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i Data movement limits performance and efficiency
A A memory access také80X the latency and.000X the energy of a FP operation

i Applying hardwarebased compression to the memory hierarchy to reduc
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Locating the compressed cache lanehjtecture

Fixedsize cache lines become variaklee compressed blocks
A HW needs to translate uncompressed addresses to compressed bl

Compressing cache linagorithm)
= Cache lines are small, and decompression latency is on the critical pa
r A HW cannot compress more than 64B at a time

oo A Only lowlatency algorithms are practical
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Prior compressed memory architectures sacrificeq
compression ratio for low latency

They aim to quicklyanslateuncompressed to compressed addresses
Example: Linearly compressed pages

N gzg IIiJr?egSe ggBB I'iorf‘gs LCP compresses page by page
Original to leverage VM for translation
cache line Translation
address via the

D VM system . : :
compressed o | —— | o | LCPforcescache linesin the
address same page [0 compress into
Uncompressed Compressed the same size
format format A Sacrifice compressionratio

Other techniques make similar tradeoffs
E.qg., 4 different sizes for cache lines in a page
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Work poorly on objectsHeterogeneous, irregular

64B cache line
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Objectsnot cache lines, are the natural unit of compress

Insight 1.
Objectbased applicationsalways follow pointers to access objects

Uncompressed layout

Object Al Object B1 Object A2 Object C Object B2

ldea 1:
Q Point directlyto the location of compressed objects to avoid

uncompressedo-compressed address translation!
Compressed layout

Object Al Object B1 [Object A2 Object C Object B2
0x00 OXDF
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ODbjectsnot cache lines, are the natural unt@mhpression

Insight 2:
There issignificant redundancyacross objects of the same type
Compressed layout

Object Al Object B1 [Object A2 Object C Object B2

ldea 2:
P Compressacrossobjects,not within cache lines,

to leverage more redundancy!
Further compressed layout

k Al kBl [k A2 k C k B2

N (I 3 | €

_ Byteghat differ from
a sharedbaseobject
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Compressing objects would be hard to do on cache hierarchies

ldeally, we want a memory system that
Moves objects, rather than cache lines
Transparently updates pointers during compression

Therefore, we realize our ideas blotpads;
A recenbbjectbasednemory hierarchy
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Baseline systerHotpadsoverview

= . Data array

{ Managed as a circular buffer using simple
sequential allocation

A Stores variablesized objects compactly

A Can storevariable-sizedcompresseabijects
compactly too!

i CG-Tags
A Decoupled tag store
i Metadata
A Pointer? valid? dirty? recentiged?

Free space

Metadata
(word/object)

C-Tags
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= = = = == === =14 RegFile L1 Pad L2 Pad Main Mem
I Example object:
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|
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' ListNode next: | Free l Initial state.
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Hotpadsmoves objects instead of cache lines

- = == ======1 RegFile
I Example object: | 9
I'class ListNode { i | ro
Q : int value; L
ListNode next;
y : 2
L e - — J r3
I Program code: I 0
e lint v= A.value ; | [
e e - o - — J rl
|_Pr3grar; code: | r2
Lv: A.nextvalue : ,I r3
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from software, and encodes
object information in pointers
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Hotpadsupdates pointers among objects on evict

' L1 pad is full because of

! = L1 pad is now full,
: : 7 triggering abulk
| allocate objects , eviction in HW.

! fetched objecter newly

| After an L1 bulk eviction: | A T—
G. Pointers are updatedto : / N - '7
: point to the new locations. : space F_ . B |
|

Copied objects¥) are New objectsl)) are
back to old location sequentially allocated

4 Bulk eviction amortizes the cost of finding and updating pointers across ol

4 Since updating pointers already happens in Hotpads,

there isno extra cost to update them to compressed locations!
12
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i Zippads leverages Hotpads to
A Manipulate and compress objects rather than cache lines
A Avoid translation by pointing directly to compressed objects during evictions
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Zippadscompresses objects when they mov«Q

i Objects are compressed during bulk object evictions

Case 1: Newly moved objects L3 pad
: : Objects
Object Compression _
(compressed)
L2 pad Free space

Whenobjectsare evicted inta
compressed levahey are compressad
that level and store compactly

Piggyback the bulk eviction process to find and upc
all pointers at once, amortizing update costs

Objects startheir lifetimeuncompressed
In private levels
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i Objects are compressed during bobject evictions
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i Objects are compressed during bobject evictions

Objects
Case 2: Dirtywriteback L3 pad .: : .-.- ..--.
|  Objects \d 5128 2
Updated object Ml Compression Gze <=0 e Z
(uncompressed HW \¢ neW
Free space
L2 pad Objects
Free space Objects
If ney, Forwardingthunk
Periodiccompaction reclaims those unused spaces Objects

(Bulk eviction in arhip pads, GC in main memory)

Updated object
(compressed)
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Zippadsuses pointers to accelerate decompresQw

i Every object access starts with a pointer!
A Pointers are updated to the compressed locations, so no translation is needed

iPri1 or work shows 1 t0s benefici al
A Zippads encodes compression metadata in pointers to decompress objects gt

63 50 48 48- X 0
Compressed size Compressed object address (48bits)

= Compression encoding bits (X bits)

i Zippads thus knows how to locate and what decompression algorithm tc
when accessing compressed objects with pointers
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i COCO exploits similarity across objects with shbaseé objects
A A collection of representative objects

Base object FEEEm-

[
: Compressed object
[ Pointer to the
: base object
Uncompressec Compression Bytes that are
object HW different
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COCO:Crossobjectcampression algorithm _E

COCO reqguires accessing base objects for every compression/decompr

Caching base objects avoids extra latency and bandwidth to fetch them

- 1.0 [

A small (8KB) base object cache works w TR

- R NI E A SN ]
A Few types account for most accesses 8 e

§ ] SR S S

g ——  btree

= 04pe SRR specjbb

) ) | S S h2

© F S I guavacache

0.0 '

0 10 20 30 40 50
Top K popular type id
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See paper for additionafeatures and details

Compressing largebjects witlsubobjectand allocateonaccess
COCO compression/decompressimouitRTL implementation details
Details on integratingippadsand COCO

Discussion on using COCO with conventional memory hierarchies
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Evaluation

We simulate Zippads using MaxSim
A simulator combining ZSim and Maxine JVM

We compare 4 schemes
Uncomp:Conventional-Bevel cache hierarchy with no compression
CMH:Compressed memory hierarchy

LLC: VSC Main memory: LCP
Algorithm: HyComsgtyle hybrid algorithm
BDI + FPC

Hotpads:The baseline system we build on
Zippads: With and withouCOCO

Workloads: 8 Java apps with large memory footprint from different domains
20
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Samealgo as CMH|CMHalgo + COCO
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2X
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Only 24% better
thanUncomp

1. BothZippadsand CIVIHwork
well in array-heavy apps

2. Zippadsworks much better the
CMH in objeeheavy apps
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