Compress Objects, Not Cache Lines:
An ObjectBased Compressed Memory Hierarct

Po-An Tsaland Daniel Sanchez

i

CSAIL

Prior memory compression techniques are limited to
compressingache lines

Prior memory compression techniques are limited to
compressingache lines

Data movement limits performance and efficiency
A memory access takel0X the latency and.O00X the energy of a FP operation

Prior memory compression techniques are limited to
compressingache lines

i Data movement limits performance and efficiency
A A memory access také80X the latency and.000X the energy of a FP operation

i Applying hardwarebased compression to the memory hierarchy to reduc
data movement thus becomes beneficial
More capacity & less traffic

Main Mem |
l

I
Data uncompressed : Cache

I ! I

I ! I

! Private W : . :I

! L2 i | Data l

| |

I ! I
| |
|

comp.

Shared
LLC

»
I »

2

Prior memory compression techniques are limited to
compressingache lines

i Data movement limits performance and efficiency
A A memory access také80X the latency and.000X the energy of a FP operation

i Applying hardwarebased compression to the memory hierarchy to reduc
data movement thus becomes beneficial
More capacity & less traffic

Tosupport randoraccesses, e mmmmm e : Eonp‘reEsEdI ;| Compressed
the memory hierarchy transfers | Data uncompressed : I Cache | | Main Mem |
cache linesbetween levels , cacha | Cacha B |
Private J | lines | g lines 1| 272 :

A Prior techniques are thus Ilmlted L1/L2 Data . 1p=—! :
to compressing cache lines , Shared : : |
________ , | LLC : | |

L - - J L :

2

Challenges due to compressing at caatesgranularity

Challenges due to compressing at caateegranularity

Locating the compressed cache lanehjtecture

Fixedsize cache lines become variaklee compressed blocks
A HW needs to translate uncompressed addresses to compressed bl

Challenges due to compressing at caateegranularity

Locating the compressed cache lanehjtecture

Fixedsize cache lines become variaklee compressed blocks
A HW needs to translate uncompressed addresses to compressed bl

Compressing cache linagorithm)
= Cache lines are small, and decompression latency is on the critical pa
r A HW cannot compress more than 64B at a time

oo A Only lowlatency algorithms are practical

Prior compressed memory architectures sacrificeq
compression ratio for low latency

Prior compressed memory architectures sacrificeq
compression ratio for low latency

They aim to quicklyanslateuncompressed to compressed addresses
Example: Linearly compressed pages

Original
cache line
address

address Ml

Prior compressed memory architectures sacrificeq
compression ratio for low latency

4 They aim to quicklyanslateuncompressed to compressed addresses
A Example: Linearly compressed pages

Original B sl
cache line
Si-1=51 address
LLC B y | |
Compre Ssed e E D
block st o
address
Uncompressed
format

Prior compressed memory architectures sacrificeq
compression ratio for low latency

4 They aim to quicklyanslateuncompressed to compressed addresses

A Example: Linearly compressed pages

4KB page 2KB page
64B lines 398 lines LCP compresses page by page

Ofi%:nall! to leverage VM for translation
cache line Translatior
| address | “via gl A Fast and low overhead
LLC B " B D VM system . . :
compressedy o —— | , | LCPforcescache lines inthe
address .. same page to compress into
Uncompressed Compressed the same size
format format A Sacrifice compressionratio

Prior compressed memory architectures sacrificeq
compression ratio for low latency

They aim to quicklyanslateuncompressed to compressed addresses
Example: Linearly compressed pages

N gzg IIiJr?egSe ggBB I'iorf‘gs LCP compresses page by page
Original to leverage VM for translation
cache line Translation
address via the

D VM system . : :
compressed o | —— | o | LCPforcescache linesin the
address same page [0 compress into
Uncompressed Compressed the same size
format format A Sacrifice compressionratio

Other techniques make similar tradeoffs
E.qg., 4 different sizes for cache lines in a page

Prior compression algorithms are limited to exploit redundig
within a cache line to achieve low latency

Prior compression algorithms are limited to exploit redundf.iE
within a cache line to achieve low latency

i Example: BasPeltalmmediate compression

Int arra

TSI TRWY 100 | 100 102 | 101 | 103 | 103 | 102 | 104 |108 |109 109 | 111
Floatarra
o 12 13 BE

Referencarray

0x18 0x30 | 0x45 [l

Prior compression algorithms are limited to exploit redundz.le
within a cache line to achieve low latency

i Example: BasPeltalmmediate compression

Int arra
100 [100 | 102 101 1103 |103 | 102 104 103

64B cache line

Floatarra
= ﬁ &6
Compressed layout U8 SaEsma s B el Sl i is 6 6
0(2(11]3|3|2|4 11113 Referencearray
© ¢

[FRH,Arelakisetal., MI CRQBPCKi m et g1 .

Uncompressed layo

Work well on arrays Homogeneous, regular

Prior compression algorithms are limited to exploit redundf.le
within a cache line to achieve low latency

i Example: BasPeltalmmediate compression

Int arra
100 [100 | 102 101 1103 |103 | 102 104 103

64B cache line

Floatarra
i . EEEEEEN ¢
Compressed layout 52 e e s] B2 Bl é ¢ f
0l211 133124 11113 Referencarray o
°°
Work well on arrays Homogeneous, regular

m No compressions Prior work [FRH,Arelakisetal., MI CRQOBPICKIi m et gl .

Uncompressed layo

2
1

%
- 8
i
1.5
— —
) I I
0
FFT

SPMV 5

COMPRESSION RATIO

Prior compression algorithwwrk poorly on objects E

Prior compression algorithwwrk poorly on objects F

Work poorly on objectsHeterogeneous, irregular

- 1.3 | 0x48

Object Al Object B Object A2 l Object C ’

Prior compression algorithwwrk poorly on objects F

Work poorly on objectsHeterogeneous, irregular Little redundancy
64B cache line within a cache line

I ‘¢ EEEEEEEN

Object Al Object B Object A2 Object C
I

Work poorly on objectsHeterogeneous, irregular

64B cache line

Prior compression algorithwwrk poorly on objects P

Little redundancy
within a cache line

EEEEEEEN

é e

Object Al Object B Object A2 Object C
I
O : :
— ®No compressions Prior work
< 2
r 2 © 0
Z - 3 N
O 15 15 0 N . -
A 3
o
% 0.5 0.5
O
@) 0 0 - - L LB [|
H2 P

FFT SPMV
Array-heavy apps:
61% compression ratio

Lo
!
i
HI

SPECIJBB PAGERANK COLORING E GUAVACACHE

BTRE
Objectheavy apps:
14% compression ratio 6

Objectsnot cache lines, are the natural unit of compress

Objectsnot cache lines, are the natural unit of compress

Insight 1.:
Objectbased applicationsalways follow pointers to access objects

Objectsnot cache lines, are the natural unit of compress

Insight 1.
Objectbased applicationsalways follow pointers to access objects

Uncompressed layout
Object Al Object B1 Object A2 Object C Object B2

L A N | S—

Objectsnot cache lines, are the natural unit of compress

Insight 1.
Objectbased applicationsalways follow pointers to access objects

Uncompressed layout

Object Al Object B1 Object A2 Object C Object B2

ldea 1:
Q Point directlyto the location of compressed objects to avoid

uncompressedo-compressed address translation!
Compressed layout

Object Al Object B1 [Object A2 Object C Object B2
0x00 OXDF

ODbjectsnot cache lines, are the natural unt@mhpression

ODbjectsnot cache lines, are the natural unt@mhpression

Insight 2:
There issignificant redundancyacross objects of the same type

ODbjectsnot cache lines, are the natural unt@mhpression

Insight 2:
There issignificant redundancyacross objects of the same type
Compressed layout

Object Al Object B1 [Object A2 Object C Object B2

LS 2 i | ¢ —

ODbjectsnot cache lines, are the natural unt@mhpression

Insight 2:
There issignificant redundancyacross objects of the same type
Compressed layout

Object Al Object B1 [Object A2 Object C Object B2

ldea 2:
P Compressacrossobjects,not within cache lines,

to leverage more redundancy!
Further compressed layout

k Al kBl [k A2 k C k B2

N (I 3 | €

_ Byteghat differ from
a sharedbaseobject

Ox8F

Compressing objects would be hard to do on cache hierarchies

Compressing objects would be hard to do on cache hierarchies

ldeally, we want a memory system that
A Moves objects, rather than cache lines
A Transparently updates pointers during compression

Compressing objects would be hard to do on cache hierarchies

ldeally, we want a memory system that
Moves objects, rather than cache lines
Transparently updates pointers during compression

Therefore, we realize our ideas blotpads;
A recenbbjectbasednemory hierarchy

Baseline systerHotpadsoverview

10

Baseline systerHotpadsoverview

10

Baseline systerHotpadsoverview

Data Array

Objects

Free space

= Dataarray

A Managed as a circular buffer using simple

sequential allocation
A Stores variablesized objects compactly

10

Baseline systerHotpadsoverview

Data Array ',

EEJGC'[S -—

Free space

= Dataarray

A Managed as a circular buffer using simple

sequential allocation
A Stores variablesized objects compactly

10

Baseline systerHotpadsoverview

= / Data array

A Managed as a circular buffer using simple
sequential allocation

A Stores variablesized objects compactly

Free space

10

Baseline systerHotpadsoverview

i Data array

== [Managed as a circular buffer using simple
sequential allocation

A Stores variablesized objects compactly

A Can storevariable-sizedcompresseabijects
compactly too!

Free space

10

Baseline systerHotpadsoverview

= . Data array

{ Managed as a circular buffer using simple
sequential allocation

A Stores variablesized objects compactly

A Can storevariable-sizedcompresseabijects
compactly too!

i CG-Tags
A Decoupled tag store
i Metadata
A Pointer? valid? dirty? recentiged?

Free space

Metadata
(word/object)

C-Tags

10

Hotpadsmoves objects instead of cache lines

11

Hotpadsmoves objects instead of cache lines

— — == ======3 RegFile L1 Pad L2 Pad Main Mem
I Example object:

|
| i _
| class LlstNodf: { 110 Objects
Q int value; I rl > = "
: ListNode next; | (2 Free l Initial state.
|

Space
__________ r3 S

11

Hotpadsmoves objects instead of cache lines

= = == === == =1 RegFile L1 Pad L2 Pad Main Mem
I Example object:

[
| .
Iclass. LlstNodg { I ro Objects
Q int value; I r1 — = .
: ListNode next;, | (2 Free 1»_}_ Initial state.
I space
I_} _________ J r3 \
I Program code: I 0
e lint v= Auvalue ; | = A copied into L1 pad.
e e e e = = = — J rl
r2 Ll:-g-
I3

11

Hotpadsmoves objects instead of cache lines

= = = = == === =14 RegFile L1 Pad L2 Pad Main Mem

I Example object: |

I'class ListNode { i 10 Objects
Q : int value; Ll L - .

: ListNode next;, | (2 Free 1»_}_ Initial state.

I space

I_} _________ J r3 \

rProgram code: | 0
e lint v= Auvalue ; | = A copied into L1 pad.

e e e e = = = — J rl l

I'Program code: | 2 5 A B copiedinto L1 pad.
9 Lv: A.nextvalue J' 3

11

Hotpadsmoves objects instead of cache lines

= = = = == === =14 RegFile L1 Pad L2 Pad Main Mem
I Example object:

I'class ListNode {

|
Q' int value; : I’(])- Objects —
’ r — .- .
' ListNode next: | Free l Initial state.
|

! } r2 space
L e - — J r3
I Program code: I 0
e lint v= Auwvalue ; | A copied into L1 pad.

e — = = - . rl R l
I'Program code: | 2 A B copiedinto L1 pad.
9 Lv: A.nextvalue J' 3

63 50 4847 0

Hotpaddakes control of the| g7

memory layout, hides pointers Fetchingize words from the starting address yieldsthe entire object
from software, and encodes

object information in pointers

—

11

Hotpadsmoves objects instead of cache lines

- = == ======1 RegFile
I Example object: | 9
I'class ListNode { i | ro
Q : int value; L
ListNode next;
y : 2
L e - — J r3
I Program code: I 0
e lint v= A.value ; | [
e e - o - — J rl
|_Pr3grar; code: | r2
Lv: A.nextvalue : ,I r3

63

L1 Pad L2 Pad Main Mem
Objects
N -
RN | —
space

ﬁ\-lt-i-

50

Hotpadgakes control of the

memory layout, hides pointers

—

from software, and encodes
object information in pointers

4847

addresgyields the entireompresseabject

Initial state.

A copied into L1 pad.

B copiedinto L1 pad.

0

Compressedsize Compressed object addre§48b)

Fetchingompressed size words from the startingpmpressed

11

Hotpadsupdates pointers among objects on evict

12

Hotpadsupdates pointers among objects on evict

L1 padis now full,
7 1»-_ triggering abulk
eviction in HW.

I'L1 padis full because of
: fetched objecter newly

12

Hotpadsupdates pointers among objects on evict

' L1 pad is full because of

! = L1 pad is now full,
: ! fetched objecter newly : 7 L-_ triggering abulk
| allocate objects , evictionin HW.

| After an L1 bulk eviction: | A T—
QI Pointers are updatedto l / N - '?
: point to the new locations. : space F_ B |
L o o |

Copied objects¥) are New objectsl)) are
back to old location sequentially allocated

12

Hotpadsupdates pointers among objects on evict

' L1 padis full because of ! = L1 pad is now full,
: ! fetched objecter newly : 7 L-_ triggering abulk
| allocate objects , eviction in HW.

| After an L1 bulk eviction: | A T—

QI Pointers are updatedto l / N - '?
: point to the new locations. : space F_ . B |
o |

Copied objects¥) are New objectsl)) are
back to old location sequentially allocated

4 Bulk eviction amortizes the cost of finding and updating pointers across ol

12

Hotpadsupdates pointers among objects on evict

' L1 pad is full because of

! = L1 pad is now full,
: : 7 triggering abulk
| allocate objects , eviction in HW.

! fetched objecter newly

| After an L1 bulk eviction: | A T—
G. Pointers are updatedto : / N - '7
: point to the new locations. : space F_ . B |
|

Copied objects¥) are New objectsl)) are
back to old location sequentially allocated

4 Bulk eviction amortizes the cost of finding and updating pointers across ol

4 Since updating pointers already happens in Hotpads,

there isno extra cost to update them to compressed locations!
12

Zippads Locating objects without translationzq

13

Zippads Locating objects without translationzq

Zippads leverages Hotpads to
Manipulate and compress objects rather than cache lines
Avoid translation by pointing directly to compressed objects during evictions

13

Zippads Locating objects without translationzq

i Zippads leverages Hotpads to

A Manipulate and compress objects rather than cache lines
A Avoid translation by pointing directly to compressed objects during evictions

I I NN I I IS S S S S S S S - .

Pad | Pad

1 Compressed

: |
Ll L2 —:—m—:—' L3
I I Pad:
I
I

Main
Memory

13

Zippads Locating objects without translationzq

i Zippads leverages Hotpads to
A Manipulate and compress objects rather than cache lines
A Avoid translation by pointing directly to compressed objects during evictions

I I NN I I IS S S S S S S S - .

— . L1

! algorithm

Pad -

' |
—I—m—:—' L3
I I Pad :
I
I

Main
Memory

Compress both orthip

and off-chip memories

13

Zippadscompresses objects when they moch

14

Zippadscompresses objects when they moch

Objects are compressed during bulk object evictions

14

Zippadscompresses objects when they moch

i Objects are compressed during bulk object evictions

Case 1: Newly moved objects L3 pad
: Objects
Object .
(uncompressed
L2 pad Free space

Objects startheir lifetimeuncompressed
In private levels

14

Zippadscompresses objects when they mov«Q

i Objects are compressed during bulk object evictions

Case 1: Newly moved objects L3 pad
: : Objects
Object Compression _
(compressed)
L2 pad Free space

Whenobjectsare evicted inta
compressed levahey are compressad
that level and store compactly

Objects startheir lifetimeuncompressed
In private levels

14

Zippadscompresses objects when they mov«Q

i Objects are compressed during bulk object evictions

Case 1: Newly moved objects L3 pad
: : Objects
Object Compression _
(compressed)
L2 pad Free space

Whenobjectsare evicted inta
compressed levahey are compressad
that level and store compactly

Piggyback the bulk eviction process to find and upc
all pointers at once, amortizing update costs

Objects startheir lifetimeuncompressed
In private levels

Zippadscompressesbjects when they move Q

Objects are compressed during boblect evictions

15

Zippadscompresseasbjects when they move Q

i Objects are compressed during bobject evictions

Case 2: Dirtywriteback

L3 pad
Obijects

Updated object M Compression

(uncompressed HW

L2 pad

Objects

Free space

15

Zippadscompresseasbjects when they move Q

i Objects are compressed during bobject evictions

Case 2: Dirtywriteback

Updated object

(uncompressed

L2 pad

Compression
HW

L3 pad
Obijects

Obijects

Free space

Objects

Z

Objects
Free space

15

Zippadscompresseasbjects when they move Q

i Objects are compressed during bobject evictions

Objects
Case 2: Dirtywriteback L3 pad hdated obije

| Objects V1D SSSEY

g\Z€
Updated object Ml Compression . 345 o\d . Z
W S\F Objects
(uncompressed HW ¢ ne
Free space

L2 pad Objects
Free space

Objects
If ne Forwardingthunk

~Zze iy
\/dsiz: %//}/}//';///}/y%

Objects

Updated object
(compressed)

15

Zippadscompresseasbjects when they move Q

i Objects are compressed during bobject evictions

Objects
Case 2: Dirtywriteback L3 pad .: : .-.- ..--.
| Objects \d 5128 2
Updated object Ml Compression Gze <=0 e Z
(uncompressed HW \¢ neW
Free space
L2 pad Objects
Free space Objects
If ney, Forwardingthunk
Periodiccompaction reclaims those unused spaces Objects

(Bulk eviction in arhip pads, GC in main memory)

Updated object
(compressed)

15

Zippadsuses pointers to accelerate decompresQw

16

Zippadsuses pointers to accelerate decompresQw

Every object access starts with a pointer!
Pointers are updated to the compressed locations, so no translation is needec

16

Zippadsuses pointers to accelerate decompresQw

i Every object access starts with a pointer!
A Pointers are updated to the compressed locations, so no translation is needed

iPri1 or work shows 1 t0s benefici al
A Zippads encodes compression metadata in pointers to decompress objects gt

63 50 48 48- X 0

Compressed size Compressed object address (48bits)

= Compression encoding bits (X bits)

16

Zippadsuses pointers to accelerate decompresQw

i Every object access starts with a pointer!
A Pointers are updated to the compressed locations, so no translation is needed

iPri1 or work shows 1 t0s benefici al
A Zippads encodes compression metadata in pointers to decompress objects gt

63 50 48 48- X 0
Compressed size Compressed object address (48bits)

= Compression encoding bits (X bits)

i Zippads thus knows how to locate and what decompression algorithm tc
when accessing compressed objects with pointers

16

COCO:Crossobjectcompression algorithm _E

17

COCO:Crossobjectcompression algorithm _E

COCO exploits similarity across objects with shbaseé objects
A A collection of representative objects

17

COCO:Crossobjectcompression algorithm _E

i COCO exploits similarity across objects with shbaseé objects
A A collection of representative objects

Base object

Uncompressec Compression
object HW

17

COCO:Crossobjectcompression algorithm _E

i COCO exploits similarity across objects with shbaseé objects
A A collection of representative objects

Base object FEEEm-

[
: Compressed object
[Pointer to the
: base object
Uncompressec Compression Bytes that are
object HW different

17

COCO:Crossobjectcampression algorithm _E

18

COCO:Crossobjectcampression algorithm _E

COCO reqguires accessing base objects for every compression/decompr

18

COCO:Crossobjectcampression algorithm _E

COCO reqguires accessing base objects for every compression/decompr

Caching base objects avoids extra latency and bandwidth to fetch them

- 1.0 [

A small (8KB) base object cache works w TR

- R NI E A SN]
A Few types account for most accesses 8 e

§] SR S S

g —— btree

= 04pe SRR specjbb

)) | S S h2

© F S I guavacache

0.0 '

0 10 20 30 40 50
Top K popular type id

18

See paper for additionafeatures and details

Compressing largebjects witlsubobjectand allocateonaccess
COCO compression/decompressimouitRTL implementation details
Details on integratingippadsand COCO

Discussion on using COCO with conventional memory hierarchies

19

Evaluation

20

Evaluation

4 We simulate Zippads using MaxSim
A A simulator combining ZSim and Maxine JVM

20

Evaluation

We simulate Zippads using MaxSim
A A simulator combining ZSim and Maxine JVM

We compare 4 schemes

20

Evaluation

We simulate Zippads using MaxSim
A A simulator combining ZSim and Maxine JVM

We compare 4 schemes
A Uncomp:Conventional-Bvel cache hierarchy with no compression

20

Evaluation

We simulate Zippads using MaxSim
A A simulator combining ZSim and Maxine JVM

We compare 4 schemes
A Uncomp:Conventional-Bvel cache hierarchy with no compression
A CMH:Compressed memory hierarchy

LLC: VSC Main memory: LCP
Algorithm: HyComsgtyle hybrid algorithm
BDI + FPC

20

Evaluation

We simulate Zippads using MaxSim
A simulator combining ZSim and Maxine JVM

We compare 4 schemes
Uncomp:Conventional-Bevel cache hierarchy with no compression
CMH:Compressed memory hierarchy

LLC: VSC Main memory: LCP
Algorithm: HyComsgtyle hybrid algorithm
BDI + FPC

Hotpads:The baseline system we build on

20

Evaluation

We simulate Zippads using MaxSim
A simulator combining ZSim and Maxine JVM

We compare 4 schemes
Uncomp:Conventional-Bevel cache hierarchy with no compression
CMH:Compressed memory hierarchy

LLC: VSC Main memory: LCP
Algorithm: HyComsgtyle hybrid algorithm
BDI + FPC

Hotpads:The baseline system we build on
Zippads: With and withouCOCO

20

Evaluation

We simulate Zippads using MaxSim
A simulator combining ZSim and Maxine JVM

We compare 4 schemes
Uncomp:Conventional-Bevel cache hierarchy with no compression
CMH:Compressed memory hierarchy

LLC: VSC Main memory: LCP
Algorithm: HyComsgtyle hybrid algorithm
BDI + FPC

Hotpads:The baseline system we build on
Zippads: With and withouCOCO

Workloads: 8 Java apps with large memory footprint from different domains
20

Zippadsimproves compression ratio

21

Zippadsimproves compression ratio

Compression Ratio
= N N
(8] o)]

—
o

o
8

21

Zippadsimproves compression ratio

N
o

1 Uncomp. (SN CMH EZZ Zippads-BF ESN Zippads

Compression Ratio
- N
(8] o

—
o

o
8

21

Zippadsimproves compression ratio

Compression Ratio

N
o

N
o

—
o

—
o

o
8

Samealgo as CMHK

B Uncomp. (XN CMH

PZZ] Zippads-BF

ENN Zippads

21

Zippadsimproves compression ratio

Samealgo as CMH|CMHalgo + COCO

N
o

1 Uncomp. (NN CMH |EZZ Zippads-BF || ESN Zippads

Compression Ratio
- N
(8] o

—
o

o
8

Zippadsimproves compression ratio

Samealgo as CMH|CMHalgo + COCO

N
O
T

N
o
T

Compression Ratio
(4))

(] —k
Ul o
ﬁ

o™

ec;\bb 19»“““6 \of"O *g’ﬂ(e

009° ca ™ gre?”

gug_\la)

Zippadsimproves compression ratio

Samealgo as CMH|CMHalgo + COCO

N
o

N
o

Compression Ratio
(8]

—
o

o
8

L\

g

Only 24% better
thanUncomp

21

Zippadsimproves compression ratio

Samealgo as CMH|CMHalgo + COCO

N
O
T

N
o
T

Compression Ratio
o o

o
3

W\ o 'Qf“\‘ w2 ec:\‘gb

aﬁach%mean

70%
} better

Only 24% better
thanUncomp

21

Zippadsimproves compression ratio

Samealgo as CMH|CMHalgo + COCO

N
O
T

N
o
T

0% \ 2X
0 better
} better

Only 24% better
thanUncomp

Compression Ratio
o o

o
3

21

Zippadsimproves compression ratio

Samealgo as CMH|CMHalgo + COCO

N
O
T

N
o
T

Compression Ratio
o

70% [~ 2X
0 better
} better

Only 24% better
thanUncomp

—_
o

o
3

Be™ W e e gor®® gt

1. BothZippadsand CIVIHwork
well in array-heavy apps

21

Zippadsimproves compression ratio

Samealgo as CMH|CMHalgo + COCO

B Uncomp. TSN GMH | 2228 Zippads-BF || B8 Zippads | |

2X
> better

70%
} better

Only 24% better
thanUncomp

1. BothZippadsand CIVIHwork
well in array-heavy apps

2. Zippadsworks much better the
CMH in objeeheavy apps

1N

21

