each memory access.

However, they usually exploit redundancy within a single

block, a very fine-grained size. They work well for array-

based programs with homogeneous data types. But as we

will see later, object-based programs have lower redundancy

across nearby words, making these techniques less effective.

Compressedmainmemory architectures are faced with

one key challenge: choosing a memory layout that adds little

latency while enabling good compression ratios.

MXT [51] compresses 1 KB data chunks with a heavy-

weight compression algorithm. While it achieves a high com-

pression ratio, its decompression latency is very high (64

2

cycles). To locate the compressed data, MXT adds a TLB-like

translation table to translate chunk addresses, which adds

even more latency and requires significant state.

Robust Memory Compression (RMC) [17] and Linearly

Compressed Pages (LCP) [34] trade off lower compression

ratios for lower latency overheads. They compress smaller

(64-byte) cache lines and leverage the virtual memory sys-

tem, which they modify to translate from uncompressed

virtual pages to compressed physical pages. To keep transla-

tion mechanisms simple, each physical page is restricted to

be power-of-two-sized. This incurs internal fragmentation,

which reduces the compression ratio (e.g., a page that com-

presses to slightly more than 1KB must use a 2 KB frame).

RMC and LCP differ in the layout of compressed pages.

RMC compresses each cache line to one of four possible

sizes. Each page table entry is extended to track the sizes

of all the lines (64×2=128 bits). To compute the address of a

compressed cache line, the system must add up the sizes of

all preceding cache lines, a non-trivial computation [34].

By contrast, LCP requires cache lines to compress to the

same size. This makes the compressed cache line address

trivial to compute in the common case (a simple shift). LCP

stores the non-fitting cache lines uncompressed after all the

compressed blocks and chooses the page’s compression ratio

to minimize the final compressed size.

Other prior work builds on these architectures and im-

proves over them. For example, DMC [25] combines LCP

and MXT by applying LCP to hot pages and MXT to cold

pages. Compresso [15] introduces techniques to reduce meta-

data accesses, limit overflows, and improve spatial locality.

Compressed cache architectures havemore flexibility than

compressed main memory, as their associative structure of-

fers more design choices than main memory’s directly ad-

dressed layout. The key challenge in compressed caches is

tracking compressed lines with small tag array overheads

and high data array utilization. These architectures typically

perform serial tag and data array accesses, and require extra

tag entries (usually 2×, about 6% area overhead) to track

more compressed cache lines than uncompressed caches.

VSC [1] divides the cache into sets like in a conventional

cache, but lets each set store a variable number of variably-

sized, compressed cache lines. Each tag has a pointer to iden-

tify the line’s location within the set. Cache architectures

with decoupled tag and data stores, such as the indirect-

indexed cache [22] and V-Way cache [37], use a longer for-

ward pointer and can store compressed cache lines any-

where in the data array, reducing fragmentation. Meanwhile,

DCC [42], SCC [41], and DISH [30] leverage decoupled sector

caches to track multiple compressed lines per sector.

These compressed caches still compress each cache line

individually; prior work that exploits redundancy across

lines incurs large overheads [29] and is practical only on

throughput-oriented processors with high latency tolerance.

0.0

0.2

0.4

0.6

0.8

1.0

R
a
ti
o
 o

f
h
e
a
p
 f
o
o
tp

ri
n
t

fr
o
m

 d
if
fe

re
n
t
d
a
ta

 t
y
p
e
s

fft
spmv h2

specjbb

pagerank

coloring
btre

e

guavacache

Object Array of References Array of Primitives

Figure 1. Fraction of the heap consumed by objects and arrays for

several Java benchmarks.

2.2 Opportunities for object-based programs

Array-dominated applications, common in scientific comput-

ing, provide many opportunities for compression because

nearby words share data types and are likely to have similar

byte patterns. Prior techniques like BDI [35] and FP-H [4] are

effective on these programs. However, many applications are

dominated by objects, which have a more irregular layout:

nearby words correspond to different fields and are unlikely

to have similar values. Prior compression techniques are less

effective on object-heavy applications.

Object-heavy applications are common. Fig. 1 shows the

footprint composition of eight Java benchmarks. Only the

first two benchmarks, which implement common scientific

kernels (fft and spmv), are array-dominated. The remaining

six benchmarks, which include databases, graph analytics,

and a key-value store, have at least 40% and up to 75% of the

heap footprint allocated to objects. More than 90% of those

objects are small (< 128 B [8]). Therefore, prior algorithms

that leverage similarities among nearbywords are unlikely to

compress well on these applications because a large portion

of their footprint is small objects, not homogeneous arrays.

Fortunately, object-based applications provide new oppor-

tunities for compressed memory hierarchies. First, object-

based applications perform memory accesses within objects

and always follow pointers to other objects. Therefore, ob-

jects, and not cache lines, are the right compression unit.

Second, though nearby words have low redundancy, similar-

ities exist across objects of the same type.

We now illustrate these two insights with a simple B-tree

Java microbenchmark, BTree. Fig. 2 shows the three main

object types in BTree: Node, Entry[], and Entry, and their

in-memory layouts. We show the layout in Maxine [54], the

Java Virtual Machine (JVM) we use in our evaluation, but

other JVMs like HotSpot [49] and Jikes [3] use a similar lay-

out. Red arrows denote pointers (references) across objects.

Fig. 3a shows the memory layout of a 4-entry B-tree node.

Fig. 3b shows an example of applying LCP to BTree. LCP

uses hybrid BDI+FPC compression (see Sec. 7.1 for details).

In this example, each 64B line is compressed into a fixed-size

32B chunk. A few blocks can be compressed beyond 32B, but

the remaining space (shown hatched) is left unused due to

LCP’s design. The total size of this compressed page is then

rounded up to the closest power-of-2 page size, which often

3

class Node {

int nChild;

Entry[] children = new Entry[4];

}

Class id (Node)

header

int nChild

ref children

Class id (Entry)

header

ref key

ref value

ref next

Memory layout for

object Entry (40B)

Memory layout for

object Node (32B)

Class id (Entry[])

header

4 (Array length)

ref Entry[0]

ref Entry[1]

ref Entry[2]

ref Entry[3]

Memory layout for

object Entry[4] (56B)

class Entry {

Object key;

Object value;

Node next;

}

…
…

Figure 2. Objects and their memory layout in BTree.

Node

Entry[]

Entry[0]

Entry[1]

Entry[2]

Entry[3]

0x00

0x100

0x40

0x80

0xC0

(a) No compression

0x00

0x40

0x80

0x60

0x20

Significant

unused space

due to

performance-

oriented layout

(b) LCP

Node’
Entry[]’

Entry[0]’
Entry[1]’
Entry[2]’
Entry[3]’

(c) Object-based

compression

(d) Cross-object

compression

Entry[]’

Entry[0]’
∆Entry[1]

∆Entry[2] ∆Entry[3]

Node’

4K page

2K page

Compact layout;

pointers to compressed

objects directly

…
…

…

Figure 3. Different compression techniques applied to BTree.

causes more unused space, limiting efficiency. For BTree,

LCP achieves only 10% compression ratio (Table 1), because

in addition to layout inefficiencies, the compression algo-

rithm cannot compress many of the objects effectively.

Fig. 3c shows the compressed memory layout if we com-

press objects instead of cache lines. Compressed objects are

stored contiguously, with no space left unused. Moreover,

each pointer (red arrow) directly points to the compressed ob-

ject. This approach removes the need to translate between

compressed and uncompressed address spaces, and it is safe

because programs may access objects only through pointers.

This disciplined access pattern removes the fragmentation

caused by the tradeoff between compression ratio and fast

address calculation in prior work. With this compression

technique, we can achieve a compression ratio of 1.56×.

Moreover, there is still an opportunity to improve compres-

sion ratio in object-oriented programs. We find that objects

of the same type usually have similar contents. For example,

many of the bytes in Entry[0] and Entry[1] are identical.

Therefore, it is better to compress across objects instead of

across nearby words in a cache line.

No comp. LCP Object-based Cross-object

Fig. 3a Fig. 3b Fig. 3c Fig. 3d

Compression ratio 1.00 1.10 1.56 1.95

Table 1. Compression ratios of different schemes on BTree.

Fig. 3d shows an example of cross-object compression. In-

stead of storing all Entry objects, we store one base object

(Entry[0]). For other Entry objects, we only store the bytes

that differ (∆Entry) between those objects and the base ob-

ject. This further reduces footprint over Fig. 3c, achieving an

even higher compression ratio of 1.95×.

However, to realize these insights, hardware needs to ac-

cess data at object granularity and must have control over

pointers between objects, as we explain next.

3 Baseline system: Hotpads

Zippads and COCO compress objects instead of cache lines.

Thus, they are better suited to an object-based memory hier-

archy than a conventional cache hierarchy. We implement

them on top of Hotpads, a recent object-based hierarchy. We

now describe the principles and relevant features of Hotpads;

please see prior work [19, 52] for details.

Modern languages like Java and Go adopt an object-based

memory model and hide the memory layout from the pro-

grammer. This prevents many classes of errors and enables

automatic memory management. Hotpads extends the same

insight to the memory hierarchy: It hides the memory lay-

out from software and dispenses with the conventional flat

address space interface. Instead, Hotpads adopts an object-

based interface. Hotpads leverages this interface to efficiently

transfer and manage variable-sized objects instead of fixed-

size cache lines. Hotpads also provides hardware support for

memory allocation, unifies hierarchical garbage collection

and data placement, and avoids most associative lookups.

Hotpads is not specific to particular languages, and it is not

just a way to accelerate garbage collection or other managed-

language features. Rather, Hotpads achieves a more efficient

memory system by leveraging the principles behind garbage

collection and matching them to the structure of the memory

hierarchy. As a result, Hotpads can also accelerate applica-

tions in low-level unmanaged languages. These applications

can use Hotpads’s object-based model selectively, as Hot-

pads includes a legacy mode to support a flat address space.

As we will see in Sec. 7.5, Hotpads and Zippads outperform

high-performance allocators on two C/C++ benchmarks.

3.1 Hotpads overview

Hotpads is a hardware-managed hierarchy of scratchpad-like

memories called pads. Pads are designed to store variable-

sized objects efficiently. Hotpads transfers objects across

pad levels implicitly, in response to memory accesses. Fig. 5

shows an example Hotpads hierarchy with three levels of

pads, but Hotpads can use any number of levels.

Fig. 6 shows the structure of a pad. Most space is devoted

to the data array, which is managed as a circular buffer. The

4

L1

Pad
Core

L2

Pad

L3

Pad

Main

Memory

Figure 5. Hotpads is a hierarchical mem-

ory system with multiple levels of pads.

Canonical
Tags

Data Array

Objects

Free space

M
e

ta
d

a
ta

(w
o

rd
/o

b
je

ct)

Figure 6. Pad or-

ganization.

data array has a contiguous block of allocated objects fol-

lowed by a block of free space. Hotpads uses simple bump

pointer allocation: fetched or newly allocated objects are

placed at the end of the allocated region. Pads have two aux-

iliary structures: (i) the canonical tag (c-tag) array, which is

a decoupled tag store that a fraction of the accesses use to

find a resident copy of an object; and (ii) the metadata array,

which tracks information of objects stored in the data array.

Unlike caches, pads have separate addresses from memory

and can act as the backing store of some objects. This enables

an efficient object flow: objects are first allocated in the L1

pad and move up the hierarchy as they become cold and

are evicted. Short-lived objects are garbage-collected before

they reach main memory, which greatly reduces memory

traffic and footprint. An object’s canonical level is the largest

hierarchy level an object it has reached. The canonical level

acts as the object’s backing store.

3.2 Hotpads example

Fig. 4 illustrates the main features of Hotpads through a

simple example showing a single-core systemwith two levels

of pads (we use a single-core setup for simplicity, but Hotpads

supports multi-core systems [52]). This example uses only

one type of object, ListNode, with two members, an integer

value and a pointer to another ListNode.

0 shows the initial state of the system: the core’s register

file holds a pointer to object A in the L2 pad, and A points to

objectB in main memory. The L1 and L2 pads also hold other

objects (shown in solid orange) that are not relevant here.

In this example, A’s canonical level (i.e., its backing store) is

the L2: A does not exist in main memory and does not have a

main memory address. B’s canonical level is main memory.

1 shows the state of the system after the program ac-

cesses A’s value. A is copied into the L1 pad, taking some

free space at the end of the allocated region. Then, the pointer

in register r1 is rewritten to point to this L1 copy. This way,

subsequent dereferences of r1 access the L1 copy directly.

Programs can also access objects by dereferencing pointers

to them. 2 shows the state of the system after the core

dereferences A’s pointer to B. B is copied into the L1 pad,

and A’s pointer to B is rewritten to point to its L1 copy.

Since programs may have multiple pointers to the same

object, pads must have a way to find copies of objects from

higher levels. This is the role of the c-tag array, which, for

each object copy, stores the object’s canonical address (i.e., its

address at its canonical level). For example, when A is copied

into the L1 pad, the c-tag array inserts a translation from

A’s L2 address to the copy’s L1 address. Thanks to pointer

rewriting, only pointers to higher levels need to check the

c-tag array. This eliminates most associative lookups.

3 shows the state of the system after the program creates

a new object C. C is allocated directly in the L1 pad’s free

space and requires no backing storage in main memory.

When a pad runs out of free space, it triggers a collection-

eviction (CE) process to free up space. In 4 the L1 pad has

filled up, so the pad starts a CE to free L1 space. Similarly to

garbage collection (GC), a CE walks the data array to detect

live vs. dead objects. In addition to GC, a CE evicts live but

non-recently accessed objects to the next-level pad. In this

example, C is dead (i.e., unreferenced) and a new object D is

referenced from A, and thus live. Note that A’s L1 copy has

been modified, so the L2 data is now stale. Only B has been

accessed recently in the L1.

5 shows the state after the L1 CE. First, C has been

collected. Second, A and D have been evicted to the L2 pad.

Since A was originally copied from the L2 pad, the modified

L1 Pad L2 Pad Main Mem

A

B

r0
r1
r2
r3

RegFile

Free

space

Objects

Initial state.

Program code:

int v = A.value;

A

B

r0
r1
r2
r3

A

A copied into L1 pad.

B copied into L1.

A

B

r0
r1
r2
r3

A
BProgram code:

v = A.next.value;

Example object:

class ListNode {

int value;

ListNode next;

}

0

1

2

Core allocates new object C.

A

B

r0
r1
r2
r3

A
B
C

Program code:

ListNode C =

new ListNode();

A (stale)

B
A (modified)

B
C
D

L1 pad is now full, triggering a CE.

21

A

B

B

D

Free

space

After an L1 CE:

D has an L2 address.

A’s pointer to D is also an

pointer to the L2 pad.

Before an L1 CE:

D has an L1 address.

CE moves objects in bulk and updates pointers.

L2 Pad Main MemRegFile

3

4

5

L1 Pad

Figure 4. Example showing Hotpads’s main features.

5

Instruction Format Operation

Data Load ld rd, disp(rb) rd <- Mem[EffAddr]

Data Store st rd, disp(rb) Mem[EffAddr] <- rd

Pointer Load ldptr rp, disp(rb) rp <- Mem[EffAddr]

Pointer Store stptr rp, disp(rb) Mem[EffAddr] <- rp

Allocation alloc rp, rs1, rs2 NewAddr <- Alloc(rs1);

(rs1 = size) Mem[NewAddr] <- rs2;

(rs2 = type id) rp <- NewAddr;

Table 2.Hotpads ISA. rd/rs denote dst/src registers that hold data;

rp/rb hold pointers. All accesses use base+offset addressing.

copy is written back to A’s L2 location. By contrast, D is

moved up to the L2 pad and thus has a new canonical address,

an L2 address. Third, B has been kept in the L1 and moved

to the start of the array.

As in compacting GC, during CEs, live objects are com-

pacted into a contiguous region to simplify free space man-

agement. Moreover, CEs also update pointers in the system

(register file, pointers in pads) to point to the new location.

For example, both a register (r3) and the pointer in A are

updated to D’s new canonical address.

This always-moving-up object flow is critical for Zippads,

as objects start their lifetime uncompressed andmove to com-

pressed levels only when they become cold and are evicted.

This move changes the object’s original address and requires

updating all the pointers to the object. Zippads leverages

this to point directly to the compressed object, avoiding

uncompressed-to-compressed address translation (Sec. 4.1).

3.3 Hotpads implementation details

Next, we discuss the implementation details of Hotpads that

are relevant to Zippads and COCO.

ISA: Hotpads modifies the ISA to support an object-based

memory model. These ISA changes are transparent to ap-

plication programmers, but require runtime and compiler

modifications. Table 2 shows a subset of the ISA to support

object accesses and to convey pointer information to Hot-

pads. Pointers may be dereferenced or compared, but their

raw contents cannot be accessed. This lets Hotpads control

their contents. Hotpads uses base+offset addressing modes,

where the base register always holds an object pointer. The

offset can be an immediate (base + displacement mode) or a

register (base + index mode). Data load/store instructions are

used for non-pointer data (1); pointer load/store instruc-

tions are used to access pointer data (2); and the alloc

instruction allocates a new object (3).

Pointer format: Hotpads controls andmanipulates pointers

within pads. Fig. 7 shows the format of Hotpads pointers.

This format is a microarchitectural choice, as pointers are

opaque to software. The lower 48 bits contain the object’s

address and always point to the first word of the object. The

Size Address (48b)

47 04863 50

Figure 7. Hotpads pointer format.

upper 14 bits contain the object’s size (in words), and the

other 2 bits store metadata that is not relevant to Zippads.

All objects are word-aligned. Storing the object’s size in the

pointer simplifies reading objects: fetching sizewords from

the starting address yields the entire object. Zippads extends

this pointer format to store compression metadata.

Collection-evictions: CEs occur entirely in hardware, and

are much faster than software GC because pads are small. To

make CEs efficient, Hotpads enforces an important invariant:

Objects at a particular level may only point to objects at

the same or higher levels. In this way, CEs at smaller pads

(e.g., L1) will not involve larger pads (L2, L3) because those

pads have no pointers to the L1 pad. This makes CE cost

proportional to pad size.

CEs enable Hotpads’s object flow: evicting an object from

its original canonical level to the next level requires updating

all the pointers to the object (e.g., D from 4 to 5). This

would be impractically expensive to do for a single object,

requiring a scan of the evicting pad and all smaller ones. But

CEs amortize this scan across all evicted objects, making

updating pointers cheap. Zippads thus piggybacks on CEs

to point to compressed objects directly (Fig. 3c).

4 Zippads: An object-based compressed
memory hierarchy

Zippads leverages Hotpads to (i) manipulate and compress

objects rather than cache lines, and (ii) avoid the extra level of

indirection in conventional compressed main memories by

pointing directly to compressed objects. Zippads is agnostic to

the compression algorithm used, and can use conventional

algorithms like BDI or FPC, but works best with the COCO

compression algorithm. We first describe Zippads, then ex-

plain COCO in the next section.

Fig. 8 shows an example Zippads hierarchy. The last-level

pad andmainmemory are compressed,while the core-private

L1 and L2 pads are not. Other Zippads hierarchies are possi-

ble, e.g., there could be multiple levels of compressed pads,

or only main memory could be compressed. Once a level

uses compression, it is sensible for larger levels to remain

compressed, though Zippads does not require this. Zippads

transfers compressed objects directly between compressed

levels. To simplify our explanation, we first assume objects

are always small (< 128 B). We discuss how Zippads handles

larger objects in Sec. 4.3.

L1

Pad
Core

L2

Pad

L3

Pad

Main

Memory

Uncompressed

Compress

Decompress

Compressed

Figure 8. Example Zippads hierarchy with a compressed last-level

pad and main memory.

6

4.1 Compressing objects

Zippads aims to store compressed objects compactly, with no

unused space between them to maximize compression ratio.

Objects move from uncompressed to compressed storage for

two reasons: newly moved objects and dirty writebacks.

Case 1. Newly moved objects: As explained in Sec. 3, Hot-

pads performs in-hierarchy memory management: objects

start their lifetime at the L1 pad, and are moved into larger

pads and main memory when they have not been recently

used. Hotpads leverages this object flow to minimize the im-

pact of dead objects, collecting them as soon as possible. Zip-

pads further leverages this to facilitate compression: objects

start their lifetime uncompressed, and when they become

not-recently used, they are evicted into the last-level pad and

compressed there. This is a key difference from conventional

hierarchies, where objects are mapped to a main memory

address to begin with, forcing the problem of translating

from uncompressed to compressed addresses.

Newly moved objects are the easiest case to handle: Zip-

pads simply compresses the object and then stores it at the

beginning of the available space (with bump-pointer allo-

cation). Fig. 9 illustrates this process. This leaves no space

between compressed objects (however, compressed objects

are still word-aligned and may have a few unused bytes).

The object’s new canonical address is now in compressed

memory, and all pointers to the object are updated to this

new canonical address, as explained in Sec. 3.2.

Case 2. Dirty writebacks: An object can reach to a com-

pressed level, then be fetched into the L1 and modified. This

object is then eventually written back to the compressed

level. This dirty writeback is more complex than the initial

move, because the object’s compressed size may change. And

since other objects in this level may have pointers to this

object, Zippads cannot simply move it.

Fig. 10 shows how Zippads handles dirty writebacks. If

the compressed object’s new size is the same or smaller than

its old size, the object is stored in the old location. If the new

size is smaller, this wastes some space, which is left unused.

However, if the compressed object’s new size is larger than

its old size, the object cannot be stored at its old location. We

call this an overflow. Zippads allocates a new location for the

compressed object (using bump-pointer allocation as usual).

Because other pointers to the old location may still exist,

Zippads turns the old location into a forwarding thunk: it

stores the new pointer in the first word of the object. Further

accesses to the old location follow the forwarding thunk to

find the object. As we will see, overflows are rare (Sec. 7.6).

Periodic compaction: Althoughdirtywritebacks that change

the size of an object are rare, they introduce storage inefficien-

cies, either leaving some unused space or causing forwarding

thunks. However, these inefficiencies are temporary: in com-

pressed pads, the collection-eviction (CE) process compacts

Objects

Free space

Case 1: Newly moved

L2 pad
Compress

Object

(uncompressed)

New object

(compressed)

L3 pad

Figure 9. Compressing newly moved objects.

Case 2: Dirty writeback If new size <= old size If new size > old size

Old object

(compressed)

Objects

Free space

Updated object

(compressed)

Free space

Unused space

Forwarding thunk

Unused space

Updated object

(compressed)

Updated object

(uncompressed)

Compress

Objects

Objects

Objects

Objects

Objects

Figure 10. Compressing objects on dirty writebacks.

all the live objects into a contiguous region. Zippads mod-

ifies the compaction step of CEs to handle recompressed

objects: it eliminates both the unused space at the end of

smaller recompressed objects and the forwarding thunks

caused by overflows. Like Hotpads, Zippads performs main-

memory garbage collection in software. Zippads enhances

the garbage collection algorithm to work on compressed

objects and to perform these compaction optimizations.

4.2 Encoding compression information in pointers

Most compressed cache architectures employ a common

optimization: they use the cache tag to encode information

about the compressed cache line needed to perform accesses

and decompression, such as the compressed size or the type

of compression algorithm it uses. Leveraging the tags is more

efficient than encoding this information in the data array

itself, as the cache immediately knows how much data to

access and what decompression algorithm to use.

Zippads cannot use this optimization, most importantly

because main memory has no cache tags, but also because

not all pad objects may have a canonical tag. Instead, Zippads

encodes compression information directly in pointers. This is

possible because pointers are opaque to software and we

can change their format without changing the ISA. This

approach yields all the benefits of encoding information in

tags because all accesses start from a pointer.

Fig. 11 shows Zippads’s pointer format. First, the size field

now encodes the object’s compressed size. Second, Zippads

devotes a few extra bits to store algorithm-specific compres-

sion information (e.g., the compression format used). This

way, when transferring objects between levels, hardware

knows how much data to fetch and which decompression

algorithm to use. Moreover, this encoding enables using dif-

ferent compression schemes for different objects.

Algorithm-specific compression information slightly re-

duces the address width. This is acceptable because Zippads

uses word (i.e., 8-byte) addresses. For example, when Zippads

Compressed size Address (48-X) bits

48 48-X 063 50

Compression encoding bits (X bits)

Figure 11. Zippads pointer format. Compression information is

encoded in the pointer.

7

Header

Null

Null

Null

Null

Index array1: alloc rp, 256, intA
2: ld rd, 72(rp)

3: addi rd, 1
4: st rd, 72(rp)

1

Header

Null

Null

Null

72 = 64 * 1 (index array offset)

+ 8 (subobject offset)

0

0

…
…

Header

Null

Null

Null
Allocate

on access

0

1

…
…

Index array2 Index array3 4

Figure 12. Zippads breaks large objects into subobjects.

uses the BDI algorithm, which requires 4 bits per pointer,

44-bit word addresses allow almost the same address space

as conventional 48-bit byte addresses in x86-64.

4.3 Compressing large objects

So far, we have assumed that all objects are small (<128B).

However, programs can allocate larger objects. In Hotpads,

large objects and arrays are fetched as subobjects in 64B

chunks to avoid overfetching (e.g., if only one element is

used in a 1KB array). Zippads also needs to handle large

objects; otherwise, decompressing a large object for just one

element would incur a very high latency.

Zippads thus breaks large objects to smaller subobjects and

compresses them individually. This way, when the core only

accesses part of a large object, Zippads need not decompress

the whole object. Specifically, when allocating a large object

(>128B in our implementation), Zippads does not reserve

the full capacity for it. Instead, it first allocates an array of

pointers, which we call the index array. Each pointer in the

index array points to a 64B subobject. All pointers are initially

null, and the space for a subobject is allocated when an access

to a particular subobject occurs (i.e., allocate-on-access).

Fig. 12 shows an example of allocating and accessing a

large object. At 1 , the program allocates a 256B object, so

Zippads allocates an index array with 4 elements. At 2 , the

core accesses the element at a 72-byte offset, which belongs

to the second subobject. Zippads then allocates a subobject

and modifies the pointer in the index array. At 3 and 4 ,

the core updates the value and writes it back to the location.

Zippads first accesses the index array to find the subobject

pointer and traverses this pointer to update the field.

The index array is a microarchitecture optimization in-

visible to software. Subobjects are also compressed when

their canonical addresses change. Pointers in the index array

are updated as normal objects in Hotpads. Compressing at

subobject granularity also avoids moving large objects for

overflows. One drawback is that the footprint of large ob-

jects increases by 1
8 , but this is a small overhead compared

to the benefit of low decompression latency and a more com-

pact layout. Evaluation results show that Zippads offsets this

overhead (Sec. 7.2).

5 COCO: Cross-object-compression
algorithm

Zippads works with any compression algorithm. But there

is limited redundancy within each object, so existing al-

gorithms like BDI yield limited benefits. We thus propose

4527

0

0xaabb

0x0000ffffaabbaabb

4527

0

0xccdd

0x0000ffffccddccdd

4527 (Base id) Bitmap(32/8=4B)

0xccdd 0xccddccdd Unused

Base object (32B) Uncompressed object (32B)

Compressed object (16B)

0x00

0x10

0x20

0x10

0x00

b00000000 00000000 00000011 00001111

No diff

No diff

2B diff

4B diff

Figure 13. Example COCO-compressed object.

COCO (Cross-Object COmpression), a new compression al-

gorithm that exploits redundancy across objects. COCO

achieves high compression ratios and is cheap to implement.

5.1 COCO compression format

COCO is a differential compression algorithm: it compresses

an object by storing only the bytes that differ from a different

base object. Specifically, the compressed object format has

three elements:

1. The base object id, an integer (32 bits in our implementa-

tion) that uniquely identifies the base object.

2. A diff bitmapwith one bit per byte of the object. The ith bit

is set iff the object’s ith byte differs from the base object.

3. A string of byte diffs containing the bytes that are different

from the base object’s.

Fig. 13 shows an example COCO-compressed object. The

uncompressed object has the same values in the first and

second words, a 2-byte difference in the third, and a 4-byte

difference in the fourth. Therefore, the compressed object

stores only the six differing bytes in addition to the header.

5.2 Compression and decompression circuits

COCO compression/decompression circuits are simple to

implement and only require narrow comparators and mul-

tiplexers. Our implementations compress/decompress one

word (8 bytes) per cycle. This provides sufficient throughput

for our purposes. The compression circuit compares the base

object and the uncompressed object word by word. Each

cycle, it produces one byte of the diff bitmap and a chunk of

delta bytes. The decompression circuit takes the base object,

bitmap, and delta bytes as inputs and produces one word of

the decompressed object per cycle.

We have written the RTL for these circuits and synthesized

them at 45nm using yosys [55] and the FreePDK45 standard

cell library [23]. The compression circuit requires an area

equivalent to 810 NAND2 gates at a 2.8 GHz frequency. The

decompression circuit requires an area equivalent to 592

NAND2 gates at a 3.4 GHz frequency. These frequencies are

much higher than typical uncore frequencies (1ś2GHz), and

a more recent fabrication process would yield faster circuits.

Finally, COCO area overheads are much smaller than prior

techniques, such as BPC (68K NAND2 gates [24]) or C-pack

(40K NAND2 gates [13]). This result shows that COCO is

practical and simple to implement in hardware.

8

5.3 Building the base object collection

COCO allocates extra space in main memory to store base

objects. We empirically find that statically assigning one base

object per type id works well: same-type objects have the

same layout and often share many values. This approach also

makes compression faster: instead of trying multiple base

objects to decide which base object to use, COCO simply

selects the base object using the object type id (the first word

of the uncompressed object).

We find that COCO is largely insensitive to the choice

of base object, so our implementation simply uses the first

object of each type that it sees (i.e., the first object that is

evicted to a compressed level) as the base object. It may be

beneficial to dynamically update the base object or to have

multiple base objects per type; we leave this to future work.

5.4 Caching base objects

Compressing and decompressing objects require fast access

to the base object. If COCO had to access the base object from

the last-level pad or main memory on each decompression,

this would significantly increase decompression latency and

bandwidth consumption.

Instead, we serve base objects from a small and fast base

object cache, 8 KB in our implementation. This cache stores

the most frequently used base objects, and is indexed with

the base object id.

0 10 20 30 40 50
Top K popular type id

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
 o

f
to

ta
l
a
c
c
e
s
s
e
s

btree

specjbb

h2

guavacache

Figure 14. CDF of accesses to

most popular object ids.

We find that a small cache

suffices because the popular-

ity of object types is highly

skewed. Fig. 14 shows the

distribution of accesses over

themost popular object types

for four selected apps. Tens

of object type ids account for

most of the accesses.

This overhead is similar to prior dictionary-based compres-

sion algorithms, such as SC2 or FP-H (4 KB dictionary [4, 5]).

COCO only needs to fetch the base object content when it

misses in the base object cache.

6 Integrating Zippads and COCO

We have so far discussed Zippads independently from the

compression algorithm, and COCO independently from Zip-

pads. As discussed earlier, objects and arrays have different

types of redundancy, and Zippads should compress both

objects and arrays well. Therefore, Zippads uses different

compression algorithms for each: COCO for objects, and a

conventional hybrid algorithm, BDI+FPC, for arrays. To this

end, our Zippads+COCO implementation adds 4 bits of com-

pression metadata to each pointer, as shown in Table 3. The

first bit denotes whether the data is an array compressed

with BDI+FPC, and the remaining 3 bits are used by BDI+FPC

compression. If it is not a compressed array, the second bit

Uncomp. Object Uncomp. Array Comp. Object Comp. Array

Code 000X 001X 01XX 1CCC

Table 3. Zippads+COCO in-pointer compression information. X

denotes the bit does not matter, and Cs denote the bits used by

hybrid BDI+FPC encoding.

Instruction Format Operation

Allocate alloc_array rp, rs1, rs2 Same as alloc, but

Array (rs1 = size) sets the array bit

(rs2 = type id) in rp.

Table 4. alloc_array lets Zippads distinguish arrays and objects.

indicates whether it is an object compressed with COCO. If

it is also not a COCO-compressed object, the third bit indi-

cates whether it is an object or an array, which is required

for Zippads+COCO to compress data during CEs.

We also extend the ISA to distinguish objects and arrays at

allocation time: Zippads adds a new alloc_array instruc-

tion, as shown in Table 4, used to allocate arrays, and leaves

the original alloc to allocate objects. Both instructions are

identical, except that alloc_array sets the array bit in the

new pointer, whereas alloc does not.

Arrays use hybrid BDI+FPC compression, in the same

style as HyComp [4]. We use 3 bits in the pointer to select

the right decompression algorithm, and replace one choice

in the original BDI encoding (Base2-∆1) to represent FPC

compression.

Non-COCOZippads variant: To better understand the ben-

efits of Zippads and COCO, we also evaluate Zippads-BF, a

variant of Zippads that does not use COCO. Zippads-BF in-

stead uses hybrid BDI+FPC for all objects and arrays. As

we will see, Zippads-BF outperforms existing compressed

hierarchies due to its more compact layout.

6.1 Discussion

Although we have integrated COCO with Zippads in this

work, in principle COCO should be usable with other com-

pressed architectures. However, these architectures should

somehow convey object boundaries to COCO, which would

require runtime and hardware changes. For example, one

solution could be to use type-segregated object pools, where

each region of memory is dedicated to storing objects of a

particular type, instead of bump-pointer allocation; however,

this makes object allocation slower, may hurt spatial local-

ity, and requires significant metadata to map pools to object

types. Another approach could be to align all objects to cache

line boundaries. This could achieve good performance on

the compressed cache and memory, but excessive padding

would use uncompressed caches (L1 and L2) poorly.

In the end, because retrofitting an object-based compres-

sion algorithm into a cache-based hierarchy faces significant

hurdles and Zippads already demonstrates significant im-

provements over prior techniques even without COCO, we

choose to not implement COCO outside of Zippads.

9

Core

x86-64 ISA, 3.6 GHz, Westmere-like OOO [39]: 16B-wide

ifetch; 2-level bpred with 2k×10-bit BHSRs + 4k×2-bit PHT,

4-wide issue, 36-entry IQ, 128-entry ROB, 32-entry LQ/SQ

C
a
ch

e
s L1 64 KB, 8-way set-associative, split D/I caches, 64 B lines

L2 512 KB private per-core, 8-way set-associative

LLC 4 banks, 2MB/bank, 16-way set-associative, LRU

Mem 2 DDR3-1600 channels

C
M
H

Algo
HyComp-style hybrid [4]: BDI [35] (1-cycle latency) and

FPC [2] (5-cycle latency)

LLC 2× tag array, VSC [1] cache, CAMP [32] replacement policy

Mem LCP [34] with perfect, 32KB metadata cache

H
o
tp
a
d
s L1D 64 KB data array, 1K ctag entries

L1I 64 KB cache, 8-way set-associative, 64 B lines

L2 512 KB data array, 8K ctag entries

LLP 4×2MB data array, 4×32K ctag entries

Zippads
L3: 4×64K ctag array, 8 KB base object cache, COCO

compression (1-cycle latency) and hybrid BDI+FPC

Table 5. Configuration of the simulated system.

7 Evaluation

We evaluate Zippads and COCO on a mix of array-based

and object-based workloads. We evaluate on Java workloads

because Java is a memory-safe language that aligns well with

our baseline system, Hotpads. To show that Zippads is not

specific to Java or memory-safe languages, we also evaluate

on two C/C++ benchmarks in Sec. 7.5.

7.1 Methodology

We evaluate Zippads using MaxSim [38], a simulation plat-

form that combines ZSim [39], a Pin-based [27] simulator,

and Maxine [54], a 64-bit metacircular research JVM.

7.1.1 Hardware

We compare the following techniques:

Uncompressed: Our baseline uses a three-level cache hierar-

chy without compression, with parameters shown in Table 5.

Compressed memory hierarchy (CMH): We implement

a state-of-the-art compressed memory hierarchy that com-

presses both the LLC and main memory. We use HyComp-

style hybrid BDI+FPC compression (Sec. 6). The compressed

LLC uses the VSC [1] design with 2× tag array entries and

uses the CAMP compression-aware replacement policy [32].

The compressed main memory uses LCP [34], which we ide-

alize by assuming a perfect metadata cache that always hits.

Hotpads: We configure Hotpads as in prior work [19, 52],

with three levels of uncompressed pads.

Zippads: Zippads uses a compressed last-level pad with 2×

the canonical tag array entries, similar to the VSC LLC in

the compressed memory hierarchy design. We also use an

8KB base object cache to store frequently-used base objects.

Zippads uses COCO for objects and BDI+FPC for arrays; we

also evaluate a variant of Zippads, Zippads-BF, that always

uses BDI+FPC for objects and arrays, like the CMH design.

Java Benchmark Input

fft 221 points

spmv m = 1M, nonzero = 64M
h2 default input: 4K transactions

specjbb 1 warehouse per thread, 50K transactions
pagerank amazon-2008 graph
coloring amazon-2008 graph

btree ycsb-c, 2M key-value pairs, 4M queries
guavacache ycsb-c, 4M key-value pairs, 4M queries

C Benchmark Input

gcbench 16M nodes, each node is 32B large
silo tpcc, 1 warehouse, 8K transactions

Table 6. Workloads and inputs used.

Cache scrubbing: Modern languages like Java incur mem-

ory overheads due to garbage collection [56]. Therefore,

we also implement cooperative cache scrubbing [44], which

adds instructions to zero and scrub (i.e., undirty) cache lines

and use them in the JVM for both the uncompressed and

compressed cache hierarchies to reduce memory traffic due

to object allocation and recycling. Scrubbing does not im-

prove compression ratio, but it improves the performance of

garbage-collected languages with simple mechanisms.

7.1.2 Software

JVM: Our cache-based baseline uses the Maxine JVM with

a tuned, stop-the-world generational GC with a 64MB young

heap. Hotpads and Zippads use a modified JIT compiler that

follows their new ISA.

Workloads: We study eight Java workloads from different

domains. We select workloads with heap sizes larger than

100MB, so that they exercise main memory. We use two

scientific workloads, fft and spmv from the Scimark2 [36]

suite; two database workloads, h2 from the Dacapo [8] suite1

and SPECjbb2005 [48]; two graph processing workloads,

PageRank and Coloring from JgraphT [28], a popular Java

graph library; GuavaCache, a key-value store from Google

Core Libraries for Java [21], and BTree, the example we saw

in Sec. 2, from the JDBM [26] database.

Table 6 describes their input sets. We fast-forward JVM ini-

tialization and warm up the JIT compiler like prior work [8]

by running the same workload multiple times before start-

ing simulation. We run all workloads to completion to avoid

sampling bias in compression ratio [16]. For each workload,

we first find the smallest heap size that does not crash, and

use 2× that size. This is standard methodology [9, 44].

In addition to Java workloads, we also study two C/C++

workloads. GCBench [10] is a C benchmark that creates, tra-

verses, and destroys binary trees. GCBench’s default input

incurs only a 16MB active memory footprint, so we scale

the input to incur a 512MB active memory footprint, which

stresses main memory. Silo [53] is a C++ in-memory OLTP

1We evaluate Java workloads with large footprints (>100MB min heap size);

h2 is the only such one from DaCapo.

10

0.5

1.0

1.5

2.0

2.5

C
o

m
p

re
s
s
io

n
 R

a
ti
o

fft
spmv h2

specjbb

pagerank
coloring

btree

guavacache
gmean

Uncomp. CMH Hotpads Zippads-BF Zippads

Figure 15. Compression ratio of different schemes.

database, configured to run the TPC-C benchmark. Both

the baseline and CMH use high-performance allocators (tc-

malloc [20] for GCBench and jemalloc [18] for Silo). For

Hotpads and Zippads, we modify these workloads to use the

Hotpads and Zippads ISAs to allocate and access objects.

Metrics: We report the average compression ratio, sampled

every 100M cycles, of different schemes. We also report total

memory traffic (in bytes) and performance (inverse of execu-

tion time). All metrics are normalized to the baseline system

without compression.

7.2 Zippads improves compression ratio

Fig. 15 shows the compression ratio of the five memory hier-

archies we compare. Each group of bars shows results for a

different application. Compressed hierarchies have their bars

hatched; uncompressed hierarchies are shown unhatched.

CMH compresses memory footprint effectively for array-

dominated scientific workloads fft and spmv, achieving

compression ratios of 1.67 and 1.53, respectively. Zippads also

compresses these two workloads well and achieves slightly

higher compression ratios than CMH, 1.97 and 1.79, because

it better compresses non-heap data (e.g., code and JVM state),

which is not array-based. There is no difference between

Zippads-BF and Zippads because these two workloads are

dominated by arrays, which Zippads always compresses with

hybrid BDI+FPC.

The otherworkloads are object-dominated, and differences

across techniques are larger. CMH only compresses around

10% of the total footprint and has compression ratios between

1.06 to 1.27. By contrast, Zippads achieves high compression

ratios. The difference in compression ratio between CMH

and Zippads correlates well with the ratio of object footprint

shown in Fig. 1. For example, guavacache has the highest

ratio for objects in the main memory footprint, and the differ-

ence between CMH and Zippads is also the highest: Zippads

compresses 2× better than CMH. Meanwhile, specjbb has

the lowest ratio of objects (around 40%) in the heap footprint,

so the difference in compression ratio between CMH and

Zippads is also the lowest among these workloads.

There is also a large difference between Zippads-BF and

Zippads in these applications. Owing to its more compact

layout, Zippads-BF achieves compression ratios of 1.56ś1.78

in these applications, significantly higher than CMH, despite

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
e

m
o

ry
 T

ra
ff

ic
 (

B
)

fft
spmv h2

specjbb

pagerank
coloring

btree

guavacache
gmean

Uncomp.

CMH

Scrub.

CMH+S

Hotpads

Zippads

Figure 16. Normalized main memory traffic of different schemes.

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

S
p
e
e
d
u
p

fft
spmv h2

specjbb

pagerank
coloring

btree

guavacache
gmean

1.8x 1.9x

Uncomp.

CMH

Scrub.

CMH+S

Hotpads

Zippads

Figure 17. Performance of different schemes.

only using BDI+FPC. By contrast, Zippads uses COCO for

objects, which increases compression ratios to 1.82ś2.24.

On average, CMH achieves a compression ratio of only

1.24, while Zippads-BF and Zippads achieve ratios of 1.70

and 2.01, i.e., 1.37× and 1.63× better than CMH. These results

show that compressing objects rather than cache lines and

adopting an object-specific compression algorithm are both

important contributions to the effectiveness of Zippads.

7.3 Zippads reduces main memory traffic

Fig. 16 shows the memory traffic of all schemes, measured in

total bytes read and written, normalized to Uncompressed.

In addition to schemes we saw above, Fig. 16 also reports the

Scrubbing variants of Uncompressed and CMH (CMH+S).

We find that CMH reduces main memory traffic for many

applications for two main reasons. First, the compressed

LLC has a higher effective capacity, and thus higher cache

hit rate. This helps cache-capacity sensitive applications, in

particular h2, specjbb, and btree. Second, the compressed

main memory (LCP) lets the system fetch consecutive cache

lines in a single 64-byte burst, which helps applications with

high spatial locality. This is the case for spmv, coloring, and

pagerank. On average, CMH reduces main memory traffic

by 15% over Uncompressed.

Scrubbing helps the allocation-heavy database workloads,

reducing their traffic by 60%. But Scrubbing is not as effec-

tive for others, especially for scientific workloads that only

allocate once. On average, Scrubbing reduces main memory

traffic by 15%. CMH and Scrubbing (CMH+S) yield additive

benefits since they are orthogonal techniques. CMH+S saves

30% of main memory traffic on average.

Hotpads does not reduce traffic for scientific workloads,

but it saves memory traffic significantly for object-based

workloads because of its object-friendly features: object-gra-

11

nularity data movement, in-pad allocation, and hardware-

based in-pad garbage collection. These features especially

help h2, specjbb, and guavacache. On average, Hotpads

reduces main memory traffic by 66%.

Zippads improves over Hotpads by adding the benefits of

high compression ratios. In workloads where CMH saves

significant traffic, such as spmv, h2, and btree, Zippads also

yields significant benefits over Hotpads. Like Hotpads, Zip-

pads also benefits guavacache significantly, whereas other

techniques yield little benefit. On average, Zippads reduces

main memory traffic by 2× over the baseline, by 56% over

CMH+S, and by 22% over Hotpads.

7.4 Zippads improves system performance

Fig. 17 shows the end-to-end performance of the different

memory hierarchies. The performance improvement of dif-

ferent schemes correlates well with their memory traffic

reduction. For example, CMH reduces the memory traffic for

spmv, and it also improves performance by 12%. Scrubbing

reduces memory traffic the most for database workloads and

thus improves performance the most for them.

Hotpads’s object-level operation and in-pad memory man-

agement provide large benefits across all object-based pro-

grams. Zippads again adds the benefits of memory compres-

sion over Hotpads, helping spmv, h2, and btree.

On average, CMH improves performance by 5%, Scrub-

bing by 6%, CMH+S by 11%, and Hotpads by 24%. Zippads

improves performance over Uncompressed by 30%. This rep-

resents a 5% improvement over Hotpads and a 17% improve-

ment over CMH+S. Overall, these results show that Zippads

incurs small compression overheads, so compression consis-

tently improves performance.

7.5 Zippads is effective on C/C++ benchmarks

Zippads is not specific to Java workloads, and also helps

object-based programs in unmanaged languages. To show

this, Fig. 18 compares the compression ratio, normalizedmain

memory traffic, and performance of the different schemes on

two object-heavy C/C++ workloads. Small objects occupy

over 95% of the memory footprint in these workloads, so

trends are similar to those of object-heavy Java workloads.

First, CMH achieves negligible memory footprint reduc-

tions for these workloads. By contrast, Zippads-BF achieves

high compression ratios for these workloads, 1.61 and 1.23,

thanks to its compact layout; and Zippads achieves even

higher compression ratios, 2.01 and 1.70, thanks to COCO.

Second, all compression techniques reduce main memory

traffic. CMH’s reduced memory traffic stem from accesses

to freshly allocated pages. These pages are zeroed and thus

compress well. Thus, CMH reduces main memory traffic by

47% even though it does not compress the data produced by

these workloads. Hotpads reduces main memory traffic by

57%, and Zippads-BF and Zippads reduce traffic further, by

85% and 2.2×, by effectively compressing main memory.

Uncomp. CMH Hotpads Zippads-BF Zippads

0.5

1.0

1.5

2.0

2.5

C
o

m
p

re
s
s
io

n
 R

a
ti
o

gcbench silo

(a) Compression ratio.

0.0

0.2

0.4

0.6

0.8

1.0

M
e

m
o

ry
 T

ra
ff

ic
 (

B
)

gcbench silo

(b) Memory traffic.

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

S
p
e
e
d
u
p

gcbench silo

2.7x2.7x2.7x

(c) Performance.

Figure 18. Results for C/C++ benchmarks.

Finally, CMH achieves a 20% speedup over the uncom-

pressed baseline in GCbench due to its reduced memory

traffic. Hotpads and Zippads are both 2.7× faster than the

baseline. These speedups stem fromHotpads features, includ-

ing in-hierarchy allocation and collection-evictions. Zippads

preserves Hotpads’s high performance while achieving a

high compression ratio. Silo is neither memory-intensive

nor allocation-intensive, so memory hierarchy compression

has modest performance benefits: CMH only improves per-

formance by 4%, Zippads-BF by 6%, and Zippads by 10%.

7.6 Zippads analysis

Base object cache misses: Fig. 19 shows the number of

misses per kilo-cycle (MPKC) in the COCO base object cache.

Most workloads have fewer than 0.001 MPKC. The database

workloads have slightly more misses, but are still around 0.01

MPKC. These misses reduce performance by less than 0.1%.

Moreover, a 16KB base object cache does not help much. We

thus conclude that a small base object cache is effective.

Overflow frequency: Fig. 20 shows the rate of overflows

due to dirty writebacks, in overflows per thousand cycles.

Overflows are rare across all workloads we evaluate. They

happen most frequently in guavacache, but still at a low

frequency of 0.4 overflows per Kcycle. For other workloads,

overflows happen less than 0.01 times per Kcycle.

Hardware overhead analysis: Table 7 shows the total stor-

age per last-level cache or pad of different schemes. Hotpads

adds 6.5% storage over the baseline for the pad metadata and

canonical tag entries. CMH adds 12.7% over the baseline due

to 2× tags, encoding bits in tag entries, and a 32KB metadata

10-6

10-5

10-4

10-3

10-2

10-1

100

M
is

s
e
s
 p

e
r

K
c
y
c
le

fft

sp
m

v h2

sp
ecjb

b

pagera
nk

co
lo

rin
g
btre

e

guava
ca

ch
e

8KB 16KB

Figure 19. Rate of base object

cache misses (in misses per Kcy-

cle, log scale).

10-6

10-5

10-4

10-3

10-2

10-1

100

O
v
e
rf

lo
w

s
 p

e
r

K
c
y
c
le

fft

sp
m

v h2

sp
ecjb

b

pagera
nk

co
lo

rin
g
btre

e

guava
ca

ch
e

Figure 20. Rate of dirty write-

back overflows (in overflows per

Kcycle, log scale).

12

Tag Data Extra Total (KB) Increased by (%)

Baseline 160 2048 0 2208 0%

Hotpads 208 2048 96 2352 6.5%

CMH 408 2048 32 2488 12.7%

Zippads 416 2048 96 + 8 2568 16.3%

9.2% over Hotpads 3.2% over CMH

Table 7. On-chip storage (KB) per last-level cache/pad bank.

cache. Similarly, Zippads adds 9.2% over Hotpads due to dou-

bling the number of canonical tags (to track more objects)

and the 8KB base object cache. This is only 3.2% extra storage

over the CMH LLC and 16.3% over the baseline. Overall, this

shows similar on-chip storage requirements as prior com-

pressed caches. These overheads are uniformly offset by the

high compression ratios that Zippads achieves. Moreover,

most overheads stem from the larger tag array, which can

be removed if only compressed main memory (2x smaller

memory footprint) is needed.

8 Additional related work

Prior work on software techniques to reduce the memory

footprint of managed languages has also considered object-

level compression. They compress objects by removing ze-

ros [12, 45] or frequent field values [11]. COCO is inspired by

these techniques. However, prior software techniques must

be simple and must be used selectively to limit overheads.

By contrast, COCO can be used to compress all objects.

Discontiguous array designs [12, 43] divide arrays into

indexed chunks to avoid fragmentation. Zippads’s subobject

compression shares the same motivation.

Prior work in hardware deduplication [14, 47, 50] also

seeks to reduce memory footprint. However, deduplication

techniques work well only when applications have coarse-

grained redundancy, with large chunks of identical data.

COCO can be seen as a byte-level deduplication technique.

Some prior work in compression has also considered band-

width usage and link utilization. MemZip [46] places com-

pressed cache lines and theirmetadata for address translation

next to each other to reduce bandwidth usage. Toggle-aware

compression [31] considers the extra dynamic energy con-

sumed by on-chip and off-chip links due to the more frequent

toggling caused by compression. Zippads can be combined

with these techniques (e.g., data bus inversion) to further

reduce the energy consumed by links.

9 Conclusion

Conventional compressed hierarchies focus on compressing

cache lines, which limits compression efficiency and adds

substantial overheads. In this paper, we leverage two insights

about object-based programs to improve compressed hier-

archies. First, these programs perform object-level accesses,

so objects are the right unit of compression. Second, there is

significant redundancy across objects. Using these insights,

we propose Zippads, the first object-based compressed mem-

ory hierarchy, and COCO, a new, cross-object-compression

algorithm. Zippads+COCO improves compression ratio over

a combination of state-of-the-art techniques by up to 2× and

by 1.63× on average. It also reduces memory traffic by 56%

and improves performance by 17%.

Acknowledgments

We sincerely thank Maleen Abeydeera, Joel Emer, Mark Jef-

frey, Anurag Mukkara, Suvinay Subramanian, Victor Ying,

and the anonymous reviewers for their feedback. We thank

Nathan Beckmann for sharing his compressed cache and

CAMP implementation [6, 7], and Gennady Pekhimenko for

sharing his BDI and FPC implementations. This work was

supported in part by NSF grant CAREER-1452994 and by a

grant from the Qatar Computing Research Institute.

References
[1] Alaa R Alameldeen and David A Wood. 2004. Adaptive cache com-

pression for high-performance processors. In Proc. ISCA-31.

[2] Alaa R Alameldeen and David AWood. 2004. Frequent pattern compres-

sion: A significance-based compression scheme for L2 caches. Technical

Report 1500. Dept. Comp. Sci., Univ. Wisconsin-Madison.

[3] Bowen Alpern, Steve Augart, Stephen M Blackburn, Maria Butrico,

AnthonyCocchi, Perry Cheng, Julian Dolby, Stephen Fink,DavidGrove,

Michael Hind, et al. 2005. The Jikes research virtual machine project:

Building an open-source research community. IBM Systems Journal

44, 2 (2005).

[4] Angelos Arelakis, Fredrik Dahlgren, and Per Stenstrom. 2015. HyComp:

A hybrid cache compression method for selection of data-type-specific

compression methods. In Proc. MICRO-48.

[5] Angelos Arelakis and Per Stenstrom. 2014. SC2: A statistical compres-

sion cache scheme. In Proc. ISCA-41.

[6] Nathan Beckmann and Daniel Sanchez. 2015. Bridging Theory and

Practice in Cache Replacement. Technical Report MIT-CSAIL-TR-2015-

034. Massachusetts Institute of Technology.

[7] Nathan Beckmann and Daniel Sanchez. 2017. Maximizing Cache

Performance Under Uncertainty. In Proc. HPCA-23.

[8] Stephen M Blackburn, Robin Garner, Chris Hoffmann, Asjad M Khang,

Kathryn S McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg,

Daniel Frampton, Samuel Z Guyer, Martin Hirzel, Antony Hosking,

Maria Jump, Han Lee, J Eliot B Moss, Aashish Phansalkar, Darko Ste-

fanovic, Thomas VanDrunen, Daniel von Dincklage, and Ben Wieder-

mann. 2006. The DaCapo benchmarks: Java benchmarking develop-

ment and analysis. In Proc. OOPSLA.

[9] Stephen M Blackburn and Kathryn S McKinley. 2008. Immix: A mark-

region garbage collector with space efficiency, fast collection, and

mutator performance. In Proc. PLDI.

[10] Hans-J Boehm. 2002. An artificial garbage collection benchmark.

http://hboehm.info/gc/gc_bench.html, archived at https://perma.cc/

Y4BY-7RN4.

[11] Guangyu Chen, Mahmut Kandemir, and Mary J Irwin. 2005. Exploit-

ing frequent field values in Java objects for reducing heap memory

requirements. In VEE.

[12] Guangyu Chen, M Kandemir, Narayanan Vijaykrishnan, Mary Jane

Irwin, Bernd Mathiske, and Mario Wolczko. 2003. Heap compression

for memory-constrained Java environments. In Proc. OOPSLA.

[13] Xi Chen, Lei Yang, Robert P Dick, Li Shang, and Haris Lekatsas. 2010.

C-Pack: A high-performance microprocessor cache compression algo-

rithm. IEEE transactions on very large scale integration (VLSI) systems

13

18, 8 (2010).

[14] David Cheriton, Amin Firoozshahian, Alex Solomatnikov, John P

Stevenson, and Omid Azizi. 2012. HICAMP: Architectural support

for efficient concurrency-safe shared structured data access. In Proc.

ASPLOS-XVII.

[15] Esha Choukse, Mattan Erez, and Alaa Alameldeen. 2018. Compresso:

Pragmatic main memory compression. In Proc. MICRO-51.

[16] Esha Choukse, Mattan Erez, and Alaa Alameldeen. 2018. Compress-

Points: An evaluation methodology for compressed memory systems.

Computer Architecture Letters 17, 2 (2018).

[17] Magnus Ekman and Per Stenstrom. 2005. A robust main-memory

compression scheme. In Proc. ISCA-32.

[18] Jason Evans. 2005. jemalloc http://jemalloc.net/.

[19] Yee Ling Gan. 2018. Redesigning the memory hierarchy for memory-safe

programming languages. Master’s thesis. Massachusetts Institute of

Technology.

[20] Sanjay Ghemawat and Paul Menage. 2005. TCMalloc: Thread-Caching

Malloc http://goog-perftools.sourceforge.net/doc/tcmalloc.html.

[21] Google. 2004. Guava: Google Core Libraries for Java. https://github.

com/google/guava.

[22] Erik G Hallnor and Steven K Reinhardt. 2005. A unified compressed

memory hierarchy. In Proc. HPCA-11.

[23] Nangate Inc. 2008. The NanGate 45nm Open Cell Library. http:

//www.nangate.com/?page_id=2325.

[24] Jungrae Kim, Michael Sullivan, Esha Choukse, and Mattan Erez. 2016.

Bit-plane compression: Transforming data for better compression in

many-core architectures. In Proc. ISCA-43.

[25] Seikwon Kim, Seonyoung Lee, Taehoon Kim, and Jaehyuk Huh. 2017.

Transparent dual memory compression architecture. In Proc. PACT-26.

[26] Jan Kotek. 2012. JDBM: A simple transactional persistent engine for

Java. http://jdbm.sourceforge.net/.

[27] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,

Geoff Lowney, StevenWallace,Vijay Janapa Reddi, andKimHazelwood.

2005. Pin: Building customized program analysis tools with dynamic

instrumentation. In Proc. PLDI.

[28] Barak Naveh. 2003. JGraphT. http://jgrapht.org.

[29] TriMNguyen andDavidWentzlaff. 2015. MORC: Amanycore-oriented

compressed cache. In Proc. MICRO-48.

[30] Biswabandan Panda and André Seznec. 2016. Dictionary sharing: An

efficient cache compression scheme for compressed caches. In Proc.

MICRO-49.

[31] Gennady Pekhimenko, Evgeny Bolotin, Nandita Vijaykumar, Onur

Mutlu, Todd C Mowry, and Stephen W Keckler. 2016. A case for

toggle-aware compression for GPU systems. In Proc. HPCA-22.

[32] Gennady Pekhimenko, Tyler Huberty, Rui Cai, Onur Mutlu, Phillip B

Gibbons, Michael A Kozuch, and Todd C Mowry. 2015. Exploiting

compressed block size as an indicator of future reuse. In Proc. HPCA-21.

[33] Gennady Pekhimenko, Vivek Seshadri, Yoongu Kim, Hongyi Xin, Onur

Mutlu, Phillip B Gibbons, Michael A Kozuch, and Todd C Mowry. 2012.

Linearly compressed pages: A low-complexity, low-latency main memory

compression framework. Technical Report SAFARI 2012-002. Carnegie

Mellon University.

[34] Gennady Pekhimenko, Vivek Seshadri, Yoongu Kim, Hongyi Xin, Onur

Mutlu, Phillip B Gibbons, Michael A Kozuch, and Todd C Mowry.

2013. Linearly compressed pages: a low-complexity, low-latency main

memory compression framework. In Proc. MICRO-46.

[35] Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Phillip B Gibbons,

Michael A Kozuch, and Todd C Mowry. 2012. Base-delta-immediate

compression: Practical data compression for on-chip caches. In Proc.

PACT-21.

[36] Roldan Pozo and Bruce Miller. 2004. SciMark 2.0. https://math.nist.

gov/scimark2/.

[37] Moinuddin K. Qureshi, David Thompson, and Yale N. Patt. 2005. The

V-Way cache: Demand based associativity via global replacement. In

Proc. ISCA-32.

[38] Andrey Rodchenko, Christos Kotselidis, Andy Nisbet, Antoniu Pop,

and Mikel Luján. 2017. MaxSim: A simulation platform for managed

applications. In Proc. ISPASS.

[39] Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and accurate

microarchitectural simulation of thousand-core systems. In Proc. ISCA-

40.

[40] Somayeh Sardashti, Angelos Arelakis, Per Stenström, and David A

Wood. 2015. A primer on compression in the memory hierarchy.

Synthesis Lectures on Computer Architecture 10, 5 (2015).

[41] Somayeh Sardashti, André Seznec, and David A Wood. 2014. Skewed

compressed caches. In Proc. MICRO-47.

[42] Somayeh Sardashti and David A Wood. 2013. Decoupled compressed

cache: Exploiting spatial locality for energy-optimized compressed

caching. In Proc. MICRO-46.

[43] Jennifer B Sartor, Stephen M Blackburn, Daniel Frampton, Martin

Hirzel, and Kathryn S McKinley. 2010. Z-rays: divide arrays and

conquer speed and flexibility. In Proc. PLDI.

[44] Jennifer B Sartor, Wim Heirman, Stephen M Blackburn, Lieven Eeck-

hout, and Kathryn S McKinley. 2014. Cooperative cache scrubbing. In

Proc. PACT-23.

[45] Jennifer B Sartor, Martin Hirzel, and Kathryn S McKinley. 2008. No

bit left behind: The limits of heap data compression. In Proc. ISMM.

[46] Ali Shafiee, Meysam Taassori, Rajeev Balasubramonian, and Al Davis.

2014. MemZip: Exploring unconventional benefits from memory

compression. In Proc. HPCA-20.

[47] Dimitrios Skarlatos, Nam Sung Kim, and Josep Torrellas. 2017. Page-

Forge: A near-memory content-aware page-merging architecture. In

Proc. MICRO-50.

[48] Standard Performance Evaluation Corporation. 2006. SPECjbb2005

(Java Server Benchmark). https://www.spec.org/jbb2005/.

[49] Sun Microsystems. 2006. Memory management in the Java HotSpot

virtual machine. http://www.oracle.com/technetwork/java/javase/

memorymanagement-whitepaper-150215.pdf.

[50] Yingying Tian, Samira M Khan, Daniel A Jiménez, and Gabriel H Loh.

2016. Last-level cache deduplication. In Proc. ICS’16.

[51] R Brett Tremaine, Peter A Franaszek, John T Robinson, Charles O

Schulz, T Basil Smith, Michael E Wazlowski, and P Maurice Bland.

2001. IBM memory expansion technology (MXT). IBM Journal of

Research and Development (2001).

[52] Po-An Tsai, Yee Ling Gan, and Daniel Sanchez. 2018. Rethinking the

memory hierarchy for modern languages. In Proc. MICRO-51.

[53] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel

Madden. 2013. Speedy transactions in multicore in-memory databases.

In Proc. SOSP-24.

[54] Christian Wimmer, Michael Haupt, Michael L Van De Vanter, Mick

Jordan, Laurent Daynès, and Douglas Simon. 2013. Maxine: An ap-

proachable virtual machine for, and in, Java. ACM Transactions on

Architecture and Code Optimization (TACO) 9, 4 (2013).

[55] Clifford Wolf. 2012. Yosys Open Synthesis Suite. http://www.clifford.

at/yosys/.

[56] Yi Zhao, Jin Shi, Kai Zheng, Haichuan Wang, Haibo Lin, and Ling

Shao. 2009. Allocation wall: A limiting factor of Java applications on

emerging multi-core platforms. In Proc. OOPSLA.

14

	Abstract
	1 Introduction
	2 Background and motivation
	2.1 Related work in compressed hierarchies
	2.2 Opportunities for object-based programs

	3 Baseline system: Hotpads
	3.1 Hotpads overview
	3.2 Hotpads example
	3.3 Hotpads implementation details

	4 Zippads: An object-based compressed memory hierarchy
	4.1 Compressing objects
	4.2 Encoding compression information in pointers
	4.3 Compressing large objects

	5 COCO: Cross-object-compression algorithm
	5.1 COCO compression format
	5.2 Compression and decompression circuits
	5.3 Building the base object collection
	5.4 Caching base objects

	6 Integrating Zippads and COCO
	6.1 Discussion

	7 Evaluation
	7.1 Methodology
	7.2 Zippads improves compression ratio
	7.3 Zippads reduces main memory traffic
	7.4 Zippads improves system performance
	7.5 Zippads is effective on C/C++ benchmarks
	7.6 Zippads analysis

	8 Additional related work
	9 Conclusion
	Acknowledgments
	References

