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1. Locating the compressed cache line (architecture)

Fixed-size cache lines become variable-size compressed blocks

 HW needs to translate uncompressed addresses to compressed blocks

2. Compressing cache lines (algorithm)

Cache lines are small, and decompression latency is on the critical path

 HW cannot compress more than 64B at a time

 Only low-latency algorithms are practical
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 They aim to quickly translate uncompressed to compressed addresses

 Example: Linearly compressed pages [LCP, Pekhimenko et al., MICRO’13]

 Other techniques make similar tradeoffs

 E.g., 4 different sizes for cache lines in a page
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[RMC, Ekman and Stenstorm, HPCA’06]

[DMC, Kim et al., PACT’17]

[Compresso, Choukse et al, MICRO’18]
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Object A1 Object B1 Object A2 Object C Object B2

Uncompressed layout

Insight 1:

Object-based applications always follow pointers to access objects

Idea 1:

Point directly to the location of compressed objects to avoid 

uncompressed-to-compressed address translation!
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Insight 2:

There is significant redundancy across objects of the same type

Idea 2: 

Compress across objects, not within cache lines, 

to leverage more redundancy!

Object A1 Object B1 Object A2 Object C Object B2

Compressed layout

∆ A1 ∆ B1 ∆ A2 ∆ C ∆ B2

Further compressed layout

∆ A1 =
Bytes that differ from 

a shared base object 
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 Ideally, we want a memory system that

 Moves objects, rather than cache lines

 Transparently updates pointers during compression

 Therefore, we realize our ideas on Hotpads [Tsai et al., MICRO’18]

 A recent object-based memory hierarchy
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 Data array

 Managed as a circular buffer using simple 

sequential allocation

 Stores variable-sized objects compactly

 Can store variable-sized compressed objects    

compactly too!

 C-Tags

 Decoupled tag store

 Metadata

 Pointer? valid? dirty? recently-used?
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Hotpads takes control of the 

memory layout, hides pointers 

from software, and encodes 

object information in pointers

Compressed size Compressed object address (48b)

47 04863 50

Fetching compressed size words from the starting compressed

address yields the entire compressed object
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Hotpads updates pointers among objects on evictions
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 Bulk eviction amortizes the cost of finding and updating pointers across objects

 Since updating pointers already happens in Hotpads, 

there is no extra cost to update them to compressed locations!
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 Zippads leverages Hotpads to

 Manipulate and compress objects rather than cache lines

 Avoid translation by pointing directly to compressed objects during evictions
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 Objects are compressed during bulk object evictions
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in private levels

Object

(uncompressed)
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New object

(compressed)

When objects are evicted into a 

compressed level, they are compressed in 

that level and store compactly

Piggyback the bulk eviction process to find and update 

all pointers at once, amortizing update costs
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 Every object access starts with a pointer!

 Pointers are updated to the compressed locations, so no translation is needed

 Prior work shows it’s beneficial to use different algorithms for various patterns

 Zippads encodes compression metadata in pointers to decompress objects quickly

 Zippads thus knows how to locate and what decompression algorithm to use 

when accessing compressed objects with pointers

Compressed size Compressed object address (48-X bits)

48 48-X 063 50

Compression encoding bits (X bits)
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 COCO exploits similarity across objects with shared base objects

 A collection of representative objects
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COCO: Cross-object-compression algorithm

18

 COCO requires accessing base objects for every compression/decompression

 Caching base objects avoids extra latency and bandwidth to fetch them

 A small (8KB) base object cache works well

 Few types account for most accesses
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 Compressing large objects with subobjects and allocate-on-access

 COCO compression/decompression circuit RTL implementation details

 Details on integrating Zippads and COCO

 Discussion on using COCO with conventional memory hierarchies
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 We simulate Zippads using MaxSim [Rodchenko et al., ISPASS’17]

 A simulator combining ZSim and Maxine JVM

 We compare 4 schemes

 Uncomp: Conventional 3-level cache hierarchy with no compression

 CMH: Compressed memory hierarchy

 LLC: VSC [Alameldeen and Wood, ISCA’04] Main memory: LCP [Pekhimenko et al., MICRO’13]

 Algorithm: HyComp-style hybrid algorithm [Arelakis et al., MICRO’15] 

 BDI [Pekhimenko et al., PACT’12] + FPC [Alameldeen and Wood, ISCA’04]

 Hotpads: The baseline system we build on

 Zippads: With and without COCO

 Workloads: 8 Java apps with large memory footprint from different domains
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1. Both Zippads and CMH work 

well in array-heavy apps

2. Zippads works much better than 

CMH in object-heavy apps

70%

better

2X

better

Same algo as CMH CMH algo + COCO

Only 24% better 

than Uncomp.
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2. Hotpads reduces traffic by 

66% with object-based data 

movement 

1. CMH reduces traffic by 15% 

with data compression

3. Zippads combines the benefits 

of both, reducing traffic by 2X 

(70% less traffic than CMH)

Similar trend in performance:

Zippads is 24% faster than CMH; 

30% faster than Uncomp.

Lower is betterHigher is better
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 We study two object-heavy benchmarks written in C/C++

Zippads again works much better than 

CMH in compressing memory footprint

Zippads improves both memory 

traffic and performance the most



See paper for more evaluation results
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 Zippads hardware storage overhead analysis

 COCO RTL implementation result

 Comparison against CMH with hardware support for memory management

 Zippads analysis

 Base object cache size sensitivity study

 Overflow frequency
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